
A TOOL TO SUPPORT ONTOLOGY CREATION BASED ON INCREMENTAL

MINI-ONTOLOGY MERGING

by

Zonghui Lian

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

March 2008





Copyright c© 2008 Zonghui Lian

All Rights Reserved





BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Zonghui Lian

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date David W. Embley, Chair

Date Stephen W. Liddle

Date Charles D. Knutson





BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Zonghui Lian
in its final form and have found that (1) its format, citations, and bibliographical style
are consistent and acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in place; and
(3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

Date David W. Embley
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Scott D. Sommerfeldt
Dean, College of
Physical and Mathematical Sciences





ABSTRACT

A TOOL TO SUPPORT ONTOLOGY CREATION BASED ON INCREMENTAL

MINI-ONTOLOGY MERGING

Zonghui Lian

Department of Computer Science

Master of Science

This thesis addresses the problem of tool support for semi-automatic ontology

mapping and merging. Solving this problem contributes to ontology creation and

evolution by relieving users from tedious and time-consuming work. This thesis shows

that a tool can be built that will take a “mini-ontology” and a “growing ontology” as

input and make it possible to produce manually, semi-automatically, or automatically

an extended growing ontology as output. Characteristics of this tool include: (1) a

graphical, interactive user interface with features that will allow users to map and

merge ontologies, and (2) a framework supporting pluggable, semi-automatic, and

automatic mapping and merging algorithms.





ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. David W. Embley. Under

his guidance, I successfully overcame many difficulties and learned a lot from him.

Secondly, I would like to thank my other committee members. I thank Dr.

Stephen W. Liddle for his unique insight into software design and implementation. I

thank Dr. Charles D. Knutson for his time and effort on my thesis.

I would like to thank my wife, Cui, for her unwavering support and encour-

agement, as well as her patience and understanding. I thank my son, Andrew, for

bringing me so many happiness. I also want to thank my parents and my brother,

Zongyang, for their support and help all the time in my life.

I thank the National Science Foundation for supporting this research under

grant No.0414644

Last, but not least, I thank all the BYU data-extraction research group mem-

bers for their support and suggestions on my research.





Table of Contents

Acknowledgements xi

List of Tables xv

List of Figures xix

1 Introduction 1

2 Preparatory Ontology Editor Augmentations 5

2.1 Ontologies and the Ontology Editor . . . . . . . . . . . . . . . . . . . 5

2.2 Loading Source and Target Ontologies . . . . . . . . . . . . . . . . . 8

3 Mapping and Merging 11

3.1 Manual Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Object Set Mapping . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Relationship Set Mapping . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Generalization/Specialization Mapping . . . . . . . . . . . . . 16

3.1.4 Aggregation Mapping . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.5 Text Editor View . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Semi-Automatic and Automatic Mode . . . . . . . . . . . . . . . . . 22

3.3 Merge Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 API for Plug-in Mapping and Merging Algorithms 29

xiii



5 Observations and Analyses 33

5.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion and Future Work 37

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39

A API for Mapping and Data Merging Algorithms 41

B Test Cases 49

xiv



List of Tables

xv



xvi



List of Figures

2.1 Sample Ontology Represented Graphically in the OntologyEditor . . 6

2.2 Choose Source Ontology Dialog . . . . . . . . . . . . . . . . . . . . . 9

2.3 Target and Source Ontologies in the OntologyEditor . . . . . . . . . . 10

3.1 A Mapping Between Two Object Sets . . . . . . . . . . . . . . . . . . 13

3.2 An IDS Statement for Object Set Name Conflict . . . . . . . . . . . . 14

3.3 Another Mapping Between Two Object Sets . . . . . . . . . . . . . . 14

3.4 An IDS Statement for Relationship Sets Constraint Conflict . . . . . 15

3.5 A Mapping Between Two Relationship Sets . . . . . . . . . . . . . . 15

3.6 An IDS statement for Relationship Set Name Conflict . . . . . . . . . 16

3.7 Another Mapping Between Two Relationship Sets . . . . . . . . . . . 17

3.8 An IDS statement for Generalization/Specialization Constraint Conflict 18

3.9 A Mapping Between Two Generalization/Specialization Relationships 18

3.10 A Mapping Between Two Aggregations . . . . . . . . . . . . . . . . . 19

3.11 The Target Ontology in Text View Editor . . . . . . . . . . . . . . . 20

3.12 Open Two Ontologies in Text View Editor . . . . . . . . . . . . . . . 21

3.13 An IDS Statement for Object Set Name Conflict in the Text View Editor 22

3.14 Two Mapped Ontologies in the Text View Editor . . . . . . . . . . . 23

3.15 The Native Mapping Algorithm Mapping Conditions . . . . . . . . . 24

3.16 The Naive Mapping Algorithm Generated Mappings in Semi-
Automatic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xvii



3.17 The Naive Mapping Algorithm Generated Mappings in Automatic Mode 25

3.18 An IDS for Multiple Object Sets Have the Same Name . . . . . . . . 26

3.19 The New Growing Ontology After Merging . . . . . . . . . . . . . . . 27

3.20 The New Growing Ontology After Applying the Layout Function . . 27

4.1 Registration for Mapping and Merging . . . . . . . . . . . . . . . . . 30

4.2 The Preference Window for Setting the Mapping and Data Merging
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 The Final Merged Ontology Based on Test Case . . . . . . . . . . . . 35

5.2 Two Mapped Ontologies in Test Case . . . . . . . . . . . . . . . . . . 36

5.3 A Merged Growing Ontology in Test Case . . . . . . . . . . . . . . . 36

A.1 The Method to be Implemented for Mapping and Data Merge Algorithms 41

A.2 The Methods for the Ontology Model . . . . . . . . . . . . . . . . . . 43

A.3 The Methods for ObjectSet . . . . . . . . . . . . . . . . . . . . . . . 44

A.4 The Methods for Object . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.5 The Methods for Aggregation . . . . . . . . . . . . . . . . . . . . . . 45

A.6 The Methods for ChildRelSetConnection for Aggregation . . . . . . . 46

A.7 The Methods for Generalization/Specialization . . . . . . . . . . . . . 47

A.8 The Methods for Relationship Set . . . . . . . . . . . . . . . . . . . . 47

A.9 The Methods for RelSetConnection for Relationship Set . . . . . . . . 48

A.10 The Methods for Relationship . . . . . . . . . . . . . . . . . . . . . . 48

B.1 Test Mini-Ontology 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.2 Test Mini-Ontology 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.3 Test Mini-Ontology 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.4 Test Mini-Ontology 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.5 Test Mini-Ontology 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xviii



B.6 Test Mini-Ontology 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.7 Test Mini-Ontology 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.8 Test Mini-Ontology 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.9 Test Mini-Ontology 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.10 Test Mini-Ontology 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.11 Test Mini-Ontology 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.12 Test Mini-Ontology 12 . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xix



xx



Chapter 1

Introduction

Ontologies provide a powerful explanatory mechanism for concepts and their

relationships. The creation of ontologies, however, is expensive and complex. In

most cases, information collection and analysis, concept and relationship design, and

iterative construction are tedious and time-consuming work.

