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ABSTRACT

HyKSS: Hybrid Keyword and Semantic Search

Andrew Zitzelberger
Department of Computer Science, BYU

Master of Science

The rapid production of digital information makes the task of locating relevant
information increasingly difficult. Keyword search alleviates this difficulty by retrieving
documents containing keywords of interest. However, keyword search suffers from a number of
issues such ambiguity, synonymy, and the inability to handle semantic constraints. Semantic
search helps resolve these issues but is limited by the quality of annotations which are likely
to be incomplete or imprecise. Hybrid search, a search technique that combines the merits of
both keyword and semantic search, appears to be a promising solution.

In this work we introduce HyKSS, a hybrid search system driven by extraction
ontologies for both annotation creation and query interpretation. HyKSS is not limited to a
single domain, but rather allows queries to cross ontological boundaries. We show that our
hybrid search system, which uses a query driven dynamic ranking mechanism, outperforms
keyword and semantic search in isolation, as well as a number of other non-HyKSS hybrid
ranking approaches, over data sets of short topical documents. We also find that there is not
a statistically significant difference between using multiple ontologies for query generation
and simply selecting and using the best matching ontology.

Keywords: hybrid search, information retrieval, ontologies, cross-ontology queries
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Chapter 1

Introduction

The world is producing digital information at a prodigious rate. An already well out-

dated study estimated the indexable Web alone to contain more that 11.5 billion pages [GS05].

More recently, Google1 announced the discovery of 1 trillion unique URLs with a growth rate

of several billion per day.2 The sheer amount of information available has made it increasingly

difficult to locate the most relevant information.

Keyword search methods alleviate the problem by retrieving documents containing

user specified keywords. These documents are likely to be relevant due to the presence and

importance of keywords of interest. However, keyword search has a number of limitations.

Ambiguous keywords may result in the retrieval of irrelevant documents. Document publishers

may use words that are synonymous with, but not identical to, the terms in the query causing

relevant documents to be missed. Further, keyword search is incapable of recognizing semantic

constraints on information. If a query specifies “under 12 grand”, a keyword search will

treat each word as a keyword (or stopword) despite the fact that many, if not most, relevant

documents will likely not contain any of these words.

Semantic search helps resolve the shortcomings of keyword search by considering

possible semantics of queries and documents. For purposes of this work, we consider semantics

to be the classification of information according to some schema. We use machine-readable

annotations to provide these semantics. Semantic search is the process of interpreting a user’s

query with respect to underlying semantics and using those semantics to provide relevant

1http://www.google.com/
2http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

1



search results. Thus, for example, semantic search can interpret the query “under 12 grand”

to indicate interest in retrieving documents containing monetary values less than $12,000.

Searching using this interpretation is more meaningful than retrieving documents based on

the words “under”, “12”, and “grand”.

For semantic search to be effective, high quality annotations must exist. However,

producing such annotations is not a trivial task. Manual hand annotation is time consuming

and human annotators may disagree about which annotations are most appropriate. Alterna-

tively, semi-automatic or automatic tools can extract information and produce annotations.

While great progress has been made on such tools, even the best miss critical information or

provide inaccurate annotations. Searching using these annotations alone may miss relevant

information that is not properly annotated.

Hybrid search has been proposed as a means for mitigating the weaknesses of both

approaches in the presence of incomplete annotations [BCC+08]. In this work we introduce

HyKSS3 (pronounced “hikes”), our Hybrid K eyword and Semantic Search system. HyKSS

is fundamentally an information retrieval engine concerned with returning links to documents

that are relevant to user free-form queries. The use of semantics, in addition to keywords,

allows the system to retrieve relevant documents more effectively.

The driving force behind processing semantics in HyKSS is a library of conceptual

models called extraction ontologies. An extraction ontology is a means of tying linguistic

information to conceptual models [EZ10]. Extraction ontologies are used to recognize concepts

in text and create canonical annotations that can be used downstream for data storage or

query interpretation. HyKSS is not limited to the use of a single extraction ontology per

query, but rather can execute queries that cross multiple ontology boundaries by dynamically

generating relevant ontology sets.

We show that extraction ontologies can be used as the basis for a cross ontology

hybrid search system and that our system outperforms both keyword and semantic search in

3See http://dithers.cs.byu.edu/wok/hykss/ for an evolving demo of HyKSS.
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isolation over data sets of short topical documents, which includes pages from craigslist4 and

Wikipedia.5 We also show that our dynamic query driven approach to ranking outperforms

several other approaches on the same data sets. Further, we demonstrate that in some

instances using multiple ontologies outperforms selecting and using the single best matching

ontology for queries in which a single ontology does not adequately cover the query domain.

However, we find that the difference in performance is not statistically significant.

We explain the details of the contributions in this thesis as follows. Chapter 2 begins

with discussion of extraction ontologies and their use as extractors and query interpreters.

Chapter 3 describes the indexing architecture of HyKSS and the algorithm used for processing

user queries. In Chapter 4 we discuss the search interfaces made available to HyKSS users. A

discussion of our experimental results is in Chapter 5, and in Chapter 6 we compare HyKSS

with similar hybrid search approaches. Finally, in Chapter 7, we draw conclusions and address

possible areas for future work.

4http://www.craigslist.org
5http://www.wikipedia.org
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Chapter 2

Extraction Ontologies

2.1 Extraction Ontology Components

Figure 2.1: Graphical view of a simple ontology for the V ehicle concept.

An extraction ontology is a conceptual model augmented with linguistic information

to enable information extraction over text. The primary components of the model are object

sets, relationships sets, constraints, and linguistic recognizers. Figure 2.1 shows an example

of an extraction ontology for the V ehicle concept in its conceptual-model form.

Each rectangular box represents an object set. A box with a dashed border, such as

Price in Figure 2.1, denotes a lexical object set—one that has associated linguistic information

for recognizing instances in text. A box with a solid border, such as V ehicle, denotes a

non-lexical object set—one whose elements are object identifiers denoting real-world objects.

Non-lexical instances are generated when sufficient evidence appears in related lexical concepts

and in keywords or keyword phrases.
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The line segments between object sets denote relationship sets. The endpoints of each

relationship set are used to denote participation constraints on objects from the connected

object sets participating in relationships within the relationship set. These endpoints can

be a white circle or a black arrowhead, or neither, or both. The white circle represents

an optional constraint—a constraint allowing object participation in a relationship to be

optional. All participation constraints for V ehicle in Figure 2.1 are optional, meaning that

during extraction the V ehicle ontology does not need to extract values for any connected

object set.1 For example, if a Color is not extracted from a vehicle advertisement, an object

for the connected, non-lexical object set V ehicle can still be extracted. The black arrowhead

indicates that the constraint is functional—from tail to head, the constraint has a maximum

participation constraint of one. All of the relationship sets in Figure 2.1, except the one

connected to the Feature object set, are functional, meaning that only one of each lexical

concept can be extracted from a document. For example, only a single Make or Model will

be extracted from a document, even if more values that could be extracted are present. A line

segment that does not have a black arrowhead on its endpoint has an unbounded participation

constraint. This type of constraint can be seen on the relationship set connecting the V ehicle

and Feature object sets in Figure 2.1. This unbounded constraint indicates that the V ehicle

ontology will extract as many Features as the recognizers find in a document.

Extraction ontologies have several other types of components, such as aggregation and

generalization/specialization, and have other constraint types. These facilities come from the

conceptual modeling language OSM [EKW92]. However, these facilities are not present in

the ontologies used in this work and currently receive varying levels of support in HyKSS.

The linguistic information in lexical concepts is represented using data frames. A data

frame uses regular expressions to capture the textual properties of concept instances [Emb80]

and is one means of creating a linguistically grounded ontology [BCHS09]. Figure 2.2 shows

part of a sample data frame for Price. The internal representation indicates how the system

1In practice we require at least one lexical object set extraction to generate a non-lexical instance even if
all lexical object set extractions are optional.
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will store extracted values internally. External representations consist of a series of regular

expressions specifying how instances might appear in text. The textual distance of matches

from context keywords helps determine which match to choose for potentially ambiguous

concepts within an ontology. The string “40K”, for example, could be interpreted as a

Mileage or a Price, but would be interpreted as a Price when words such as asking or

negotiable appear nearer to it than to the context keywords for Mileage.

