
This material is based upon work supported by the National Science Foundation under Grant #0083127

Permitting Constraint Violations in Data Storage
for Integrated Data Repositories

A Thesis Proposal Presented to the
Department of Computer Science

at Brigham Young University

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

Lars E. Olson
April 17, 2002

-2-

I. Introduction

While trying to integrate data from multiple sources, a user often finds uncertain or

incomplete data, conflicting data, or data that does not satisfy a predetermined set of constraints.

Most simple databases either require the conflicts to be resolved or ignore the constraint entirely and

depend on the user to find and correct conflicting data.

Some situations require a more robust behavior than this, such as when the user cannot

resolve the conflicting data and wishes to keep all the possible values to indicate uncertainty. Such a

database should be able to keep the desired data model and constraints, while at the same time it

should be able to store exceptions to the model. In addition, the database should allow the user to add

degrees of certainty to uncertain data so that the most probable values can be identified.

As an example, suppose we are collecting genealogical information. Since people can only

have one birth date, it makes sense to include a constraint in the database to permit only one birth date

for each person. Suppose, however, that for a particular person we find two possible dates of birth

(such as “4 or 5 December 1394") or an imprecise date of birth (such as “December 1394,” with a

month and year but no day). There may be no way of ever finding out the true date of birth. Since we

may never know and since we typically want to have as much identifying information as possible, the

database should store as much as it can, even though doing so may violate a constraint.

The method for storing this information needs to be scalable. For example, suppose that for

the same person, we have not only an imprecise date of birth (such as “December 1394,” as in the last

example), but also two values for a marriage date (such as “2 February 1423 or 1424”), and two

-3-

values for a death date (such as “21 February 1436 or 1437”). The actual set of dates could be any

one combination of the unknown values (e.g. birth date: 5 December 1394, marriage date: 2

February 1423, and death date: 21 February 1437). Since the number of possible combinations can

get very large for even a single person (in this case, 31 birth dates * 2 marriage dates * 2 death dates =

124 possible combinations), an efficient method for storing the multiple combinations must be used.

In some cases we might be able to eliminate some of the combinations. For example, suppose

we know that a certain person’s surname is either Purcell or Loveridge, and that her place of birth was

either Cambridge or Oxford. Thus, there are four possible combinations of these values, any of

which might be the correct value. Suppose further, however, that we do know that the Purcell family

lived in Cambridge and the Loveridge family lived in Oxford at the time of her birth. The database

should allow us to assert the correct combinations (namely, surname: Purcell— birth place:

Cambridge; and surname: Loveridge— birthplace: Oxford) and eliminate the other incorrect

combinations. In general, the proposed database must be able to correlate some of the unknown

values.

In each of the previous examples, we can store the conflicting data as a disjunction (the “OR”)

of the uncertain values. Databases that allow a disjunction of values in place of single values are

called disjunctive databases. Some theoretical foundations and proposed models of disjunctive

databases already exist (see for example [IV89], [AG85], and [KW85]). Some of these models,

however, are not expressive enough to solve all of the described problems. For example, the OR-

tables described in [IV89] can store multiple data such as birth dates in a single field of one record,

but cannot correlate data between disjunctions, and thus cannot model the data correlating the Purcell

-4-

family with Cambridge and the Loveridge family with Oxford in the example previously described.

Others are not scalable, or require automated theorem-proving to answer queries. For example, the

conditional tables described in [AG85] can represent the data for the Purcell-Loveridge problem, but

only by introducing first-order logic statements as conditions. This may not be acceptable because

most database users do not know how to use first-order logic to correlate data. In addition, answering

queries would require a theorem prover and could raise some time complexity issues.

As a further complication, not all constraint violations can be modeled by disjunctive data. In

our genealogy example, we may find that a child, father, and mother all have one recorded birth date

each, but the child’s birth date is before the father’s or the mother’s. Children cannot be born before

their parents, so we should be able to recognize an error in the data, even if we have no alternative

values that would make more sense. Other constraints that must be considered for genealogical data

can be found in [Bro00] and [BAFS01].

This thesis will describe a model that better suits the problem, and examines some of the

implications of using this model to allow constraint violations and measures of uncertainty. Storage

schemas and methods for queries and updates will be described, along with analysis of their space and

time complexities.