Much effort has been expended to alleviate these difficulties. Currently over

90 ontology editor tools are available [8]. Although focused on different purposes and

based on different ontology languages, we can generally classify these ontology de-

velopment tools into three categories according to their dominant creation processes:

manual, semi-automatic, and automatic.

Manual ontology generation tools, such as [1], [2], [3], [5], [13], and [17] provide

a graphical user interface for users to create ontologies. These tools are relatively

simple: they provide no information extraction and analysis functions, and most of

them provide no support for ontology merging. Although these tools provide some

conveniences, they still leave most of the information collection and analysis work to

be done manually.

Some tools are semi-automatic, providing automatic support only for some

parts of ontology creation [18]. For example, based on machine learning and linguistic

processing, Text2Onto [7] can extract concepts and relations from textual data. A

limitation of this tool is the difficulty of creating the corpus necessary to support

machine learning and natural language processing techniques. If users want to use

this tool to create an ontology in a certain domain, they must have enough data in

the corpus first, which in most cases is hard to obtain. Also, the resulting ontologies

are often not reliable, and in some cases, the accuracy of the relationships among

1



extracted data items is low. Lamparter, et al. [15] present another example of a semi-

automatic ontology creation method. This method allows semi-automatic knowledge

extraction from underlying classification schemas such as folder structures or web

directories. The performance of this method depends highly on previously generated

ontologies. In addition, the accuracy of distinguishing concepts and data instances is

a problem for this method.

There are also some available tools that provide for automatic ontology gen-

eration. However, they are all highly constrained. TOPKAT [4] supplies a simple

natural language parser that only provides partial natural language analysis to iden-

tify possible concepts and property values. The tool presented by Modica, et al. [20]

is able to extract ontologies only if the scope of the domain is very narrow. Although

the authors claim that this tool is automatic, an ontology evolution session is highly

user-interactive.

Researchers at BYU have proposed TANGO (Table ANalysis for Generating

Ontologies), which can generate ontologies fully automatically, but can also be run

semi-automatically or manually. TANGO [22] is an ontology creation tool that as-

sembles information provided in ordinary tables into ontologies. The aim of TANGO

is to create ontologies while involving the user as little as possible. TANGO’s work-

ing process includes four steps: (1) recognize and canonicalize table information;

(2) construct mini-ontologies1 from canonicalized tables; (3) discover inter-ontology

mappings; and (4) merge mini-ontologies into a growing application ontology2.

My research is to construct a tool to do the ontology mapping and merging,

which is a part of the TANGO project (steps 3 and 4). Specifically, the input for a

session using this tool is a mini-ontology and a growing ontology, while the output

is the growing ontology augmented by the mini-ontology. The tool should allow the

ontology mapping and merging processes to be automated. It should also guide users

by notifying them when interventions may be necessary and by suggesting possible

1A mini-ontology is a lightweight ontology generated from a table by table interpretation tech-
niques.

2A growing ontology is a domain ontology that is being constructed as a result of merging mini-
ontologies into a growing ontology.

2



resolutions to questions and ambiguities that may arise. Characteristics of this tool

include: (1) a graphical, interactive user interface with features that will allow users to

map and merge ontologies, and (2) a framework supporting pluggable, semi-automatic

and automatic mapping algorithms.

This tool can help users to resolve ontology mapping and merging problems

with its user-friendly interface, and it can be extended by plugging in different map-

ping and merging algorithms. With these algorithms, it even can resolve the mapping

and merging issues semi-automatically or automatically. As a part of the TANGO

project, this approach will ease the difficulties of creating ontologies.

There exist many ontology mapping tools that support graphical user inter-

faces [11, 12]. For example, COMA++ [9], OLA [14], Clio [19], and PROMPT [21]

all provide ontology mappings semi-automatically. These tools mainly focus on the

OWL ontology mapping and the schema mapping. Our tool focuses on both schema

mapping and relationship set mapping. In addition, our tool aims to map and merge

extraction ontologies that have more ontology components than do OWL ontologies.

We give more details about extraction ontologies in Chapter 2.

We give the details of this tool as follows. Chapter 2 introduces basic knowl-

edge about ontologies and the OntologyEditor tool. It also explains how to perform

merging and mapping between two ontologies so they can be used within a single

model. Chapter 3 demonstrates usage of the tool. Chapter 4 describes the API

(application programming interface) for plug-in mapping and merging algorithms.

Chapter 5 describes our experience with brief field tests and subsequent observations.

Finally, Chapter 6 concludes the thesis and explores possibilities for future work.

3



4



Chapter 2

Preparatory Ontology Editor Augmentations

In this chapter, we briefly introduce ontologies and the OntologyEditor [23],

the environment we use to generate and edit ontologies. In this thesis, we augment

the OntologyEditor by adding merging and mapping functions. Originally the On-

tologyEditor was designed and developed for editing only one ontology at a time. In

order to do ontology mapping and merging, however, we need to open and edit two

ontologies at the same time. We therefore created an operation allowing a user to

open two ontologies in the same view in preparation for mapping and merging.

2.1 Ontologies and the Ontology Editor

The structural components of an ontology include object sets, relationship sets,

and constraints over these object and relationship sets. An object set in an ontology

represents a set of objects which may either be lexical or nonlexical. A lexical object

set contains object values. For example, the string “U.S.A.” is a value of Name

(Country Name), which is a lexical object set. A nonlexical object set describes an

abstract concept, such as Country. A nonlexical object set contains object identifiers

and usually has other associated object values to describe it. For example, we could

use a country name to describe a country.