Price
internal representation: Double
external representations: \$[1-9]\d{0,2},?\d{3} | \d?\d [Gg]rand | ...
context keywords: price|asking|obo|neg(\.|otiable)| ...
...
units: dollars|[Kk] ...
canonicalization method: toUSDollars
comparison methods:

LessThan(p1: Price, p2: Price) returns (Boolean)
external representation: (less than | < | under | ...)\s*{p2} | ...
...

output method: toUSDollarsFormat
...

end

Figure 2.2: Sample data frame for price.

In a data frame, units, the canonicalization method, and comparison methods allow

for semantic comparisons over extracted values. Units express units of measure or value

qualifications that help quantify extracted values. In Figure 2.2, K indicates multiplication by

1,000 and dollars specifies a type of currency. A canonicalization method converts an extracted

value and units (if any) to a unified internal representation. Once in this representation,

comparison methods can compare values extracted from different documents despite being

represented in different ways. These methods can correctly confirm, for example, that “$4,500”

is less than “5 grand.” Comparison constraint extraction via the external representations of

comparison methods are intended for query extraction only and not for general document

extraction. The output method is responsible for displaying internally-stored values to the

user in a readable format. HyKSS makes use of this feature when displaying output to users.
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2.2 OntoES: Ontology Extraction System

OntoES, our Ontology Extraction System, applies extraction ontologies to text in order

to extract information and produce annotations. The extraction process uses the linguistic

information provided by data frames and the constraints of the model structure along with

several heuristics to perform the information extraction task. Past work shows that OntoES

performs well in terms of precision and recall for the extraction task when documents are

rich in recognizable constants and narrow in ontological breadth [ECSL98].

Additional prior work has also focused on the ability of OntoES to discover separate

records in multiple record documents and extract from each record separately [ECJ+99]. For

our work on HyKSS, we chose to use a data set consisting of short topical documents and

thus treat each document as a single record. Future work could attempt to properly handle

multiple record documents and even properly handle completely unstructured text where

clear record boundaries do not exist.
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Chapter 3

HyKSS Architecture and Processing

3.1 Indexing Architecture

Figure 3.1: A visual representation of the indexing architecture of HyKSS.

The architecture of HyKSS consists of a number of generic interfaces that allow

interchangeability among components. As shown in Figure 3.1, the required components are

a document collection to index, keyword and semantic indexers to generate the necessary

internal document representations, and keyword and semantic indexes to store the document

representations produced by the indexers. The remaining details in this chapter are specific

to our implementation of this architecture.

Each indexer contains internal resource handling capabilities for extracting text

content from different document types. For the HTML documents used in this work, this

process consists of stripping away all tags and retaining the title and the content of all text

9



nodes. After resource handling, the text content appears as: “title: <extracted title>\ntext:

<extracted text>”. After the text content for a document is obtained, the indexer proceeds

to create and index a document representation for that document.

The keyword processing line is driven primarily by Lucene1 which provides functionality

for creating, storing, and searching document representations. We use Lucene’s full text

indexing functionality to index the text content of each document as a single field.2 We chose

to use full text indexing to maintain the ability to meaningfully process queries containing

phrases that include stopwords. The generated index is stored on the local file system

unoptimized.3

Our implementation relies heavily on extraction ontologies. The semantic indexer

consists of OntoES and a specified library of ontologies. OntoES applies each ontology in the

library to the text content of each document in the collection. An internal module converts

the annotations generated by OntoES into an RDF4 format that is stored in the semantic

index. We implement the semantic index using Sesame5 with the local file system storage

option.6

The library of ontologies used by the semantic indexer is not fixed and can be updated

as desired. Developers can add new ontologies and remove or modify existing ontologies.

These pay-as-you-go [FHM05] changes can be used to enhance indexing and resulting query

performance. Currently the entire document collection must be re-indexed after modification

of the library. Query execution involving new or modified ontologies will not work properly

until the re-indexing takes place.

1http://lucene.apache.org/
2The title and location of each document are stored in separate fields for later retrieval.
3Version 3.0.2 is used for all Lucene operations.
4http://www.w3.org/RDF/
5http://www.openrdf.org/
6Version 2.1 of Sesame is used with spoc, posc, and psoc indexes. Index selection chosen from benchmarking

results at http://www4.wiwiss.fu-berlin.de/benchmarks-200801/.
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3.2 Query Processing

HyKSS can begin processing queries after the keyword and semantic indexes are created.

Similar to the indexing architecture, the query processing mechanism also has two distinct

paths: one for keyword query processing and one for semantic query processing. Both of

these execution paths consist of a query pre-processing step, a query execution step, and

a query post-processing step. After both execution paths have completed, the results are

combined to provide a meaningful ranking.

To demonstrate the implementation of these steps in HyKSS consider the query

“hondas in ‘excellent condition’ in orem for under 12 grand”. Suppose that we have an

ontology library containing ontologies for V ehicle and Location. The V ehicle ontology is

similar to the ontology in Figure 2.1, but does not include the Feature object set or its

connected relationship set. The Location ontology is a smaller ontology that has recognizers

for US states and some US cities. We use this query and these ontologies to describe the

query processing of HyKSS.

3.2.1 Keyword Query Processing

The pre-processing of keyword queries begins with the removal of comparison constraints. A

comparison constraint is a phrase that indicates a relational constraint on the information.

For example, the phrase “under 12 grand” in the example query indicates that the user

expects to retrieve documents where the price of the vehicle is less than $12,000. The terms

“under”, “12”, and “grand” likely constitute noise as they are unlikely to occur in relevant

documents.

To remove comparison constraints, the keyword query processor stores a cache of

comparison method recognizers from the ontologies in the library. The keyword query

processor runs each of these expressions against the query and collects the matches. The

processor then removes these matches from the query, beginning with the longest match. The

longer matches are removed first to avoid leaving comparison constraint words in the query.

11



This ensures, for example, that “under 12 grand” is removed, rather than just “under 12”,

which would incorrectly leave “grand” as a keyword.

However, the keyword query processor leaves comparison constraints that use the

equals method in the query. The positive equals comparison denotes a single value whereas

inequality comparisons denote a range of values. As such, the value of the positive equals

comparison may often contain keywords that are helpful in the keyword ranking. In the

example query, the processor recognizes the constraints V ehicle.Make = “honda” and

Location.US City = “orem” using the words “hondas” and “orem”. We leave these words

in the keyword query because the presence of these keywords is likely to indicate a document

relevant to these constraints. In our running example query, the keyword query processor

recognizes the phrase “for under 12 grand” as an inequality comparison constraint and

removes it from the query. The remaining query is “hondas in ‘excellent condition’ in orem”.

After removing non-equality comparison constraints, the keyword query processor

removes Lucene special characters7 and common punctuation characters (except for quotes)

from the query. We remove Lucene special characters to prevent users from triggering

functionality unknowingly. For example, a user may use a ‘?’ character in a query and get

unexpected results, not realizing that ‘?’ is the Lucene wildcard character.

Next, the keyword query processor removes all non-phrase stopwords8 from the query.

A phrase is any quoted string such as ‘excellent condition’ in our example query. We do

not remove stopwords from phrases because certain phrases9 such as ‘no dings’ may contain

relevant stopwords in them. The processor only removes stopwords if they are surrounded by

white space characters, which is why common punctuation is removed along with Lucene

special characters. Thus the processor removes two occurrences of “in” from the running

example query, leaving it further reduced to “hondas ‘excellent condition’ orem”.

7http://lucene.apache.org/java/2 4 0/queryparsersyntax.html#Escaping Special Characters
8Stopword list obtained from http://armandbrahaj.blog.al/2009/04/14/list-of-english-stop-words/.
9Lucene’s phrase slop parameter is set at two to assist in locating useful phrases.
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Upon completion of the keyword query pre-processing step the keyword query processor

uses Lucene to handle the query execution of the processed query. The post-processing step

simply returns the results in the same order and with the same scores as they were returned

by Lucene.

3.2.2 Semantic Query Processing

The processing of semantic queries is more intensive than that of processing keyword queries.

The pre-processing step transforms a user’s free-form query into a structured semantic query.

We use the SPARQL query language10 for our implementation of HyKSS. The transformation

process in HyKSS is an extension of the AskOntos system [Vic06]. Given a free-form query,

AskOntos chooses the best matching ontology in the library and uses it to generate a

structured query. HyKSS semantic processing differs in that ontology sets are also considered.

(AskOntos does not have a keyword component.)