II. Thesis Statement

What is an appropriate database model for representing incomplete, uncertain, and

inconsistent data? Given such a model, how can we efficiently map the data and certainty values to

physical storage? As part of this mapping, we must also answer the following questions: How can

-5-

inconsistent data be efficiently correlated across records? What is the complexity of making updates

(e.g. insertion and deletion) and of answering queries about constraint violations? Can normal

database queries still be answered efficiently? How do we find a valid subset of the data that is

consistent with the constraints, and if more than one such subset exists, can we efficiently determine

which is most likely?

III. Methods

This project will involve creating components of a database management system capable of

handling the problems stated in the introduction. Several distinct problems arise from allowing

constraint violations, storing disjunctive values, and correlating data across records. The following

paragraphs contain examples of some of the foreseen problems.

Further Examples of Correlating Data Values

Such data correlations can exist not only in relation to a single entity (such as the Purcell-

Loveridge problem) but also between separate people. We might know a certain person’s surname is

either Bernard or Barnett. If we know that the family is from a culture that traditionally passes

surnames from fathers to children, then we also know that her father’s name was also either Bernard

or Barnett. In fact, we know that either both surnames are Bernard or both are Barnett, and can safely

eliminate the possibilities that the daughter’s name is Bernard and the father’s is Barnett, and vice-

versa.

As a consequence of allowing multiple values as exceptions to database constraints, other

records in the database might be affected. For example, we might want a database table of all the

-6-

people who were alive for a particular time period, along with references to personal journals

containing information about them. Suppose, for a particular person, we have multiple possible birth

dates, one of which is within the target time period and one of which is not. Depending on the true

birth date, this person may or may not appear in this journal table. This example is significant

because the data correlation is not between two unknown values, but rather between an unknown

value and the existence of an entire record in a database table.

The database constraints themselves might depend on an unknown or inconsistent value. For

example, we may have two addresses recorded for a particular contact, one in the United States and

the other in Canada. The address structure is different for these two countries (the format of the

postal code, for example), so the address constraints will change based on the country of origin. This

example is significant because the correlation is not between actual values in the database, but rather

between an actual value and a part of the metadata.

The Sub-relation Data Model

Conceptually, the database model to be used will store inconsistent values in a “sub-relation.”

These sub-relations may appear in any column of the data table (as Figure 1 shows), may span

multiple columns (as Figure 2 shows), or indeed may span portions of different records (as Figure 3

shows). This will allow data that does not violate any constraints to be stored normally.

-7-

Table Person:
Name Birth Marriage Death

James I {u} {v} {w}

Sub-relation {u}: Sub-relation {v}: Sub-relation {w}:
Birth

1 Dec 1394
!

31 Dec 1394

Marriage
2 Feb 1423
2 Feb 1424

Death
21 Feb 1436
21 Feb 1437

Figure 1: Example containing three sub-relations. Note that sub-relation {u}
conceptually contains all dates between 1 Dec. and 31 Dec. 1394, but doesn’t
necessarily have to contain each date explicitly in the implementation.

Table Person:
First Name Surname Birthplace

Priscilla {x} {x}

Sub-relation {x}:
Surname Birthplace
Purcell Cambridge

Loveridge Oxford

Figure 2: Sub-relation spanning multiple columns.

Table Person:
ID# Given Name Surname

26DP Catherine {y}
26DS William {y}

Sub-relation {y}:
26DP.Surname 26DS.Surname

Bernard Bernard
Barnett Barnett

Figure 3: Sub-relation spanning multiple records. Note that
since both attributes in the sub-relation refer to the Surname
attribute in table Person, the metadata must also identify the
tuple associated with each value.

-8-

There will be cases where constraint violations take place, without having multiple values for

a single field (such as the example of finding that a child’s birth date is before the father’s or the

mother’s). Thus the project will also require a method for checking the data against a set of

constraints, both for existing data and for database modifications such as insertion and deletion of

records. This type of constraint-checking is a well-developed area of database theory. The code

written for [BAFS01] includes checks for many genealogy-specific constraints and will be integrated

with this project.

Avoiding CoNP-Completeness

[IV89] presents a proof that queries on disjunctive databases in general have CoNP-complete

time complexity. Based on a theorem presented in [LYY95], however, we present a way to handle

genealogical data so that many queries, if not most, become tractable. Furthermore, the theorem also

gives us a way to determine which queries remain intractable, which gives us the opportunity to

handle these queries heuristically or under reasonably bounded extents.