Figure 2.1 shows a graphical view of a sample ontology opened in the Ontol-

ogyEditor [23], an ontology design and maintenance tool constructed by the Data

Extraction Group at BYU. In the ontology, a dashed box represents a lexical object

set (e.g., Province), and a solid box represents a nonlexical object set (e.g., Country).

Lines connecting object sets represent relationship sets. A word or short phrase along

with a reading-direction arrow and the connected object set names represents the re-

5



Figure 2.1: Sample Ontology Represented Graphically in the OntologyEditor

lationship set’s name (e.g., Province is in Country). For n-ary relationship sets (n >

2), the relationship-set name must include names of the object sets for all of n connec-

tions, and must be fully written without using the reading-arrow shorthand. A small

circle on one end of a relationship-set line indicates that an object’s participation in

a relation for the relationship set is optional. For example, in Figure 2.1 the optional

constraint in relationship set City is in Province means that City can be recorded

without associating it with a Province (e.g., Beijing is equivalent to a province in

China’s administrative structure, and it is not in any province). An arrowhead on a

relationship-set line indicates that the relation is functional from domain (tail side) to

range (head side). For example, in Figure 2.1 a City can have at most one Location,

and therefore City functionally determines Location. In an ontology a Generaliza-

tion/Specialization declares a superset/subset or “is-a” relationship between object

sets. A triangle represents a generalization/specialization relationship. The apex of

the triangle connects to (usually) one generalization object set and the base of the

6



triangle connects to one or more specialization object sets. For example, in Figure 2.1

a Large City is a specialization of the generalization City. In an ontology an Aggrega-

tion declares a superpart/subpart relationship between object sets. A black triangle

represents an aggregation. The apex of the triangle connects to the superpart and

the base connects to the subparts. For example, in Figure 2.1 both Longitude and

Latitude are subparts of a Location; together they constitute a location.

Now let us introduce the main functions on the OntologyEditor’s toolbar as

follows.

• “New” function. By clicking on

¨

§

¥

¦, a user can create a new ontology.

• “Open” function. By clicking on

¨

§

¥

¦, a user can choose an ontology and load

it into the OntologyEditor.

• “Save” function. By clicking on

¨

§

¥

¦, a user can save the opened ontology.

• “Select” function. By clicking on

®

­

©

ª, a user can select one or more ontology

components.

• “New object set” function. By clicking on

®

­

©

ª, a user can create a new object

set.

• “New relationship set” function. By clicking on

®

­

©

ª, a user can create a new

relationship set.

• “New generalization/specialization” function. By clicking on

®

­

©

ª, a user can

create a new generalization/specialization.

• “New aggregation” function. By clicking on

¨

§

¥

¦, a user can create a new

aggregation.

The OntologyEditor, however, does not provide ontology mapping and merging

functions. Our mapping and merging tool for TANGO has been built based on the

OntologyEditor.

7



2.2 Loading Source and Target Ontologies

To do the ontology mapping and merging operations, users need two ontologies

as input. Our tool designates one as the target ontology and the other as the source

ontology. The target ontology is also called the growing ontology, which eventually

grows to become the general domain ontology being created. The source ontology in

the TANGO project is a lightweight mini-ontology generated according to a table.

However, users actually can choose any ontology they want to integrate into the

growing ontology.

The system provides an “open two ontologies” function, which can load the

target and source ontologies together. A user first needs to open an ontology as in

Figure 2.1. When the user then clicks on the “open two ontologies” button

®

­

©

ª
on the toolbar, the system designates the currently opene ontology as the target

ontology and pops up a file-chooser dialog as in Figure 2.2 to let the user choose

a source ontology. The user chooses a source ontology file and clicks on the open

button. Figure 2.3 presents the two ontologies opened in one view. In this figure, the

target ontology is on the left-hand side of the window, and the source ontology is on

the right-hand side of the window.

The internal action of the “open two ontologies” function is as follows. When

calling this function, the system automatically creates a new document with copies of

the source and target ontologies. To accommodate them both in the same graphical

interface, the system calculates a horizontal offset for the source ontology based on

the target ontology’s bounding-box size. With two ontologies open, users can still use

all the normal OntologyEditor functions to modify components, add components, and

save modified ontologies as needed to prepare ontologies for mapping and merging.

8



Figure 2.2: Choose Source Ontology Dialog

9



Figure 2.3: Target and Source Ontologies in the OntologyEditor

10



Chapter 3

Mapping and Merging

The system provides three modes for ontology mapping: manual, semi-automatic,

and automatic. By clicking on the menu “Edit” and “Preference”, a preference dia-

log window pops up. This dialog contains two user preference settings that users can

change. In the “Choose Ontology Editor Type” panel, users can choose the ontology

editor type: “Graphical Editor” or “Textual Editor”. We discuss the graphical editor

in Section 3.1.1 — Section 3.1.4 and discuss the textual editor in Section 3.1.5. In

the “Choose the Mode” panel, users can choose “Manual Mode”, “Semi-Automatic

Mode” or “Automatic Mode”. In the manual mode, users need to detect and cre-

ate mappings manually. In the semi-automatic and automatic mode, a mapping

algorithm helps users to find and create mappings. If there are any conflicts in the

mappings, then in semi-automatic mode the system needs user interactions to resolve

the conflicts, while in the automatic mode the system handles the mappings and

resolves the conflicts automatically.

As the system operates, issues may arise in the ontology mapping and merging

process. We use Issue/Default/Suggestion (IDS) statements [6] to handle these issues.

An IDS statement raises an issue (I), specifies a default action (D) that it would carry

out if the user does not intervene, and suggests (S) one or more alternative resolutions

users may take.

To illustrate the mapping and merging processes, in this chapter we first in-

troduce the manual mode in Section 3.1. We then introduce the semi-automatic and

automatic mode in Section 3.2.

11



3.1 Manual Mode

The mapping button

¨

§

¥

¦on the toolbar provides for the function of creating

a mapping manually. A mapping can be created between two object sets, two rela-

tionship sets, two generalization/specializations or two aggregations. We only allow

mappings between two components that have the same type (i.e., object sets can only

map to object sets, relationship sets can only map to relationship sets, etc.). Since

lexical and nonlexical object sets are different types of concepts, we do not allow a

mapping between them either. The two mapped components have to be from differ-

ent ontologies — our system does not allow a mapping between two components in

the same ontology.