The semantic query processor extracts from each query as if it were the text content

of a document. However, in addition to document extraction functionality, the semantic

query processor also extracts comparison constraints. As user queries are generally quite

short, extraction from queries generally requires little processing time. The semantic query

processor begins pre-processing by applying OntoES to the query using each ontology in

the library. AskOntos then assigns a score to each ontology indicating how well it matched

the query. The mechanism for computing these scores is much the same as that used in the

original AskOntos. AskOntos gives an ontology one point for each external representation

match and each context keyword match (this portion of the scoring matches the description

given in [Vic06]), half a point for each parameter match in a comparison method, and 3.5

points for matching the object set OntoES deems to be the primary object set (V ehicle in

our example). This scoring scheme assumes the primary object set is always non-lexical and

the 3.5 point score is not added to ontologies with no non-lexical object sets.

10http://www.w3.org/TR/rdf-sparql-query/
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HyKSS uses the scores supplied by AskOntos to consider ontology sets that may better

correspond to the query. The semantic query processor sorts the ontologies according to their

scores. In the event of a tie, the processor gives preference to the ontology containing the

larger number of object sets. Ties that occur on this criterion are broken arbitrarily. The

processor immediately discards ontologies with a score of zero from further processing as

they can never enhance an ontology set.11 We expect that this will often largely reduce the

number of ontologies for consideration in large applications.

The semantic query processor adds the highest scoring ontology to its own ontology set.

Moving down the list, the processor considers each ontology below its position for inclusion

in the set. The processor adds an ontology to the set if it contains a match not currently

contained by any of the ontologies in the set, or if it contains a match that subsumes a

match currently in the set. For each such match, the processor adds a single point to the

value of the set. Set generation then begins with the second highest scoring ontology and

proceeds until each ontology has been considered as the first ontology in the set. This set

generation algorithm can generate any subset of the power set (except the empty set) but

considers only a fraction of the possibilities due to aggresive pruning. The runtime complexity

of our ontology set generation algorithm is O(N2) where N is the number of ontologies to

consider. The complexity also increases as the size of the ontologies and the number of

matches discovered increases. The scoring used for ontology set generation is completely

heuristic based, and we leave more experimentation with this process to future work.

For the running example query, “hondas in ‘excellent condition’ in orem for under 12

grand”, the process proceeds as follows. The V ehicle ontology recognizes “hondas” and “for

under 12 grand” as constraints on V ehicle.Make and V ehicle.Price, respectively. These two

matches influence the score of the V ehicle ontology positively as scored by AskOntos. Suppose

the library contains another ontology for ContractualServices. The ContractualServices

ontology would also recognize “under 12 grand” as a constraint. However, the keyword V ehicle

11If all ontologies have a score of zero then a singleton ontology set containing an arbitrary ontology from
the library is used.
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would receive a higher score than ContractualServices because of the additional recognized

value. When generating sets, ContractualServices could not be merged with V ehicle because

they overlap in their extractions. Location, which recognizes “orem” as a Location.US City,

could be merged with both ontologies, but merging with V ehicle would result in a higher

score than merging with ContractualServices. As such, the V ehicle-Location ontology set

would win out as the highest ranking ontology set.

The semantic pre-processing step continues by using the ontology set with the highest

score to generate a generic query and then a structured query. The generic query is an

intermediate format that allows extension to other structured query languages and is also

used for internal and evaluation purposes. The structured query is the query HyKSS actually

executes against the semantic index. The framework allows multiple ontology sets to be used

in the event of a tie, but in our implementation we break ties by choosing the ontology set

that was discovered first. Due to the sorting performed after the initial ranking, this favors

ontology sets with an individually high scoring ontology.

When generating the generic query, the semantic query processor uses all matches in

the free-form query to form a conjunctive query (disjuncts and negations are not considered

for free-form queries, but can be specified in advanced form-based queries). Additionally,

ontologies whose matches have all been subsumed by other ontologies during the ontology

set generation process are dropped from the ontology set during generic query generation.

For the running example query, the selections of the generated generic query consist of

V ehicle.Make = “honda”, V ehicle.Price < 12000, and Location.US City = “orem”. A

projection is also generated on each attribute used in a selection. We assume that if users

select on an attribute-value pair they are also interested in projecting on the attribute for

the value as well. Projections can also be generated individually if an ontology finds specified

keyword matches in the query. For example, if the query were “Honda models” a selection

would be generated where V ehicle.Make = “honda” and projections would be generated on
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V ehicle.Make and V ehicle.Model. Figure 3.2 shows the generated selections and projections

for the running example query.

Selections:
(V ehicle.Make = “honda”)
(V ehicle.Price < 12000)
(Location.US City = “orem”)

Projections:
(V ehicle.Make)
(V ehicle.Price)
(Location.US City)

Figure 3.2: The projections and selections generated for the running example query.

After generating the generic query, the semantic query processor transforms it into

a suitable structured query. When generating the structured query, HyKSS uses an open

world assumption. A document is considered relevant unless an annotation explicitly violates

a constraint. If the price of a vehicle is unknown for a particular document, for example,

that document might still be relevant for the example query because we do not know that it

violates a constraint. In addition to verifying that constraints are met, the query also picks

up annotation information such as the location of the cached document, the document’s title,

the original text, the generated canonical value, and the generated output value. The cached

document location of annotations across different ontologies is verified to be the same to

ensure that all ontologies refer to the same document. HyKSS does not support the returning

of facts that span multiple documents. Figure 3.3 shows the generated SPARQL query for

the running example.

Sesame executes the generated SPARQL query over the indexed annotations. However,

the results returned by Sesame (or any other semantic query system), by principle, are not

ranked. The results are either correct and thus returned, or incorrect and thus not returned.

As such, HyKSS uses a post-processing step to assign scores to the returned results.

The ranking of semantic results is still an open area of research. As no definitive

methods exist, we use a simple ranking process based primarily on the amount of requested
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PREFIX ann:<http://dithers.cs.byu.edu/owl/ontologies/annotation#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX Vehicle:<http://dithers.cs.byu.edu/owl/ontologies/Vehicle#>
PREFIX US Location:<http://dithers.cs.byu.edu/owl/ontologies/US Location#>
SELECT ?VehicleLocation ?VehicleTitle ?MakeValue

?MakeDisplayValue ?MakeTextValue ?PriceValue
?PriceDisplayValue ?PriceTextValue ?US LocationLocation
?US LocationTitle ?US CityValue ?US CityDisplayValue
?US CityTextValue

WHERE
{
?Vehicle ann:primaryInResource ?VehicleResource .
?VehicleResource ann:Location ?VehicleLocation ;

ann:Title ?VehicleTitle .
?Vehicle Vehicle:Vehicle-Make ?Make .
?Vehicle Vehicle:Vehicle-Price ?Price .
?US Location ann:primaryInResource ?US LocationResource .
?US LocationResource ann:Location ?US LocationLocation .

FILTER (?US LocationLocation = ?VehicleLocation)
?US Location US Location:US Location-US City ?US City .
OPTIONAL{?Make Vehicle:MakeValue ?MakeValue .
?Make ann:DisplayValue ?MakeDisplayValue .
?Make ann:OriginalText ?MakeTextValue .}

FILTER (!bound(?MakeValue) || regex( str(?MakeValue),“honda”, “i”)) .
OPTIONAL{?Price Vehicle:PriceValue ?PriceValue .
?Price ann:DisplayValue ?PriceDisplayValue .
?Price ann:OriginalText ?PriceTextValue .}

FILTER (!bound(?PriceValue) || ?PriceValue < 12000) .
OPTIONAL{?US City US Location:US CityValue ?US CityValue .
?US City ann:DisplayValue ?US CityDisplayValue .
?US City ann:OriginalText ?US CityTextValue .}

FILTER (!bound(?US CityValue) || regex( str(?US CityValue), “orem”, “i”)) .
}

Figure 3.3: The SPARQL query generated from the running example query.

information a result includes. During execution, the query removes all results that do not

satisfy the selections, but due to the open world assumption some documents that do not

specify values for some concepts may be returned. Semantic post-processing begins by

merging all semantic results that share a common document. The semantic query processor
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then gives a point to a document for each projection on an attribute that returns at least

one value. The more attributes with information requests the document is able to supply

the higher the score it receives. HyKSS normalizes the resulting scores by the highest score

given to ensure that scores are between zero and one, and then sorts the documents before

returning them.

3.2.3 Hybrid Query Processing

After the completion of both the keyword and semantic query processing lines, HyKSS

combines the keyword and semantic results to produce final hybrid document rankings.

Our implementation combines these scores using a linear interpolation approach, where the

interpolation weights are determined dynamically based on the interpretation of the query.