The idea of the theorem is based on the notion of disjunctive graphs; that is, graphs with

hyperarcs that represent disjunctions. Figure 4 shows an example of a disjunctive graph, along with

one of its possible interpretations, where each hyperarc is replaced by one of the possible arcs it can

represent. ([LYY95] uses the term model instead of interpretation, but interpretation will be used to

avoid confusion with other connotations of model that are used in this paper.) Disjunctions can occur

on the head side of the arc (such as the arc from a to {b,c}), on the tail side (such as the arc from

{c,d} to f), or on both sides. Since only one of the disjunctive heads or tails can hold, each

-9-

a

b

c

d

e

f

a

b

c

d

e

f

Disjunctive graph Possible interpretation

Figure 4: An example of a disjunctive graph (left) containing two disjunctive arcs, and one of
the four possible interpretations of the graph (right).

disjunction gives rise to a different interpretation. There are multiplicatively many interpretations,

which is why disjunctive data naturally leads to intractability.

[LYY95] considers the problem of computing the transitive closure of a node x in a

disjunctive graph, which is defined as the set of all nodes y such that in every valid interpretation of

the disjunctive graph, there exists a non-trivial path from x to y. For the graph shown in Figure 4, for

example, the transitive closure of node a is the set {a, d, e}. The theorem states that if each

disjunctive arc of the graph contains a disjunction only in the head of the arc (rather than in the tail),

computing the transitive closure is a polynomial-time algorithm; otherwise, it is CoNP-complete.

-10-

Table Person:

ID# Name Birth Date Birth Place
ID# Marriage Date

1 John Doe
12 Mar. 1840

or
12 Mar. 1841

1
or
2

15 Jun. 1869
or

16 Jun. 1869

! ! ! ! !

Table Place:

ID# City State

1
Commerce

or
Nauvoo

Illinois

2 Quincy Illinois

! ! !

Figure 5: Genealogy database to be converted to a disjunctive graph. Note that attribute Birth
Place ID# is a foreign key referencing table Place. Optional certainty measures can also be
associated with some of the values (including possibly the non-disjunctive values).

To see how to use disjunctive graphs to answer database queries, consider the disjunctive

database shown in Figure 5. We can transform this data into a disjunctive graph by drawing arcs

from each of the object identifiers (or equivalently, tuple identifiers) to their corresponding attributes,

using disjunctive arcs where necessary. We also add arcs representing foreign keys to the actual

nodes in the table being referenced. We can attach labels to each arc to represent the attribute labels.

Figure 6 shows the portion of the transformed graph corresponding to the values shown in Figure 5.

-11-

John Doe

12 Mar 1840

12 Mar 1841

Place

Person

ID#

15 Jun 1869 16 Jun 1869

Nauvoo

Commerce

Illinois

Quincy

ID#
1

ID#
1

2

Name
Birth Date

Marriage Date

City

City

State

State
Birth Place

Figure 6: Database from Figure 5 transformed into a disjunctive graph.

Consider the query, “In what state was the person with ID#1 born?” (which can be written as

BState(FID=1Person ® Place) in relational algebra notation.) To answer this query, we compute the

transitive closure of the node labeled ID#1 and return the node corresponding to the attribute “State,”

which in this case is Illinois. We can guarantee that no arcs with disjunctive tails will appear for a

query such as this if we insist that no disjunctions for object identifiers occur (e.g. the relation will

never contain “ID#1 or ID#2” for a single object-identifier attribute) and that foreign keys only

reference these object identifiers in other tables. Since the only arcs created in the transformation

originate from these object identifiers, we will never have a disjunctive tail, and therefore this type of

query can be answered in polynomial time.

Many other queries can be answered in polynomial time this way, but in some cases the result

introduces a new problem. If we consider the query, “In what city and state was the person with ID#1

born?” (which can be written as BCity,State(FID=1Person ® Place)), we still return Illinois as the state,

-12-

but we find no city in the closure (as [LYY95] defines it). The correct response to this query depends

on what the user really means in the query, which could be one of three desired answers:

 • What values do we know without a doubt?

 • What are all the possible values for each attribute?

 • What are the most likely values?