The basic operation for creating mappings between two components has three

steps. (1) A user clicks on the mapping button to start a mapping operation. (2)

The user chooses and clicks on one component to be mapped from either the source

ontology or the target ontology. (3) The user drags the mouse cursor to the other

component to be mapped and releases the mouse button.

The system provides a user-friendly graphical interface that lets users know if

an operation is appropriate: when dragging the mouse cursor, a dashed line appears

to indicate the potential mapping. If the mouse hovers over an invalid ontology

component for the mapping, an invalid icon
¨
§

¥
¦appears. If the mouse hovers over a

valid component for the mapping, the tool shows a green arrow to indicate that the

mapping can be created. When the user releases the mouse button hovering over a

valid component, the mapping is created.

Sometimes a mapping might cause one or more resolvable conflicts. If a con-

flict occurs, IDS interactions can help users handle it. In the following subsections,

we discuss conflicts and their corresponding IDSs in mappings between object sets,

relationship sets, generalization/specializations, and aggregations.

3.1.1 Object Set Mapping

Some mappings between two object sets are simple. Users can simply connect

the two object sets to indicate they map to each other, and the mapping is complete.

12



Figure 3.1: A Mapping Between Two Object Sets

For example, the dashed line between the two object sets City in Figure 3.1 indicates

that these two objects map to each other. The component types match and the names

are identical, so the system accepts the mapping as specified.

Sometimes two object sets may have the same semantic meaning, but their

names are different. When a user creates a mapping between them, the system raises

an IDS statement. For example, in Figure 3.1, the object set Province in the target

ontology and the object set State/Province in the source ontology are considered by

the users to be semantically equivalent. After a user creates a mapping between them,

an IDS statement is raised because they do not have the same name. Figure 3.2 shows

the IDS statement. In an IDS pop-up window, the system lists the issue “Object set

name conflict”, a default solution “Change the object set name State/Province to

Province in the source ontology” and two suggested solutions “Change the object set

name Province to State/Province in target ontology” and “Change both of them to

the same new name” followed by a text box. Assuming the user wishes to choose

the first suggestion, the user click on the radio button for the suggestion and then

clicks on the OK button. Figure 3.3 shows the result. In this case, the object set

Province in target ontology changed to State/Province, and a dashed line representing

the mapping relation between the two object sets appears. If the user had chosen the

default, the system would have made both names be Province. If the user had chosen

13



Figure 3.2: An IDS Statement for Object Set Name Conflict

Figure 3.3: Another Mapping Between Two Object Sets

the second suggestion, the system would have changed the names of both object sets

to the new name given by the user.

3.1.2 Relationship Set Mapping

To match two relationship sets, users can simply draw a line between the two

relationship sets. If the connecting object sets have already been mapped, the names

are the same, and the constraints on the relationship set are the same, the system

accepts the mapping.

For conflicts between relationship sets the system provides two IDS statements.

One is the constraint-conflict IDS statement; the other is the relationship-set-name-

conflict IDS statement.

In Figure 3.3, both the target ontology and the source ontology have a re-

lationship set City is in State/Province. Their constraints, however, are different.

14



Figure 3.4: An IDS Statement for Relationship Sets Constraint Conflict

Figure 3.5: A Mapping Between Two Relationship Sets

In the target ontology, the relationship set has both a functional and an optional

constraint. In the source ontology, the corresponding relationship set only has the

functional constraint. When a user creates a mapping between these two relationship

sets, the IDS statement in Figure 3.4 pops up. This IDS statement lists the issue

“Relationship set constraint conflict”, the default solution “Change the constraint to

optional in the source ontology”, the a suggested solution “Change the constraint

to mandatory in the target ontology”. Assuming the user chooses the default solu-

tion and clicks on the OK button, Figure 3.5 represents the mapping result. If the

user chooses the suggestion, the system removes the optional constraint in the target

ontology, making the participation of the City object set mandatory.

If two relationship sets are to be matched, all the object sets involved in the

relationship sets have to be matched. Our system provides an “all but one” function

to make the operation simpler. If all but one of the object sets for mapping between

a relationship set match, the system knows to match the remaining object sets — one

15



Figure 3.6: An IDS statement for Relationship Set Name Conflict

for the source to one for the target. For example, in the two ontologies in Figure 3.5,

we first see that the relationship set City is located in Location in the target ontology

and the relationship set City has Location in the source ontology have the same

semantic meaning, though their relationship-set names are different. When creating

the mapping, the IDS statement in Figure 3.6 appears. It lists the issue “Relationship

set name conflict”, the default solution “Change the relationship set name City has

Location to City is located at Location in the source ontology” and two suggested

solutions: “Change the relationship set name City is located at Location to City has

Location in the target ontology”, and “Change both of them to the same new name”

followed by a text box. Assuming the user chooses the first suggestion, the system

changes the relationship set name City is located at Location to City has Location in

the target ontology and generates the new mapping. The object sets Location in the

target and source ontologies also automatically map together with the “all but one”

resolution. Figure 3.7 shows the result.

3.1.3 Generalization/Specialization Mapping

The process of mapping two generalization/specializations is similar to the

process of declaring a mapping between two relationship sets. Users just need to

connect the two generalization/specializations to create the mapping.

There are constraint conflicts in generalization/specializations mappings too.

A generalization/specialization relationship has four types of constraints: Mutual

16



Figure 3.7: Another Mapping Between Two Relationship Sets

exclusion (Mutex), Partition, Union, and Intersection. If we map two generaliza-

tion/specializations with different constraints, an IDS statement is raised. For ex-

ample, in Figure 3.7, the generalization/specialization in the target ontology has a

mutual exclusion constraint, and the generalization/specialization in the source on-

tology has a partition constraint. When a user maps them, a constraint conflict is

raised. Figure 3.8 shows the IDS statement for this generalization/specialization-

constraint conflict. It addresses the issue “Generalization/specialization constraint

conflict”, offers the default resolution, “Change the constraint to mutual exclusion in

the source ontology” and three suggestions: “Change the constraint to partition in

the target ontology”, “Change both to union constraints”, and “Eliminate constraints

from both”. Assuming the user chooses the default solution, the system then changes

the partition constraint in the source ontology to a mutual exclusion constraint and

creates the mapping.