The hybrid query processor assigns a concept match score to each query by counting

the number of selections and projections in its semantic interpretation (the generated generic

query) and multiplying this count by 0.5. This scheme implicitly gives selections more weight

because a selection always generates a corresponding projection. The combining process

also computes the number of keywords remaining after non-equality comparison constraints

and non-phrase stopwords are removed in the keyword processing line. Any sequence of

characters separated by white space, including individual words in phrases, is considered

to be a word for this calculation. We include each word in a phrase individually because

phrases are often useful in locating relevant documents and we don’t want to diminish the

importance of an entire phrase to be the same as a single keyword. The number of keywords

remaining and the concept match score are normalized by the sum of the two terms in order

to produce the keyword and semantic weights, respectively. HyKSS computes the final score

of a result using a linear interpolation as follows: (keyword score) * (keyword weight) +

(semantic score) * (semantic weight). HyKSS sorts the result documents according to the

new scores to produce the final rankings. We chose this ranking scheme empirically after a

small amount of experimentation.
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To demonstrate this process consider the example query “hondas in ‘excellent condition’

in orem for under 12 grand”. As Figure 3.2 shows, the system generates three selections and

three projections for this query. As such, the hybrid query processor assigns the query a

concept match score of (3 + 3) ∗ 0.5 = 3. The keyword query processor recognizes the phrase

“for under 12 grand” as a non-equality comparison constraint and the two occurrences of “in”

as non-phrase stopwords, and removes them from the query. The query now has 4 keywords

remaining: hondas, excellent, condition, orem. Normalizing these scores produces a keyword

weight of 4
4+3

= 4
7

and a semantic weight of 3
4+3

= 3
7
.

The weights in this dynamic ranking scheme are driven by the query being asked.

If HyKSS does not recognize any semantic information then the keyword ranking will be

used. The semantic ranking will be used if no keywords remain after keyword and stopword

removal. If HyKSS recognizes neither semantic information nor keywords it returns no results.

The weights adjust on the spectrum in between the extremes of all semantic queries and all

keyword queries based on the amount of semantic information and keywords discovered in the

query. This ranking approach is advantageous because it does not require users to manually

set weights or annotate data to tune weights that work well for the document collection being

used.

Figure 3.4 shows a result table for the running example query. This table displays

the rank and title for each document, along with relevant keywords and requested semantic

information discovered in each document. This table is taken from a clipping of the result

page interface that we explain in further detail in Section 4.3. Here we focus on the ranking

produced by our hybrid ranking algorithm.

The top five results in Figure 3.4 have values in the semantic columns (Us city, Make,

and Price). This indicates that these documents did not violate any semantic constraints.

Further, each result has a value for each column indicating that our semantic ranking

algorithm assigned the same score to these top five results. The remaining five results violated

at least one semantic constraint indicating they received a semantic score of zero. If we were
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Figure 3.4: Results for the running example query “hondas in ‘excellent condition’ in orem
for under 12 grand”.

limited to only using our semantic ranking algorithm we would be required to return the top

five documents in an arbitrary order.

Using the keyword score in combination with semantic score, however, enables HyKSS

to move the relevant documents to the top of the ranking. The top five documents all

contain the word “orem”, but only the top two documents also contain the phrase “excellent

condition”. The keyword ranking mechanism thus assigns a higher keyword score to these two

documents, and the hybrid ranking mechanism correctly places these two relevant documents

at the top of the ranking.
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Chapter 4

Search Interface

The HyKSS user interface provides two different modes for searching a document

collection. The basic search option allows users to enter textual free-form queries and the

advanced search option allows users to submit queries using a form-based interface. We

discuss these alternatives in more detail below.

4.1 Basic Search

Figure 4.1: The HyKSS basic interface showing the free-form query “hondas in ‘excellent
condition’ in orem for under 12 grand”.

The basic search interface is intended to be intuitive to traditional search engine users.

The Google-like interface allows users to enter a textual free-form query in a familiar manner.

Figure 4.1 shows the implementation of this interface. The “Search” button causes the user

query to execute as discussed in Section 3.2.
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4.2 Advanced Search

The advanced search option of HyKSS functions differently from the advanced search option

available on typical search engines. HyKSS expects users to have entered a free-form query

before selecting the advanced search option. This query can be as simple as a single world

(e.g., “cars”) or as advanced as the running example query. This initial query gives HyKSS

context in deciding which ontology-based form(s) to generate. If users do not enter a query

before selecting the advanced search option they are presented only with a keyword-based

form allowing the entry of keywords, required keywords, and disallowed keywords, which is,

in any case, appended to all generated forms.

The advanced search mechanism processes a user-submitted free-form query using

the query pre-processing steps on both lines. However, the query is not executed. Instead,

the HyKSS display uses the best matching ontology set discovered through semantic pre-

processing to generate the semantic portion of the form. This portion of the form includes a

flattened layout of each ontology in the set along with fields and buttons for modifying the

original query. The form interface allows for the creation of more powerful queries as it adds

disjunction and negation capabilities not available through the basic search option.

In addition to allowing for more powerful query creation, the form interface allows

users to see what concepts are available to the system in the domain area they are searching,

and what the system “understood” from the original query.1 Figure 4.2 shows the form

generated using the example query with a disjunction expanded (by a user) to allow the

entry of “provo” as an additional option for a US City.

The HyKSS display generates the flattened form layout of an ontology by first selecting

a primary object set for the ontology. Many ontologies specify a primary object set to use.

For those that do not, the system chooses the non-lexical object set with the highest number

of connections. If the ontology does not contain a non-lexical object set, then the lexical

1The generation of ontology-based form is an expansion of previous work presented in [EZ10]. HyKSS
adds the ability to handle multiple ontologies and keywords.
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Figure 4.2: The advanced search form generated for the query “hondas in ‘excellent condition’
in orem for under 12 grand”. The US City disjunction has been expanded by a user to allow
for “provo” as an additional city option.

object set with the highest number of connections is chosen. Ties are broken arbitrarily. The

system then performs a depth-first search through the connections provided by the primary

object set to establish the display order of the object sets.

At display time, each ontology begins with its name as a header (e.g., Vehicle and

US Location in Figure 4.2). The primary object set is then displayed followed by other

object sets in the order they are visited. Each object set is displayed on its own row. A

dash before the name of an object set indicates that it was visited using a relationship set
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connection. Other symbol types indicate other types of connections, such as aggregation and

generalization/specialization connections (which are not used in this work). The primary

object sets (e.g., Vehicle and US Location in Figure 4.2) are not preceded by a connection

symbol as they are not visited using a connection. The space between the left margin and the

connection symbol indicates the depth of the object set from the primary object set. Each

level of depth is displayed using a two space indent.

The form displays non-lexical object sets using the object set’s name and an appended

colon. Lexical object sets are displayed in the same manner but are also followed by three

input fields allowing for query modification. These fields consist of a “NOT” checkbox for

negation, a text field for value input and modification, and an “OR” button to expand the

query with disjunctions. Clicking the “OR” button expands the row to include another “NOT”

checkbox, another input field, and another “OR” button for further expansion. The original

“OR” button is replaced by an “OR” label to indicate that it has been expanded. An object

set’s methods for executing comparison constraints appear in the rows beneath the object

set and are aligned with the first two input fields to indicate that they are methods and

not additional object sets. The initial form display includes the semantic values discovered

when pre-processing the original free-form query. These extracted values appear in their

output-value forms allowing users to see what the system “understood” from the original

query. For example, “hondas” and “12 grand” from the free-form query appear as “Honda”

and “$12,000” in the form, respectively.

Query execution using the advanced search interface differs slightly from the basic

search mechanism. The query inherently contains more structure that can be directly

translated into keyword and semantic-search queries. The keyword portion of the form is

initially populated using the keywords remaining from the original free-from query after

comparison-constraint and stopword removal. Any keywords a user enters in the keyword

portion of the form, however, are treated as keywords even if they would have been removed

during processing of a free-from query. The advanced form keyword query processor generates
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the keyword query from the form by treating the keywords, required keywords, and disallowed

keywords as their names suggest according to Lucene keyword processing.

Semantic query generation uses OntoES to interpret the value in each semantic field.

Each field is transformed into a string with the format “<field name>: <field value>”.

For Price in the running example, the string appears as “Price: $12,000”. OntoES applies

the parent ontology to the string format as if it were the text content of a document. If a

value is extracted (and canonicalized) using the specified object set, it is used to generate a

selection in the semantic query. This application of OntoES is necessary to handle a wide

array of input values. For example, suppose that a user enters “100K” into the < field for

Mileage in the form in Figure 4.2. This value must be canonicalized to “100000” before

it can provide meaningful comparisons. OntoES does this by recognizing the string to be

a Mileage, the substring “K” to be a unit, and applying the canonicalization method to

produce the appropriate value. In some cases the ontology may not successfully extract

a value from a field. In this event, HyKSS generates a projection but no selection. It is

reasonable to assume that if users attempt to enter a value for a field, even a nonsensical

value, they must have interest in that field.