For the first question, since we do have doubt about the correct city, the correct response is to

return nothing for the city and Illinois for the state, and thus the transitive closure does indeed give

the correct solution. For the second question, it should return Commerce, Nauvoo, and Quincy as

possible cities and Illinois as the state. To return this answer, we perform another simple

transformation on the graph by replacing all disjunctive arcs with regular arcs to all the possible

attributes, as Figure 7 shows. This becomes a degenerate case in which there are no disjunctions, and

thus computing the closure is still in polynomial time. To answer the third question, we must first

answer the question of which values in each disjunction are the most likely values, which will be

discussed in the next section.

-13-

John Doe

12 Mar 1840

12 Mar 1841

Place

Person

ID#

15 Jun 1869 16 Jun 1869

Nauvoo

Commerce

Illinois

Quincy

ID#
1

ID#
1

2

Name
Birth Date

Marriage Date

City

City

State

State

Birth Place
Marriage Date

Birth Date

City
Birth Place

Figure 7: Graph from Figure 6 transformed to consider all possible values as true.

When a query requires selection on non-key attributes, such as, “Find the names of all people

born in Nauvoo between 1841 and 1844” (BName FBirthDate $ 1841 ¸ BirthDate # 1844 ¸ City = Nauvoo (Person ®

Place)), rather than on a key attribute, such as the queries already discussed, we can still guarantee

polynomial running time. We compute the closure for every possible ID# (which is bounded by the

number of nodes n in the graph, and thus the running time is bounded by n * P(n) where P(n)

represents the time required to compute the closure for one node). For each ID#, if the Date falls

within the specified range and the City attribute is “Nauvoo,” then we add the Name attribute to the

answer. Again, this answer will vary depending on whether the user wants what is definitely known,

what all the possible answers are, or what the most likely answer is.

Most queries can be handled in this manner to achieve polynomial running time, but there are

some exceptions. As long as tables are joined on object identifiers, the disjunctions will always be in

the heads of the arcs, but some queries require joins on other attributes. Consider, for example, the

-14-

ID #1

John Doe

12 Mar 1840

12 Mar 1841

13 Mar 1840

ID #2

James Doe

Person P1

Person P2

Figure 8: Query including a join on a non-key attribute.

query “Which people have the same birth date?” (BP1.Name, P2.Name(Person P1 ®P1.BirthDate = P2.BirthDate

Person P2).) A portion of the graph needed to solve this query might look like Figure 8. Notice that

to answer this query, since the join attribute is not the object identifier, we must add disjunctive arcs

from the join attributes to the corresponding object identifiers. This creates arcs with disjunctions in

the tail, and cannot therefore be solved using the polynomial-time algorithm in [LYY95]. Again, the

correct response to this query depends on whether the user wants what is definitely known, what all

the possible answers are, or what the most likely answer is. If the user wants what is definitely

known, we can offer partial answers by simply removing all the disjunctive arcs entirely, or by asking

the user to limit the search space. If a partial answer is not acceptable, we can at least detect when

such a query is CoNP-complete, warn the user if the size of the graph is too large, and ask how we

should proceed. If the user wants an enumeration of all the data for each attribute, we can make the

same transformation we performed in Figure 7, and the query will be polynomial.

-15-

Determining the Most Likely Interpretations

An approach to finding a valid subset of the data will also be developed. In many cases,

however, there will be multiple subsets that could be valid. In the birthday example previously given,

in fact, any one of the possible combinations could theoretically be valid. The database model might

therefore be asked to find the “most likely” combination, provide some sort of ranking for each

combination so that the user can decide which is most likely, or at least use a heuristic to find a “good

enough” combination. To facilitate this, it should also include a way to specify a degree of certainty

to the possible values. We can, for example, use an approach similar to the one found in [GC97].

In general, determining which values are the most likely, based on certainty measures and

given constraints, can be a difficult problem to solve. In our particular application of genealogy, most

disjunctions appear to be mutually independent. Determining whether John Doe’s birth date was in

1840 or 1841, for example, probably will not affect the choice of whether his great-grandfather’s

name was Joshua or Jacob. Disjunctions that are not mutually independent can usually be limited to

immediate family relations. For example, determining the correct birth dates of a grandchild and a

grandparent can be decided by comparing the possible birth dates of the grandchild with those of the

grandchild’s parents (an immediate family relation) and of the grandchild’s parents with those of the

grandparents (also immediate family relations). Thus we can limit our search space to parents,

siblings, and children. It is important to note that limiting the search space will only yield locally

optimal answers, which could be the same as (or very close to) the globally optimal answer, but

cannot be guaranteed to be so.