Both of these generalization/specializations have object sets Large City and

Small City on their specialization sides. They have the identical names, but they may

have different semantic meanings. For instance, in the target ontology a large city can

be defined as a city with a population that is more than 10 million, while in the source

ontology the object set Large City can be defined as a city with a population that

is more than 5 million. The user must decide whether they should be matched. In

our example, we assume that the user knows that the object sets Small City in both

17



Figure 3.8: An IDS statement for Generalization/Specialization Constraint Conflict

Figure 3.9: A Mapping Between Two Generalization/Specialization Relationships

the target ontology and the source ontology are defined as a city with a population

that is less than 5 millon. Therefore, the two object sets Small City are semantically

equivalent, but the two object sets Large City are not. The user then needs to create

a mapping between the object sets Small City. Figure 3.9 represents the result.

3.1.4 Aggregation Mapping

The process of mapping two aggregations is similar to the process of creating

a mapping between two generalization/specializations. Users can indicate that there

should be a mapping by connecting two aggregations.

An aggregation can only have one superpart. Thus for a pair of mapped ag-

gregations, their superparts have to be mapped. When a user maps two aggregations,

the system automatically verifies whether the two superparts are mapped. If they are

18



Figure 3.10: A Mapping Between Two Aggregations

not mapped and their names are the same, the system automatically creates a map-

ping between them. If they are not mapped but their names are different, an object

set name conflict IDS statement appears to help the user create the mapping between

these object sets. The aggregations Latitude, Longitude is subpart of Location in the

target and source ontologies represent the same semantic meaning. Latitude in the

target and source ontologies have the same name and same semantic meaning, —

similarly for Longitude. Therefore, the user can create mappings for these two sets of

object sets. Figure 3.10 shows the mapping result.

3.1.5 Text Editor View

As ontologies grow large, it becomes unwieldy to manually specify mappings

in the graphical view we have been discussing. We therefore provide another user

interface, a text view, in which ontology components are described textually. In

Figure 4.2, in the “Choose Ontology Editor Type” panel, if a user chooses “Textual

Editor”, the system sets it as the user-preferred editor. Then when opening an on-

tology, the system opens it in the text editor view instead of in the graphical editor

view.

Figure 3.11 shows the target ontology from Figure 2.1 in the text editor

view. The textual language is OSM-L[10, 16]. The textual view lists the object

sets Province, City, Large City etc.; the relationship sets City[0:1] is in Province[1:*],

City[1:1] is located at Location[1:*], etc.; the generalization/specialization Large City,

19



Small City isa [mutex] City ; and the aggregation Longitude, Latitude is subpart of Lo-

cation. The system automatically transforms the optional and functional constraints

to participation constraints. For example, City[0:1] is in Province[1:*] means that

each City object is associated with zero or one Province objects and each Province

object is associated with one or more City objects.

Figure 3.11: The Target Ontology in Text View Editor

After clicking on the “open two ontologies” button

®

­

©

ªand choosing the

source ontology, the system loads them together as Figure 3.12 shows. As in the

graphical editor, the target ontology is on the left hand side and the source ontology

is on the right hand side. In the manual mapping mode, users can choose mapping

candidates by clicking on the ontology components on the target and source ontology

lists. In Figure 3.14, the highlighted component Province in the target ontology and

20



Figure 3.12: Open Two Ontologies in Text View Editor

State/Province in the source ontology has been selected and the user has clicked on

the mapping button

¨

§

¥

¦. As is the case for the graphical editor, if no IDS conflict is

raised, a mapping is created. Otherwise, an IDS statement pops up. In this example,

the system pops up an IDS statement as Figure 3.13 shows. If the user chooses the

first suggestion as the resolution, the system changes the object set in the source

ontology and creates a mapping. To record the mapping, a mapping panel lists the

result as Figure 3.14 shows. It lists the mapping of object sets State/Province.

A user may want to view target and source ontologies in both the graphical

view and the textual view. To provide this option, the system provides “show in text

editor view” and “show in graphical editor view” functions. If a user has an open

ontology in graphical editor view, by clicking on the “show in text view editor” button¨
§

¥
¦on the toolbar, a text editor view of this ontology appears. Similarly, if the user

has open text editor view, by clicking on

¨
§

¥
¦, a graphical editor view appears. In

either case, the graphical editor and text editor view share the same ontology model.

21



Figure 3.13: An IDS Statement for Object Set Name Conflict in the Text View Editor

If the user makes any change using either editor, the change automatically appears

in the other editor.

3.2 Semi-Automatic and Automatic Mode

In the semi-automatic mode and automatic mode, the system employs a map-

ping algorithm to detect and generate mappings. We provide an API for mapping

algorithms that allows the system and the mapping algorithms to work with each

other. (Chapter 4 describes the API.) The system provides the target and source

ontologies (both usually populated) to a mapping algorithm. Using this information,

a mapping algorithm discovers and creates mappings and then sends them back to

the system. The system uses IDS statement processing to validate the mappings.

In the semi-automatic mode, if the mappings contain conflicts, the system pops up

IDS statements to users and resolves the conflicts based on user interactions. In the

22



Figure 3.14: Two Mapped Ontologies in the Text View Editor

automatic mode, the system automatically uses the default resolution to resolve the

conflicts and user interactions are not necessary.

As an example, we have provided a naive mapping algorithm. Since relation-

ship sets, generalization/specializations and aggregations are based on object sets,

the system starts with object set mappings first. It then works on relationship set

mappings, generalization/specialization mappings and aggregation mappings. Fig-

ure 3.15 shows the mapping conditions of the naive mapping algorithm. Basically,

the algorithm naively creates mappings between ontology components according to

their names.

Consider our running example to illustrate the semi-automatic process. In the

semi-automatic mode, when the user clicks on the mapping button
¨
§

¥
¦, the map-

ping algorithm can detects, creates, and returns mapped ontologies to the system.

In our example, the system finds a relationship set name conflict and a general-

izatiion/specialization constraint conflict as the IDS statements in Figure 3.6 and

23



Component Name Mapping Condition
Object sets Same name
Relationship sets All object sets in a relationship set are

mapped.
Generalization/specialization At least a pair of object sets on the general-

ization side is mapped. At least a pair of ob-
ject sets on the specialization side is mapped.

Aggregation The object sets on the super-part side are
mapped. At least a pair of object sets on the
subpart side is mapped.