The SPARQL query generated from the structured query is similar to the one presented

in Figure 3.3 except that it may contain disjunctions and negations as specified by the user.

Query execution and ranking proceeds in the same manner as for the basic search mechanism.

Figure 4.3 shows the results for the advanced query. The top three results of this query are

identical to those for the example free-form query results shown in Figure 3.4. Further, the

top five results for the example free-form query occur in the top six ranking positions for the

results of this form query. However, the remainder of the results differ because the advanced

query also allows for “provo” to be a US City. Note that “provo” does not appear as a

keyword because it is not included as a keyword in the form query. The advanced search

interface is currently implemented in a proof-of-concept stage and we leave the implementation
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of more advanced and more user friendly features such as displaying top ranked ontologies or

allowing users to browse ontologies to select for form generation to future work.

Figure 4.3: The results page for the advanced search query.

4.3 Results Display

HyKSS displays results somewhat differently from typical search engines. The goal of the

results page for any search engine is twofold. First and foremost, a search engine attempts

to place the most relevant documents at the top of the rankings. Second, a search engine

aims to allow users to quickly determine if a document is relevant or not. Many search

engines use page snippets, snippet highlighting, and page previews to accomplish this second

goal. HyKSS, however, leverages its knowledge of the ontologies used to answer the query in

order to generate a table of results that presents the extracted values for object sets the user
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inquired about. Figure 4.3 shows the HyKSS results page for the example advanced search

query. The current demo system only returns and displays the top ten results to users.

The results page begins by informing the user what HyKSS “understood” from the

query. To demonstrate semantic understanding, the page documents the projections (the

“show me”clause) and selections (the “where” clause). This is followed by a declaration of

the words in the query that HyKSS considers to be true keywords. These keywords directly

correspond to the state of the original query after keyword query pre-processing. For queries

executed with the basic search interface, a link to the advanced search interface appears

directly beneath the keywords.

The page presents the actual search results in a table format. The first column indicates

the ranking assigned by HyKSS, the second contains a link to the returned document, and

the third is a list of relevant keywords and their corresponding occurrence counts in the

document. A matched phrase is considered a single keyword for display purposes. The

remaining columns are generated dynamically based on the projections constructed from

the query. The results page in Figure 4.3 contains columns for Make, Price, and US City

because projections were generated for these object sets. The cells in these semantic columns

contain the relevant extracted information for the document. Only documents that satisfy the

selections in the semantic query contain values in the semantic columns. To ensure consistent

formatting the display values generated using the object set’s output method (generated at

indexing time) are shown to the user.

The values in the keyword and semantic cells are hyperlinks. Clicking on these links

opens the relevant document and highlights the relevant value within the document. There is

also a “highlighted” link next to the document link in the “Document” column that highlights

all relevant keyword and semantic values in the document. Figure 4.4 shows the top result for

the example query highlighted via the “highlighted” link. Notice that although the values in

the semantic cells of Figure 4.3 are shown using the output value, the document is highlighted

using the original extracted text. Thus, even though the results table lists “$4,955” as the
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price, the interface correctly highlights “4955” in the document (our ontology uses “$” as

context information and not part of the actual extracted value). The current highlighting

mechanism works by highlighting all textual matches to the original text that are surrounded

by word boundaries. We leave more valuable highlighting methods to future work.

Figure 4.4: The highlighted version of the top result for the example query. (The highlighted
values are surrounded by black boxes for extra emphasis and to facilitate black and white
printing. Personal information has been removed from the advertisement to help protect user
privacy.)

To assist in readability for object sets with non-functional constraints, such as for

Feature in Figure 2.1, semantic cells are limited to containing three extracted values. In the

event that more than three values are extracted a link is generated stating “See N more”

where N is the number of additional values. Clicking this link will create a pop-up window

containing those additional values. The values in the pop-up window are also clickable and

will highlight the value in the returned document. The “highlighted” link in the “Document”

column highlights all relevant values including those that appear only in the pop-up window.

The three value limit is not applied to the cells in the “Keywords” column as user queries are

typically short and every keyword is valuable.

For usability purposes, each of the semantic columns is also sortable.2 The table

stores the canonical value for each extracted value and uses it as a sort key to enable this

functionality. Thus, sorting the “Price” column will arrange rows correctly using the numeric

amount despite that fact that the output value contains the “$” symbol. String values are

2Sorttable javascript library used for sorting. See http://www.kryogenix.org/code/browser/sorttable/

28



sorted alphabetically. If a cell contains more than one value, only the first value is used when

sorting the rows. The “Rank” column is also sortable and is included primarily to allow users

to easily return to the original rankings after sorting other columns.
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Chapter 5

Experimental Results

Our work on HyKSS makes three claims. First, we claim that combining keyword

and semantic search capabilities in a hybrid manner outperforms using either approach in

isolation when annotations are imprecise and incomplete. Second, we claim that the ranking

approach used in HyKSS outperforms a variety of approaches to ranking for hybrid search.

Third, we claim that HyKSS allows for pay-as-you-go improvements of the system and that

even small ontologies can improve the retrieval performance of the system. We test each of

these claims in a series of experiments.

In this chapter, we proceed by first describing the libraries of ontologies used for

experimentation. Next, we describe the retrieval metric used to validate our results. This

is followed by a description of the document and query sets used in the experiments. We

conclude with the presentation and a discussion of our experimental results.

5.1 Ontology Libraries

Our experiments make use of a sliding scale of ontology libraries. The most basic library

includes only very simple and general semantic modeling, and the highest level specifically

models certain aspects, but not the entirety, of a target domain. (We target our experi-

mentation towards the vehicle advertisement domain.) We use this sliding scale of ontology

libraries to demonstrate the pay-as-you-go nature of HyKSS. We provide descriptions of each

ontology library below. These descriptions are intentionally brief as all ontologies used for
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experimentation can be accessed online.1 The regular expressions for each of the ontologies

in the libraries are not intended to be foolproof, but are designed to extract relevant concepts

with high precision and recall according to the training set used to develop the recognizers.

Level 1: Numbers. The lowest level of semantic modeling consists of a singleton

ontology (it contains only a single lexical object set) that recognizes only numbers. We define

a number to be text that starts with a digit one through nine and is followed by zero or more

digits. We consider the digit zero to be a number as well. The ontology allows for comma

groupings and can handle numbers with a single decimal point. The ontology will not pick

up textual representations of numbers such as “one” or “two.”

The Number ontology is intentionally designed to be extremely limited. The ontology

does not understand unit designations because they are ambiguous without domain knowledge.

Consider the unit “K”. This unit could refer to measurements such as temperature in Kelvin,

the karats of a diamond, or the multiplier 1000. As such, it would be improper for the

Number ontology to handle units in a specified way. However, the ontology does know

keywords that often refer to numbers such as “price”, “mileage”, and “year”. The presence

of these keywords in a query will generate a projection as discussed previously. This does not

indicate that the ontology understands these terms, only that the ontology recognizes that

the presence of these terms likely indicates the presence of, or interest in, a Number. The

Number ontology handles comparison constraints such as “less than” and “greater than” in

the expected manner.

Level 2: Generic Units. The Generic Units ontology library increases the level of

semantic modeling and provides recognizers for common units. This library consists of three

simple ontologies: DateT ime, Distance, and Price. The DateT ime ontology recognizes

common date-time formats and canonicalizes values to seconds since 1970 for comparison. If

a year is extracted without a date or a time, the assumed date-time is January 1 at midnight

(00:00) of that year. Likewise, dates without a time are assumed to have the time of midnight

1http://dithers.cs.byu.edu/wok/hykss/thesis experiments/ontology library/
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on that date. Our DateT ime ontology does not adjust for time zones or daylight savings

time (all times are assumed to be in GMT).

The Distance ontology recognizes generic distances such as height, width, and length

using common units like kilometers, feet, and miles. Recognized distances are canonicalized

to measurement in meters. Domain knowledge allows the ontology to recognize the unit “K”

as the multiplier 1000. The Price ontology currently only recognizes US Dollar amounts and

canonicalizes to the same. As such, ambiguous prices in strings such as “Price: 14000” are

assumed to refer to US dollars. The Price ontology also recognizes and interprets units such

as “K” and “grand” to indicate the multiplier 1000. Having more specific domain knowledge

also allows methods to be invoked with more intuitive terms such as “after” for DateT ime

or “longer” for Distance.