-16-

ID #1

ID #2

ID #3

ID #4
0.3

0.7

child = parent-1

0.3

0.7

person P1

ID #1

ID #2

ID #4

person P2
ID #1

ID #2

ID #3

ID #4

person P3

ID #3

parent

1.0
1.0

Figure 9: Graph creating all immediate family connections, including certainty measures. Other
attributes, such as Birth Date, have been omitted to keep the diagram simple.

Assuming there are n values in the database, each arc in the disjunctive graph can have a

branching factor of k, which is at most (and probably considerably less than) n. We can make

connections between all the people in the database with their parents in a graph of depth 2. We can

make connections with their siblings by inverting the connections on the parent graph to find all the

children. The resulting graph has a depth of 3, as Figure 9 shows. Since each person appears once at

each depth level, there are at most n arcs between nodes of depth 1 and nodes of depth 2. Similarly,

there are at most n arcs between depth 2 and depth 3. Since each arc has a branching factor of k, we

have at most nk possible choices between depth 1 and depth 2, and another nk between depth 2 and

depth 3. The total possible choices are n2k2, which is bounded by n4. Thus, a brute-force

backtracking algorithm to calculate the likelihood of each possibility (and pick the most likely

choices), using standard techniques for processing uncertainty such as those explained in [GC97], can

be done in polynomial time.

-17-

<Relation Name="Person">
<Person>

<ID>26DP</ID>
<GivenName>Catherine</GivenName>
<Surname pointer={y}/>

</Person>
<Person>

<ID>26DS</ID>
<GivenName>William</GivenName>
<Surname pointer={y}/>

</Person>
!

</Relation>

<SubRelation Name={y}>
<Disj>

<Surname reference="Person" ID="26DP">Bernard</Surname>
<Surname reference="Person" ID="26DS">Bernard</Surname>

</Disj>
<Disj>

<Surname reference="Person" ID="26DP">Barnett</Surname>
<Surname reference="Person" ID="26DS">Barnett</Surname>

</Disj>
</SubRelation>

Figure 10: Possible XML representation of the data from Figure 3.

Physical Storage and User Interface

Since the sub-relation approach is mostly hierarchical in nature (as demonstrated in Figures 1-

3), and since XML easily represents hierarchical data, XML files will be used to represent the input

data. In cases when disjunctive data is not entirely hierarchical, we can use pointers within each base

relation and define the sub-relation externally. In other words, the values in the relation are

polymorphic— they could be simple values, or they could be pointers to sub-relations that are defined

separately. For example, the data from Figure 3 can be represented in XML as Figure 10 shows.

Since the GEDCOM format is commonly used to store genealogical data, the GEDCOM parser

developed in [AS01] will be extended to convert GEDCOM data into XML.

The main program will be a prototype that parses the resulting XML file and stores the data

using sub-relation data structures where necessary. The database schema and constraints will be

-18-

fixed, so as to concentrate on the problem of uncertain and incomplete data. Once the data is stored,

the program will provide an interface to allow the user to add or delete data (which may require sub-

relations to be added or removed). The interface will also allow the user to output the modified data

into a new XML file.

The interface will also allow the user to make queries on the data. Rather than using a query

language, the queries will have a set fill-in-the-blank format where the user will only need to provide

the specific search parameters. The types of query formats provided will include searching for a

specific value or set of values, finding constraint violations within a subset of the database, and

returning all certain data, all possible data, or the most likely combinations.

The prototype will also serve to test the theories developed by this thesis. It will perform

timing measurements on the queries it evaluates, which should follow a polynomial curve for the

polynomial queries and an exponential curve for the CoNP-complete queries.

IV. Contribution to Computer Science

This thesis will describe the theoretical foundations of a model for representing disjunctive

information in a database, and will aid in the process of data integration when inconsistency is

expected and a resolution of the inconsistency will be difficult or impossible. As an example for the

application of the theories presented, a prototype back-end database for genealogical data will be

developed.

-19-

V. Delimitations of the Thesis

No attempt will be made to do the following:

 C Match schemas (see for example [BE99]) or otherwise define how to extract the data from the
different sources (see for example [Ull97]).