Figure 3.15: The Native Mapping Algorithm Mapping Conditions

Figure 3.8 show. After the IDS statements pop up, the user needs to select the res-

olutions for the conflicts. Assuming that the user chooses the same resolutions as

discussed earlier, Figure 3.16 shows the result. Since the naive mapping algorithm is

simply based on the names, it does not consider additional information about the se-

mantic meaning of the ontology components. It maps the ontology components with

the same name even if they have different semantic meanings (e.g., object sets Large

City in the target and source ontologies) and it cannot detect mappings between

two ontology components that have the same semantic meaning but have different

names (e.g., the object set Province and State/Province, and relationship sets City is

in Province and City is in State/Province). Before merging the mapped ontologies,

users can modify the mapping results. In this example, the user can manually add

the mappings between Province and State/Province and also the mappings between

the relationship sets City is in Province and City is in State/Provice. To remove a

mapping between two ontology components, the user clicks on the select button
¨
§

¥
¦

on the toolbar, selects the mapping to be removed, and then presses the delete key

on the keyboard. In our example, the user needs to remove the mapping between

the two object sets Large City. With these actions the user will have produced the

mapping in Figure 3.10 and will have produce it with less effort.

In the automatic mode, the system automatically resolves mapping conflicts

with the default resolutions in the IDS statements. Figure 3.17 shows the mapping

24



Figure 3.16: The Naive Mapping Algorithm Generated Mappings in Semi-Automatic
Mode

Figure 3.17: The Naive Mapping Algorithm Generated Mappings in Automatic Mode

result of our running example in automatic mode. In this figure the relationship

set between City and Location is City is located at Location, because this is the

default resolution for the relationship set name conflict in Figure 3.6. As in the semi-

automatic mode, users can review the result and add/remove mappings before they

launch the merging process.

3.3 Merge Ontologies

To merge mapped target and source ontologies, a user can click on the merge

button
¨
§

¥
¦. If multiple unmapped object sets have the same name, our system pro-

vides an IDS statement to remind the user to make them different. Consider the

mapped ontologies in Figure 3.10. In this example, both the target and source on-

tologies have object sets Large City. As we discussed in the previous section, their

25



Figure 3.18: An IDS for Multiple Object Sets Have the Same Name

semantic meanings are different. Figure 3.18 shows the IDS pop-up window. It ad-

dresses the issue “Multiple object sets in the merged ontology will have the same

name Large City”, provides the default resolution “Leave them as they are” and the

suggestion “Go back and change them”. If the user chooses the default resolution, the

system keeps their names and processes the merge. If the user chooses the suggestion,

the system will cancel the merge operation and go back to the editor window. The

user can then change the object set names. Assuming the user chooses the default

resolution, the system creates a new ontology and merges the mapped object sets,

relationship sets, generalization/specializations, and aggregations. For the unmapped

components — in our example Country, Name, Large City, Country has Name, and

State/Province is in Country — our system automatically copies them to the merged

growing ontology.

Often in this merged ontology the components’ positions are not organized

very well. In the graphical view, ontology components have attributes giving their

x and y coordinates. In the merged ontology, these attribute values are from either

the target ontology or source ontology. They may not work well for the new merged

ontology. Figure 3.19 shows the resulting merged diagram. The user may, of course,

rearrange the diagram to make its appearance tidy. Alternatively, the OntologyEditor

provides an automatic layout function. By clicking on the layout button

®

­

©

ª, the

system can automatically re-arrange the ontology components’ positions. Figure 3.20

shows the merged ontology whose layout is arranged by the layout function. Again,

the user may adjust the diagram to make its appearance tidy.

26



Figure 3.19: The New Growing Ontology After Merging

Figure 3.20: The New Growing Ontology After Applying the Layout Function

27



28



Chapter 4

API for Plug-in Mapping and Merging Algorithms

The system provides an API (Application Programming Interface) for devel-

opers to plug in mapping and merging algorithms. In this chapter, we first introduce

the API, and then explain how to plug in an algorithm to the system. After a map-

ping algorithm is plugged in, the system can perform automatic and semi-automatic

ontology mappings. For merging, the API provides the functions necessary to merge

the data in populated ontologies.

The full API description is in Appendix A. Here we give a general description of

the API and how it is used for the provided plug-in mapping and merging algorithms.

The system provides a Java interface class Algorithm for mapping and merging

algorithms. It consists of one method: run(OntologyModel m). This method makes

the target and source ontologies accessible to the developer’s algorithm. A devel-

oper must implement this interface class when designing a new mapping or merging

algorithm.

Based on the OntologyModel class, the methods in the API allow developers

to obtain and provide information about the source and target ontologies as well as

the mappings between them and the data instances stored in them. The Ontology-

Model class provides a set of methods to access the ontology components in the target

and source ontologies (e.g., getTargetOntologyObjectSetList, getSourceOntologyObject-

SetList, getTargetOntologyRelationshipSetList, getSourceOntologyRelationshipSetList,

etc.), a set of methods to create different ontology component (e.g., createAggrega-

tionInTargetOntology, createAggregatiionInSourceOntology, createObjectSetInTarge-

tOntology, createObjectSetInSourceOntology, createMapping, etc.), and the method

remove to delete ontology components. The OntologyModel also provides the method

29



<PlugIns>
<MappingPlugIn

class=“edu.byu.deg.plugin.algorithms.NaiveMapping”
name=“Naive Mapping”
description=“Detect mappings according to the object set name”

/>
<DataMergePlugIn

class=“edu.byu.deg.plugin.algorithms.NaiveDataMerging”
name=“Naive Data Merging”
description=“Merge the data instances assuming no objects or relationship are the same”

/>
< /PlugIns>

Figure 4.1: Registration for Mapping and Merging

createMapping, and to delete mappings, it provides the method removeMapping. To

access instances, the API provides different methods according to the different ontol-

ogy components. For example, an object set can access its data instances with the

method getObjectList. Finally, to merge data, the OntologyModel provides the meth-

ods sameObjectAs and sameRelationshipAs, and to delete object and relationship

mappings, it provides the methods removeSameAsMapping.

To register an algorithm with the system, a developer must add a “plug-in

entry” to the XML file PluginAlgorithms.xml that lists the “plug-ins” for the system.