Level 3: Vehicle Units. The Vehicle Units ontology library is similar to the generic

units ontology library, but moves closer to modeling the target domain of vehicle advertise-

ments. The library consists of three simple ontologies for V ehiclePrice, V ehicleMileage,

and V ehicleY ear. Having knowledge of the domain allows the ontologies to recognize values

that are applicable to vehicles. For example, the Generic Units DateT ime ontology may

recognize the string “1836” whereas the V ehicleY ear ontology would not recognize this string

because it is unlikely to refer to the year of a vehicle.

Level 4: Vehicle. The Vehicle ontology library consists of only a single ontology,

V ehicle. This ontology does not attempt to model the entire vehicle domain but rather has

object sets for common concepts of interest such as Color, Make, Mileage, Model, Price,

and Y ear. The V ehicle ontology is similar to the ontology in Figure 2.1, but does not include

the Feature object set or its connected relationship set.

The data frames for Mileage, Price, and Y ear are similar, but not identical, to the

data frames used in the V ehicleMileage, V ehiclePrice, and V ehicleY ear ontologies in the

Vehicle Units ontology library. The data frames differ slightly because the object sets in the

V ehicle ontology can take advantage of other conceptual knowledge within the ontology. For
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example, the Y ear object set in the V ehicle ontology can take advantage of the fact that

a Y ear value often precedes a Make value, whereas V ehicleY ear cannot because it has no

concept of Make.

With a higher level of semantic modeling, the Vehicle ontology library is able to

consider larger amounts of context during extraction. As mentioned, having knowledge

of multiple concepts within a single ontology can help during the extraction process. In

addition to the comparison functionality provided in the Vehicle Units ontology library, the

V ehicle ontology provides canonicalization methods for common abbreviations (e.g., “chevy”

= “chevrolet”) and misspellings (e.g., “siverado” = “silverado”). Also, whereas each of the

lexical object sets in the ontologies in the previous libraries have no constraint on the number

of occurrences they can extract from a document, each lexical object set in the V ehicle

ontology has a limit of one extracted instance, meaning that only one Color, Make, Mileage,

Model, Price, and Y ear can be extracted from a document.

Level 5: Vehicle+. The final level of semantic modeling is the Vehicle+ ontol-

ogy library. The Vehicle+ ontology library contains the V ehicle ontology from the pre-

vious ontology library, as well as five new ontologies: GermanV ehicle, HyrbridV ehicle,

JapaneseV ehicle, SportsV ehicle, and V ehicleType. These additional ontologies are small

simple ontologies allowing for more fine tuned extraction and querying in the vehicle domain.

The GermanV ehicle and JapaneseV ehicle ontologies extract vehicle makes and use the

canonicalization method to determine if they are of the type specified. They can also extract

terms such as “german car” and “japanese car,” respectively in order to make the determina-

tion. The HybridV ehicle and SportsV ehicle ontologies function similarly but make use of

vehicle models rather than makes. The V ehicleType ontology also relies on vehicle models,

but instead canonicalizes to “car”, “truck”, “suv”, or “van”. These additional ontologies

are valuable in understanding higher level queries such as “find me a black truck” or “list

Japanese cars”.
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5.2 Metric

The primary focus of HyKSS is to retrieve relevant documents. As such, we use mean average

precision (MAP) [MRS08], a common information retrieval metric to evaluate the quality of

the system. MAP is a commonly used metric that provides a single-figure measurement of

retrieval quality with a focus on the ranking of documents.

Average precision is the key computation in MAP. In terms of average precision, a

retrieval system is perfect for a given query if it returns all N relevant documents for that

query in the top N ranking positions. If irrelevant documents occur in the ranking before

a relevant document the score is penalized. Average precision is computed by starting at

the top of the ranking and moving down, computing the precision level at each relevant

document in the ranking, and then computing the average of these precision values. Any

relevant documents that are not included in the ranking are considered to have a precision

level of zero and are included in the average. Average precision includes both a precision

component, because it averages precision levels, and a recall component, because precision

with respect to the ranking is measured for every relevant document. Average precision can

be seen as the estimation of the area under an uninterpolated precision-recall curve.

Mean average precision is the mean of each average precision computation across all

queries. Mathematically, MAP is computed according the following formula: MAP(Q) =

1
|Q|

∑|Q|
j=1

1
mj

∑mj

k=1 Precision(Rjk), where Q is the set of queries, mj is the number of relevant

documents in the collection for query j, and Precision(Rjk) is the precision of the kth relevant

document for query j. The 1
mj

∑mj

k=1 Precision(Rjk) portion of the formula computes the

average precision for a single query while the preceding portion is averaged across the queries.

We exclude queries with no relevant results when calculating mean average precision.
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5.3 Document and Query Sets

HyKSS is currently designed to work over topical documents where each ontology is applied

once per document. In choosing document sets for experimentation we sought to locate

document collections of this nature with corresponding query sets containing comparison

constraints. In particular, queries over product pages appeared to be a natural application

for HyKSS. However, many query sets in this domain are drawn from proprietary search

engines (e.g., [LWA09, SPT10]) and do not appear to be publicly available.

In the end we were not able to locate ready-made document and corresponding query

sets that met our needs. The problem of finding desirable document and query sets for

systems involving semantic search components is not unique to this work. The authors

of [FLS+08] point out that “the semantic web community is still a long way from defining

standard evaluation benchmarks that comprise all the required information to judge the

quality of current semantic search methods.”

Given this difficulty we opted to construct our own document and query sets in the

vehicle advertisement domain. We first obtained a query set from previous efforts involving

AskOntos [Vic06]. These efforts presented an online demo2 of the system to two different

classes of database students. The students were asked to generate two queries they felt the

system interpreted correctly and two queries they felt the system misinterpreted, but that

the system should have handled correctly.

The students generated 137 syntactically unique queries (syntactic duplicates were

removed). For our purposes, we then removed queries that the free-form query interface

of HyKSS is not designed to handle. These queries included features such as negations,

disjunctions, and aggregations. We also removed queries when the initial intent was ambiguous,

the query could not be objectively evaluated, or the query could not have relevant results in

the document set eventually used in our experiments. A total of 24 queries were removed3

2http://www.deg.byu.edu/demos/askontos/
3See http://dithers.cs.byu.edu/wok/hykss/thesis experiments/queries/removed vehicle training queries.txt
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leaving the final query set with 113 queries4. These 113 queries constitute our training query

set.

We posed a similar task to a class of computational linguistic students. These students

were not presented the online demo, but were shown a few example queries and asked to

submit hand written queries they felt a semantic system like AskOntos could handle. This

exercise resulted in 71 unique queries from which we removed 11 queries5 using the previously

mentioned criteria for removal.6 This left us with a final blind query set of 60 queries.7

For document sets we chose to use vehicle advertisements posted on local craigslist

sites.8 Craigslist allows users to post classified advertisements that consist of free-text

descriptions and a small number of semantic fields. However, users occasionally misuse

these fields and enter incorrect or irrelevant information. We gathered a total of 250 vehicle

advertisements from the “for sale by owner” sections under the “car+trucks” headings of the

craigslist sites. We then divided these advertisements into training (100), validation (50),

and test (100) document sets. The training set includes documents from the Provo craigslist

site while the the validation and test sets are from the Salt Lake City craigslist site. The

document sets may contain duplicate or similar advertisements due to cross posting and

re-posting tendencies of craigslist users.

We also gathered additional topical documents not in the vehicle advertisement domain

to use as noise in the experiments. These additional documents include 318 mountain pages

and 66 roller coaster pages from Wikipedia,9 and 88 video game advertisements from Provo’s

craigslist site. We gathered the mountain pages manually by downloading a subset of pages

linked from the list-of-mountains page.10 In creating the subset we attempted to avoid pages

4See http://dithers.cs.byu.edu/wok/hykss/thesis experiments/queries/vehicle training queries.txt
5See http://dithers.cs.byu.edu/wok/hykss/thesis experiments/queries/removed vehicle blind queries.txt
6We removed one of the eleven queries because it resulted in fatal query execution at experimentation

time. However, this query did not have any relevant documents in the test document set and thus does not
affect MAP scores.