 C Perform data cleaning; that is, decide which of the different values is the correct or most likely
value (see for example [Sub94] or [LM98]). While the project will use certainty measures
associated with each uncertain value and attempt to provide a “most likely” interpretation, this
conclusion will depend highly on the certainty measures, which are assumed to be already
provided. An automated process for determining these certainty values is beyond the scope of
this thesis.

 C Provide a process whereby the validity of information sources is evaluated. This thesis will
assume that all information being integrated either has some possibility of being true or has
some significance in identifying a record.

 C Decide whether the conflicting values imply different records (e.g. two birthdays for John Doe
actually means there are two separate John Doe’s). Papers such as [HS95] cover this topic.

 C Decide whether two different values are actually two different representations of the same
value (such as forms of abbreviations or data from sources in different languages).

 C Provide a generalized application capable of storing and checking any user-specified
constraints. The high-level concepts will hopefully be presented in a general manner so as to
apply to any arbitrary application, but the concrete examples will be specifically for a
genealogy application.

VI. Thesis Outline

 1. Introduction (2 pages)

 2. Related Work (4 pages)

 3. The Data Model (12 pages)
a. Constraints for Genealogical Databases
b. Using “Sub-Relations” To Store Exceptions
c. Physical Implementation and Mapping to XML Data

 4. Complexity Issues (18 pages)
a. Insertion and Deletion
b. Normal Database Queries

-20-

c. Finding Constraint Violations
d. Finding Views that Satisfy the Constraints

 5. Analysis and Results (3 pages)

 6. Conclusions, Limitations, and Future Work (2 pages)

VII. Thesis Schedule

A tentative schedule of the thesis is as follows:

Literature search and reading May 2001 – March 2002

Chapter 3 March 2002 – May 2002

Chapter 4 May 2002 – August 2002

Chapters 1 & 2 August 2002 – September 2002

Chapters 5 & 6 September 2002 – November 2002

Thesis Revision and Defense December 2002

VIII. Bibliography

[AG85] S. Abiteboul and G. Grahne, “Update Semantics for Incomplete Databases”,
Proceedings of the 11th International Conference on Very Large Databases (VLDB),
Aug. 21-23, 1985, Stockholm, Sweden, pp. 1-12.

Contains a brief description of Codd Tables, Naïve Tables, and Conditional
Tables, also describes update operations that can be performed on disjunctive
databases.

[AS01] A. Ard and T. Sederberg, “GenDatabase”, July 2001, undergraduate project for
Computer Science at Brigham Young University, Provo, Utah.

C++ program that parses standard GEDCOM data from text files.

[BAFS01] A.J. Bobo, A. Ard, T. Finnigan, and T. Sederberg, “Gena”, summer 2001,
undergraduate project for Computer Science at Brigham Young University, Provo,
Utah.

-21-

Program that provides a visual representation of genealogical data and includes
several constraint checks on the validity of the data, marking the segments of
the visualization where the violations occur.

[BE99] J. Biskup and D. Embley, “Extracting Information from Heterogeneous Information
Sources Using Ontologically Specified Target Views”, Information Systems, to appear.

Describes a process for database integration using ontologies to describe the
database schemas. A mapping between the ontologies is created so that queries
on the source database can extract data in the form of the target ontology.

[Bro00] V. Brox, “Date Estimation in Lineage-Linked Databases”,
http://home.no.net/gedcom/dissertation/dissertation.html, May 2000, undergraduate
project for Computing Science at University of Newcastle upon Tyne, United
Kingdom.

Presents a dissertation on methods for estimating unknown dates in
genealogical databases based on other known or approximate dates for the
person, his parents, or his children. Also includes a set of constraints used for
making the approximations.

[FM92] J. A. Fernández and J. Minker, “Disjunctive Deductive Databases”, Proceedings of
the Logic Programming and Automated Reasoning Conference (LPAR), July 15-20,
1992, St. Petersburg, Russia, pp. 332-352.

Presents a review of the work done in disjunctive databases, describes “model
trees,” a method of answering queries, and presents some open problems in
disjunctive database theory.

[GC97] N. van Gyseghem and R. de Caluwe, “The UFO Database Model: Dealing with
Imperfect Information”, Fuzzy and Uncertain Object-Oriented Databases: Concepts
and Models, ed. R. de Caluwe, World Scientific Publishing Co. Pte. Ltd., 1997, pp.
123-185.