Figure 4.1 shows an example. Two types of plug-ins are allowed: The“MappingPlugIn”

is for mapping algorithms, and the “DataMergePlugIn” is for data merging algo-

rithms. A plug-in entry for a mapping algorithm has three attributes: class specifies

the algorithm class name; name specifies the algorithm’s name, which the system

displays for possible use by the end user; and description adds comments about the

algorithm.

After registering an algorithm to the “PluginAlgorithms.xml” file, the algo-

rithm’s classes can be loaded in the system. A user then can select the plugged-in

algorithm with the preference setting as Figure 4.2 shows. In the preference window,

when users choose to use the semi-automatic or automatic mode, they need to choose

their preferred mapping and data merging algorithms. For the initial system only

one mapping algorithm and one data merge algorithm are available. We described

30



Figure 4.2: The Preference Window for Setting the Mapping and Data Merging
Algorithms

the Naive Mapping algorithm in Chapter 3. The Naive Data Merging algorithm is an

algorithm that preserves all data assuming no objects or relationships are the same.

31



32



Chapter 5

Observations and Analyses

As a part of the TANGO project and for the purpose of this thesis, we tested

the tool on the geopolitical domain, where relevant empirical data is widely scattered

but often presented in the form of tables. Based on these tables, the TANGO system

can generate a set of mini-ontologies (see Chapter 1). We used these mini-ontologies as

the test cases. In this chapter, we describe our experience and report our observations.

We also discuss the strengths and weaknesses of our tool.

5.1 Preparation

To test our tool, we chose 12 tables from the geopolitical domain and converted

each one, with the OntologyEditor, to mini-ontologies. These 12 mini-ontologies are

in Appendix B. These 12 mini-ontologies contain 55 object sets and 43 relationship

sets. Using these mini-ontologies as test cases, an expert tested the system using four

different methods to perform the ontology integration: (1) using the OntologyEditor

to create the domain ontology; (2) using the manual mode of our tool to manually

map and merge the mini-ontologies; (3) using the semi-automatic mode of our tool to

map and merge the mini-ontologies; and (4) using the automatic mode of our tool to

map and merge the mini-ontologies. To obtain rough estimates of the effort required

to complete each task, we timed the mapping and merging performance of the expert

user for each method.

33



5.2 Results and Observations

Figure 5.1 shows the merged domain ontology, which contains 40 object sets

and 39 relationship sets. There were 20 mappings, and 18 conflict issues were raised

in these mappings.

As an example of the process, Figure 5.2 shows how a growing ontology (on the

left) maps with the mini-ontology in Appendix B, Figure B.4 (on the right). When

the expert created these mappings, two object set name conflicts and a relationship

set participation constraint conflict were raised. The original object set name for

Country in the source ontology was Country or Region (see Figure B.4). The expert

resolved the conflict by choosing the default and the system changed the name to

Country. Similarly, the Name object set which in the source ontology was Name of

Country or Region, was changed to Name. The relationship set in the target ontology

between Country and Name is functional, but the corresponding relationship set in

the source ontology was not functional. The expert chose to resolve the constraint

conflict by making the non-functional relationship set functional. The expert used

our tool to resolve these issues and merge the result as Figure 5.3 shows.

It took 65 minutes for an expert using the OntologyEditor functions to inte-

grate 12 mini-ontologies into a domain ontology. On the other hand, it only took

30, 26, and 25 minutes for the expert to map and merge the 12 ontologies using the

manual, semi-automatic, and automatic modes of our tool, respectively. For this test

case, our tool saved significant time for the user. Using the tool required less than

half the time for all modes of operations.

34



Figure 5.1: The Final Merged Ontology Based on Test Case35



Figure 5.2: Two Mapped Ontologies in Test Case

Figure 5.3: A Merged Growing Ontology in Test Case

36



Chapter 6

Conclusion and Future Work

6.1 Summary

For the thesis, several significant components of the third part of the overall

TANGO project were implemented. To prepare for ontology mapping and merging,

the OntologyEditor was augmented, so that it could load and simultaneously display

two ontologies — the target ontology and the source ontology. The current Ontol-

ogyEditor was also augmented to support a textual view in addition to a graphical

view. For both the graphical view and the textual view, a means was devised and

implemented to allow a user to manually map ontology components in the source and

target ontology to one another. The tool also provides IDS statements to allow users

to resolve conflicts that arise during the mapping process. These were implemented

as well, as was a plug-in API for developers to add mapping and merging algorithms

to the tool. To show the usage of the API, a naive mapping algorithm and a naive

data merge algorithm were also implemented.

6.2 Conclusions

In this thesis, we introduced a tool to help users to preform ontology mapping

and merging. The tool has three modes for mapping: manual, semi-automatic, and

automatic. We tested the system using 12 mini-ontologies in the geopolitical domain.

We compared the time for task completion with the three modes of our tool and

without using our tool. The results for the chosen test cases indicated that our

system enables better user performance. Although we only tested the system using

the geopolitical domain, our tool is designed for all application domains.

37



6.3 Future Work

As is typical in software projects, implementing an original design reveals op-

portunities for improvements. With hindsight, we discovered that mapping relation-

ship sets to relationship sets without requiring any prior mapping of related object

sets should not only be possible but would likely be preferable. The IDS interactions

could be more complex, but in most cases, there would be fewer interactions with

the user and a more expeditious specification of mappings. Also, it appears that

mapping generalization/specializations and aggregations in a similar way would be

more expeditious.

Besides these improvements, we also note that some OSM components were

not included in the original design. It was felt that these components would not likely

arise in the context of the TANGO project. In particular, co-occurrence constraints

for relationship sets was omitted, as was an object/object-set mapping. However,

the tool can stand on its own as an ontology mapping and merging tool, and, to be

complete, these components should be included.

As a next step toward resolving the ontology merging and mapping problem,

we would like to improve our tool by using the API to plug in more sophisticated

mapping and merging algorithms. Then we should carry out more comprehensive

experimental testing. As it currently stands, our tool is ready for integration with

other components of the TANGO project. With enhanced mapping and merging

algorithms, our tool should be able to satisfactorily perform its role in automatically

or semi-automatically converting collections of related tables into ontologies.