7See http://dithers.cs.byu.edu/wok/hykss/thesis experiments/queries/vehicle blind queries.txt
8http://provo.craigslist.org/ and http://saltlakecity.craigslist.org/
9http://www.wikipedia.org/

10http://en.wikipedia.org/wiki/List of mountains
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that referred to a mountain range and chose a selection of pages about single mountains. The

roller coaster pages were downloaded using the links from the list-of-roller-coaster-rankings

page.11 One of roller coasters, Hades, linked to page about the Greek god rather than the

roller coaster, but we chose to leave it in the document set because it represents real-world

noise. Pages with the same URL were only included once.

5.4 Annotation and Tuning

The decision to create our own document and query sets also required that we create

gold standard annotations for the data. A single annotator created these annotations for

expected extraction from documents and queries, as well as for query-document relevance.

For the former task, the annotator often semi-automatically generated the annotations using

extraction ontologies, and then checked and altered the annotations manually where needed.

We began the tuning process by ensuring that each ontology library extracted properly

from and generated proper interpretations for the queries in the training query set. Specifically,

for each query we ensured that each ontology library, as a whole, recognized expected semantic

constraints and generated the expected generic semantic query. This required ontology libraries

with multiple ontologies, such as the Vehicle Units ontology library, to generate appropriate

cross-ontology queries where necessary. We measured query interpretation accuracy in a

binary manner, claiming that an interpretation was correct if it was an exact match and

incorrect otherwise. The Generic Units and Vehicle Units ontology libraries achieved 98%

interpretation accuracy and the other libraries achieved 100% query accuracy over the training

query set.

We continued the tuning process by ensuring that the ontology libraries extracted

properly from documents in the training document set. The gold standard annotations for

extraction from documents do not form a true gold standard over all ontological information,

but rather form a standard for the information we expect OntoES to be able to extract. For

11http://en.wikipedia.org/wiki/List of roller coaster rankings
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example, an image in a advertisement may indicate that the color of a vehicle is green, but

we do not expect OntoES to extract this information without textual cues, and thus the color

green is not included in the expected extraction annotations for that document. Precision

of the extraction processes for each ontology library ranged from 97% to 100%, and recall

ranged from 94% to 100% according to our expected annotations. The only ontology library

to achieve 100% in either metric was the Number ontology library.

After tuning the ontology libraries with respect to the training data we locked them

from further modification (with a small exception described hereafter) before continuing with

the necessary annotations for non-training data. By doing so we hoped to avoid validation

and test data having an influence on our ontologies in HyKSS. Query processing algorithm

development continued beyond this point, but not with respect to the test document set. We

proceeded next by creating expected extraction annotations for the validation document set

with respect to the Vehicle+ ontology library. We measured extraction precision and recall

and found that recall fell from 99% in the training document set to 94% in the validation

document set and that precision fell from 98% to 90%. Therefore, we expect a similar decline

in extraction quality when using the test document set.

With ontology tuning complete, we next constructed query-document relevance an-

notations for the training query set relative to the blind document set, and later did the

same for the blind query set relative to the blind document set. These annotations are the

annotations used to evaluate the actual retrieval quality of HyKSS. The construction of

query-document relevance annotations is a difficult task that can often be subjective. In

order to remain as objective as possible, and to model the domain to the best of our ability,

we used a closed-world assumption in assigning relevance; a document is only relevant to

a query if it explicitly satisfies all constraints in the query. The extracted semantics for a

document must satisfy all selections and have some value for each projection in order to

be considered relevant. While this relevance annotation approach may seem contrary to

our ranking approach, we believe that this approach is appropriate for this domain for two
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reasons. First, users are less likely to respond to a product advertisement if some of their

constraints are not met in the product page. Second, used vehicles are sold in a wide array of

conditions, and even those features that come standard with the vehicle are not guaranteed

to work as originally constituted.

In constructing these annotations we used all information available in the advertise-

ments. This includes visual information that OntoES is currently incapable of extracting.

For example, many vehicle advertisements do not specify the number of doors on or the color

of a vehicle, but include a picture of the vehicle indicating the values for these attributes. All

of this information is used in determining query-document relevance.

Due to the difficulty of annotation we did not attempt to infer information not available

in the advertisement from information present. For example, if a advertisement listed the

trim of the vehicle we did not try to infer the number of doors. One exception to this is

that we did infer the Make of a vehicle given a Model due to its relative ease. We also

took advantage of human intuition to infer the meaning of phrases like “fully loaded” to

indicate that it had standard features, such as air conditioning and a CD player, occasionally

requested in user queries.

In order to experiment with queries over a non-target domain we next expanded the

extraction capabilities of our Generic Units ontology library. We selected a couple of pages

from the mountain, roller coaster, and video game documents and used them to tune the

ontologies in the Generic Units ontology library. The tuning process for these extractions

was much less formal and systematic than the tuning process for ontology libraries over

the vehicle advertisements. During this exercise we discovered need to handle non-ASCII

spaces in some documents, and updated all ontologies in all the libraries to do so (comparison

constraints were not updated because we did not anticipate the need to handle non-ASCII

spaces in queries). Other than this change, all modifications during this phase of tuning were

limited to the Generic Units ontology library. These modifications are the exception to the

ontology locking referred to previously.
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In developing the HyKSS algorithms we attempted to avoid being influenced by the

test document set. We did this first, as mentioned previously, by locking the ontologies,

with the one exception, before annotation of the blind document set. The test document

set was reserved for experimentation until after the completion of algorithmic development.

However, when initial experimentation began we discovered a number of issues resulting

in fatal errors to query execution. We also discovered that our original semantic ranking

algorithm was conceptually infeasible for large document sets. As necessity required, we

made modifications to our algorithms in order to resolve these issues. However, in so doing,

we did not tune performance to the document test set in terms of mean average precision.

We simply made the modifications and ran the experiments. In this manner we attempted

to keep the document test set as blind as possible given the circumstances. All of these

modifications were made prior to any experimentation using the blind test query set.

The dynamic query weighting algorithm presented in this thesis was also added during

this algorithm modification stage. We initially developed two variants of this algorithm which

performed similarly on the validation data. There were tradeoffs in performance depending

on the ontology set being used. We could have used both of these variants in all experiments,

but instead opted to only report on the method we felt performed best when using both the

training query set and test document set at that point in the experimentation.

5.5 Experiments and Results

We used the constructed query-document annotations to conduct a number of experiments

and evaluate the retrieval quality of HyKSS. For each experiment we tested a number of

different processing and ranking approaches for comparison. We describe these differing

approaches below.

• Keyword: Lucene processes queries after non-phrase stopwords are removed and ranks

the results.
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• Keyword - Pre-processing: Lucene processes queries after comparison constraints

and non-phrase stopwords are removed and ranks the results.

• HyKSS - Set Weights: HyKSS processes queries and ranks results using set weights

for interpolating keyword and semantic scores. These set weights are determined using

the validation data as described later.

• HyKSS - Dynamic Weights: HyKSS processes queries and ranks results using the

dynamic ranking scheme discussed earlier.

• HyKSS - Single Ontology: HyKSS processes queries and ranks results using the

dynamic ranking scheme discussed earlier except that instead of considering ontology

sets HyKSS only uses the single best matching ontology.

• Keyword - Soft Semantics: Lucene uses keyword search (after keyword query pre-

processing) to rank the results returned using a soft semantic filter. A soft semantic

filter uses the open world assumption.

• Keyword - Hard Semantics: Lucene uses keyword search (after keyword query pre-

processing) to rank the results returned using a hard semantic filter. A hard semantic

filter uses the closed world assumption.

• Soft Semantic Ranking: The semantic ranking mechanism of HyKSS ranks results

that pass a soft semantic filter.

• Soft Semantics: This approach retrieves all results that pass a soft semantic filter.

No ranking mechanism is provided, and an arbitrary ordering of the results is used in

the MAP calculation.

• Hard Semantics: This approach retrieves all results that pass a hard semantic filter.

No ranking mechanism is provided, and an arbitrary ordering of the results is used in

the MAP calculation.

For the “HyKSS - Set Weights” ranking strategy we estimated the keyword and

semantic weights that maximized mean average precision over the validation data. To find
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Number Generic Units Vehicle Units Vehicle Vehicle+
Keyword Weight 0.71 0.71 0.71 0.56 0.56
MAP(Set Weights) 0.44782 0.60031 0.62594 0.70894 0.74966
MAP(Dynamic Weights) 0.44782 0.60031 0.62594 0.70889 0.74960

Table 5.1: The results of computing the best preset weights for HyKSS on the validation
data. The MAP is also shown for HyKSS dynamic approach.

weight values, we executed each query in the training query set using 100 weight combinations

and chose the best. The keyword weight started at 1.0 and dropped in increments of 0.01

until the keyword weight reached 0.0. The semantic weight was one minus the keyword

weight. After each weight change the MAP was computed using the returned results. In

the event that two MAP scores tied, we preferred the weight combination with the higher

keyword score in hopes that it would generalize better to unseen data. Table 5.1 shows the

results of the weight tuning. The table includes the MAP scores when using the “HyKSS -

Dynamic Weights” scheme as well.