Defines an object-oriented database model and modeling concepts for dealing
with fuzzy information and uncertain information.

[HS95] M. A. Hernández and S. J. Stolfo, “The Merge/Purge Problem for Large Databases”,
Proceedings of the 1995 ACM Special Interest Group on Management of Data
(SIGMOD), May 23-25, 1995, San Jose, California, pp. 127-138.

Addresses the problem of determining when two records from different sources
actually refer to the same person, and describes an algorithm for detecting such
duplicate records. The concepts apply to information integration in general,
but the examples that they give are for detecting duplicate records of people.

-22-

[IV89] T. Imielinski and K. Vadaparty. “Complexity of Query Processing in Databases with
OR-Objects,” Proceedings of the Eighth ACM Symposium on Principles of Database
Systems (PODS), March 29-31, 1989, Philadelphia, Pennsylvania, pp. 51-65.

Describes a model of disjunctive database called an OR-table, which allows
disjunctions for single attributes in the database. Also gives a proof that
queries on OR-tables have CoNP-complete time complexity.

[KW85] A. M. Keller and M. W. Wilkins, “On the Use of an Extended Relational Model to
Handle Changing Incomplete Information”, IEEE Transactions on Software
Engineering, Vol. 11, No. 7, July 1985, pp. 620-633.

Contains a description of a disjunctive database model using set nulls, marked
nulls, and possible conditions. This paper draws a distinction between
knowledge-adding and change-recording updates, how these updates would be
performed in this data model, and what some of its limitations are.

[LM98] J. Lin and A. Mendelzon. “Merging Databases under Constraints,” International
Journal of Cooperative Information Systems (IJCIS), Vol. 7, No. 1, March 1998, pp.
55-76.

Describes a formal semantics for merging first-order logic statements and
provides proofs of some of the properties of these semantics. Also briefly
discusses representations of disjunctive data, and the problem of merging
databases with conflicting schemas.

[LYY95] J. Lobo, Q. Yang, C. Yu, G. Wang, and T. Pham, “Dynamic Maintenance of the
Transitive Closure in Disjunctive Graphs,” Annals of Mathematics and Artificial
Intelligence, Vol. 14, 1995, pp. 151-176.

Introduces disjunctive graphs and includes a polynomial-time algorithm for
solving the transitive closure for a particular category of disjunctive graphs.

[Sub94] V. S. Subrahmanian, “Amalgamating Knowledge Bases”, ACM Transactions on
Database Systems (TODS), Vol. 19, No. 2, June 1994, pp. 291-331.

Describes a framework for integrating knowledge bases using various
languages for annotated logic, including true/false,
true/false/maybe/inconsistent, and real-valued truth values. Also presents
some axioms and theorems for fixpoints in the amalgamated knowledge base.
In this framework, a supervisory database is given a set of user-provided
mediating rules to specify what action to take when data conflicts are
encountered.

-23-

[Ull97] J. D. Ullman, “Information Integration Using Logical Views”, Proceedings of
the Sixth International Conference on Database Theory (ICDT), Jan. 8-10,
1997, Delphi, Greece, pp. 19-40.

Provides an overview of approaches to answering queries from heterogeneous
data sources, including creating queries based on the views of the data sources.
Gives examples using the Information Manifold project and the TSIMMIS
project.

IX. Artifacts

Other than the written thesis, this project will produce a program that demonstrates storage of

and queries on inconsistent data in genealogy. This program will be written in Java, and will use the

Xerces package written by Apache Software for parsing XML files. Since most genealogical data is

stored in GEDCOM format, a program to convert GEDCOM to XML will also be produced. This

will be used to create input XML files of my own genealogy, as well as some input XML files of my

own creation to test the capabilities of the database framework. To enumerate the constraints on a

genealogical database, an XML Schema for the input files will need to be found or created.

-24-

X. Signatures

This proposal, by Lars Olson, is accepted in its present form by the Department of Computer Science
of Brigham Young University as satisfying the proposal requirement for the degree of Master of
Science.

David W. Embley, Committee Chairman

Dennis Ng, Committee Member

Aurel Cornell, Committee Member

David W. Embley, Graduate Coordinator