38



Bibliography

[1] www.w3.org/2001/11/IsaViz/, 2004. 1

[2] ezOWL. iweb.etri.re.kr/ezowl/, 2006. 1

[3] GKB Editor. www.ai.sri.com/gkb/, 2006. 1

[4] TOPKAT - the open practical knowledge acquisition toolkit.
www.aiai.ed.ac.uk/jkk/topkat.html, 2006. 2

[5] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reasonable ontol-
ogy editor for the semantic web. Lecture Notes in Computer Science, 2174:396–
405, 2001. 1

[6] J. Biskup and D.W. Embley. Extracting information from heterogeneous infor-
mation sources using ontologically specified target views. Information Systems,
28(3):169–212(44), May 2003. 11

[7] P. Cimiano and J. Völker. Text2Onto - a framework for ontology learning and
data-driven change discovery. In Proceedings of the 10th International Conference
on Applications of Natural Language to Information Systems (NLDB), pages
227–238, Alicante, Spain, June 2005. 1

[8] M. Denny. Ontology tools survey, revisited. www.xml.com/pub/a/2004/07/
14/onto.html, 2004. 1

[9] H.-H. Do and E. Rahm. COMA: a system for flexible combination of schema
matching approaches. In Proceedings of the 28th international conference on
Very Large Data Bases (VLDB2002), pages 610–621, August 2002. 3

[10] D.W. Embley. Object Database Development: Concepts and Principles. Addison-
Wesley, Reading Massachusetts, 1998. 19

[11] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg
(DE), 2007. 3

[12] S. Falconer, N.N., and M.-A. Storey. Ontology mapping - a user survey. In Pavel
Shvaiko, Jrme Euzenat, Fausto Giunchiglia, and Bin He, editors, Proceedings
of the Workshop on Ontology Matching (OM2007) at ISWC/ASWC2007, pages
113–125, Busan, South Korea, November 2007. 3

39



[13] J.H. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubzy, H. Eriks-
son, N.F. Noy, and S.W. Tu. The evolution of Protege: An environment for
knowledge-based systems development. International Journal of Human Com-
puter Studies, 58(1):89–123, 2003. 1

[14] M. Touzani P. Valtchev J. Euzenat, D. Loup. Ontology alignment with OLA. In
Proceedings of the 3rd International Workshop on Evaluation of Ontology-based
Tools, pages 60–91, November 2004. 3

[15] S. Lamparter, M. Ehrig, and C. Tempich. Knowledge extraction from classifica-
tion schemas. In Proceedings of CoopIS/DOA/ODBASE, pages 618–636, Agia
Napa, Cyprus, 2004. 2

[16] S.W. Liddle, D.W. Embley, and S.N. Woodfield. An active, object-oriented,
model-equivalent programming language. pages 333–361, 2000. 19

[17] T. Liebig and O. Noppens. OntoTrack: Fast browsing and easy editing of large
ontologies. In Proceedings of The Second International Workshop on Evaluation
of Ontology-based Tools (EON2003), Sanibel Island, Florida, October 2003. 1

[18] A. Maedche and S. Staab. Ontology learning. In Handbook on Ontologies, pages
173–190. 2004. 1

[19] R.J. Miller, M.A. Hernández, L.M. Haas, L. Yan, C.T. Howard, R.F., and
L. Popa. The Clio project: managing heterogeneity. SIGMOD Record (ACM
Special Interest Group on Management of Data), 30(1):78–83, 2001. 3

[20] G.A. Modica, A. Gal, and H.M. Jamil. The use of machine-generated ontologies
in dynamic information seeking. In Proceedings of the 9th International Confer-
ence on Cooperative Information Systems (CoopIS01), pages 433–448, London,
England, September 2001. 2

[21] N.F. Noy and M.A. Musen. The PROMPT suite: interactive tools for ontol-
ogy merging and mapping. International Journal of Human-Computer Studies,
59(6):983–1024, 2003. 3

[22] Y. A. Tijerino, D. W. Embley, D. W. Lonsdale, Y. Ding, and G. Nagy. Toward
ontology generation from tables. World Wide Web: Internet and Web Informa-
tion Systems, 8(3):251–285, September 2004. 2

[23] A. Wessman, S.W. Liddle, and D.W. Embley. A generalized framework for an
ontology-based data-extraction system. In Proceedings of the 4th International
Conference on Information Systems Technology and its Applications (ISTA05)),
pages 239–253, Palmerston North, New Zealand, 2005. 5

40



Appendix A

API for Mapping and Data Merging Algorithms

Figure A.1: The Method to be Implemented for Mapping and Data Merge Algorithms

41



42



Figure A.2: The Methods for the Ontology Model

43



Figure A.3: The Methods for ObjectSet

Figure A.4: The Methods for Object

44



Figure A.5: The Methods for Aggregation

45



Figure A.6: The Methods for ChildRelSetConnection for Aggregation

46



Figure A.7: The Methods for Generalization/Specialization

Figure A.8: The Methods for Relationship Set

47



Figure A.9: The Methods for RelSetConnection for Relationship Set

Figure A.10: The Methods for Relationship

48



Appendix B

Test Cases

Figure B.1: Test Mini-Ontology 1

49



Figure B.2: Test Mini-Ontology 2

Figure B.3: Test Mini-Ontology 3

Figure B.4: Test Mini-Ontology 4

50



Figure B.5: Test Mini-Ontology 5

Figure B.6: Test Mini-Ontology 6

Figure B.7: Test Mini-Ontology 7

51



Figure B.8: Test Mini-Ontology 8

Figure B.9: Test Mini-Ontology 9

Figure B.10: Test Mini-Ontology 10

52



Figure B.11: Test Mini-Ontology 11

Figure B.12: Test Mini-Ontology 12

53


	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Preparatory Ontology Editor Augmentations
	2.1 Ontologies and the Ontology Editor
	2.2 Loading Source and Target Ontologies

	3 Mapping and Merging
	3.1 Manual Mode
	3.1.1 Object Set Mapping
	3.1.2 Relationship Set Mapping
	3.1.3 Generalization/Specialization Mapping
	3.1.4 Aggregation Mapping
	3.1.5 Text Editor View

	3.2 Semi-Automatic and Automatic Mode
	3.3 Merge Ontologies

	4 API for Plug-in Mapping and Merging Algorithms
	5 Observations and Analyses
	5.1 Preparation
	5.2 Results and Observations

	6 Conclusion and Future Work
	6.1 Summary
	6.2 Conclusions
	6.3 Future Work

	Bibliography
	A API for Mapping and Data Merging Algorithms
	B Test Cases