With the approaches for experimentation fully established we moved on to the experi-

ments. The first two experiments were restricted entirely to the vehicle advertisement domain.

In each of these experiments, we executed the previously described ranking approaches over

the test set of vehicle advertisements. For queries, the first experiment used the training

query set while the second experiment used the blind test query set. Tables 5.2 and 5.3 show

the results of these experiments, respectively.12 To assist in readability, each column shows

the best MAP score in bold and the second best score in italics. Of the 113 queries in the

training query set, 76 queries had relevant documents in the test document collection. Only

13 of the 60 queries in the blind test query set had relevant documents in the test document

collection.

To further test the capabilities of HyKSS we added noise to the document set used

in the original experiments. This additional noise consisted of the Wikipedia and craigslist

12Due to the arbitrary manner in which the ranking approaches break ties, running the experiments on
different hardware may result in different MAP scores. However, in our experience the general trends in the
results remain the same.
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Ranking/Library Number Generic Units Vehicle Units Vehicle Vehicle+

Keyword 0.35251 0.35251 0.35251 0.35251 0.35251

Keyword - Pre-processing 0.35304 0.36651 0.36736 0.36736 0.36736

HyKSS - Set Weights 0.40126 0.50700 0.53420 0.63764 0.74562

HyKSS - Dynamic Weights 0.40138 0.52445 0.54893 0.63730 0.74568

HyKSS - Single Ontology 0.40138 0.48453 0.52112 0.63730 0.62422

Keyword - Soft Semantics 0.33105 0.41544 0.45212 0.52434 0.62651

Keyword - Hard Semantics 0.28177 0.41544 0.45212 0.51363 0.61164

Soft Semantic Ranking 0.15626 0.23804 0.25876 0.53875 0.65750

Soft Semantics 0.16997 0.22059 0.24733 0.29182 0.39631

Hard Semantics 0.12748 0.23804 0.25876 0.47287 0.56212

Table 5.2: The results of the various ranking approaches using the training query set and
test document set for the vehicle advertisement domain.

Ranking/Library Number Generic Units Vehicle Units Vehicle Vehicle+

Keyword 0.18886 0.18886 0.18886 0.18886 0.18886

Keyword - Pre-processing 0.18902 0.19032 0.19032 0.19032 0.19032

HyKSS - Set Weights 0.22366 0.24453 0.25741 0.36676 0.40642

HyKSS - Dynamic Weights 0.22366 0.24453 0.25741 0.36542 0.40530

HyKSS - Single Ontology 0.22366 0.24453 0.25741 0.36542 0.39609

Keyword - Soft Semantics 0.08563 0.07337 0.08541 0.21000 0.26961

Keyword - Hard Semantics 0.02858 0.07337 0.08541 0.26281 0.32101

Soft Semantic Ranking 0.08815 0.07751 0.10899 0.28820 0.33472

Soft Semantics 0.07499 0.07015 0.09515 0.14895 0.18998

Hard Semantics 0.04525 0.07751 0.10899 0.26791 0.30681

Table 5.3: The results of the various ranking approaches using the blind test query set and
test document set for the vehicle advertisement domain.

video game advertisements discussed earlier. The experiments used the same query sets and

query-document relevance annotations as in the first two experiments. Some of the queries,

such as “<100K miles”, did not actually contain enough information to restrict relevant

results to the vehicle domain, but we were aware of the context in which the query was

originally posed and thus restricted relevant results to those in the vehicle domain. Tables 5.4

and 5.5 shows the results of these two additional experiments. Again, the bolded value

in each column indicates the method with the highest MAP score and the italicized value

indicates the method that performed second best.
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Ranking/Library Number Generic Units Vehicle Units Vehicle Vehicle+

Keyword 0.29786 0.29786 0.29786 0.29786 0.29786

Keyword - Pre-processing 0.30113 0.31619 0.31691 0.31691 0.31691

HyKSS - Set Weights 0.28716 0.42531 0.48898 0.57338 0.66432

HyKSS - Dynamic Weights 0.28743 0.44852 0.51148 0.57155 0.66832

HyKSS - Single Ontology 0.28743 0.39027 0.46500 0.57155 0.53705

Keyword - Soft Semantics 0.24660 0.35210 0.42125 0.37945 0.46692

Keyword - Hard Semantics 0.20115 0.35210 0.42125 0.48915 0.58546

Soft Semantic Ranking 0.03680 0.13720 0.18698 0.46078 0.56523

Soft Semantics 0.04272 0.11664 0.17556 0.04568 0.10199

Hard Semantics 0.02625 0.13720 0.18698 0.39721 0.48507

Table 5.4: The results of the various ranking approaches using the training query set and
test document set for vehicle advertisement along with additional document noise.

Ranking/Library Number Generic Units Vehicle Units Vehicle Vehicle+

Keyword 0.16657 0.16657 0.16657 0.16657 0.16657

Keyword - Pre-processing 0.16660 0.16935 0.16935 0.16935 0.16935

HyKSS - Set Weights 0.17071 0.19055 0.20089 0.27081 0.29899

HyKSS - Dynamic Weights 0.17071 0.19055 0.20089 0.26962 0.30194

HyKSS - Single Ontology 0.17071 0.19055 0.20089 0.26962 0.29729

Keyword - Soft Semantics 0.05886 0.03585 0.04581 0.10516 0.15641

Keyword - Hard Semantics 0.02459 0.03585 0.04581 0.19787 0.25229

Soft Semantic Ranking 0.01502 0.03740 0.06698 0.20562 0.23097

Soft Semantics 0.05479 0.04177 0.06501 0.02080 0.04350

Hard Semantics 0.00208 0.03506 0.06698 0.18904 0.21058

Table 5.5: The results of the various ranking approaches using the blind test query set and
test document set for vehicle advertisement along with additional document noise.

For the final experiment we evaluated how well HyKSS performs when searching

for documents not in the target domain. Our goal with this experiment was to provide

an exploratory evaluation of how HyKSS functions when ontology libraries have not been

explicitly tuned towards a domain of interest. We created five queries and ensured that

the Generic Units ontology library could interpret them correctly. These queries were

targeted towards the mountain, roller-coaster, and video-game domains in the noisy document

collection. We designed these queries to be similar in construction to many of the queries

we gathered from students. Figure 5.1 shows our queries for this experiment. We generated

query-document relevance annotations for these queries using the list-of-mountains and list-
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of-roller-coaster-rankings pages as guides. Only the query-document relevance annotations

for the video-game query required us to look through the document collection. The document

collection for this experiment consisted of both the noisy document set and the test document

set for vehicle advertisements. Table 5.6 shows the results for this experiment.

1) mountains over 8000 meters in elevation
2) steel roller coasters over 122m tall
3) ps3 games under $30
4) coaster with a drop of more than 300 feet
5) coasters longer than 2000 meters

Figure 5.1: The queries used to test HyKSS in domains that semantic modeling does not
target.

Ranking/Library Generic Units

Keyword 0.22043

Keyword - Pre-processing 0.13632

HyKSS - Set Weights 0.24190

HyKSS - Dynamic Weights 0.24693

HyKSS - Single Ontology 0.24693

Keyword - Soft Semantics 0.24877

Keyword - Hard Semantics 0.24877

Soft Semantic Ranking 0.05686

Soft Semantics 0.10834

Hard Semantics 0.05686

Table 5.6: The results of using the Generic Units ontology with queries that do not target
the vehicle-advertisement domain.

Although mean average precision, and not query execution speed, is the focus of this

thesis, we present in Table 5.7 the query execution times for the first experiment (using the

training query set over the blind document set without additional noise). When measuring

MAP we would often break the experiment apart and use a subset of the ontology libraries

to generate the semantic index for that experiment portion. This does not affect MAP scores

as the queries generated by a specific ontology library can only bind to indexed annotations

generated by that ontology library. However, the size of the semantic index does influence
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Ranking/Library Number Generic Units Vehicle Units Vehicle Vehicle+

Keyword 0.0028 0.0009 0.0009 0.0008 0.0008

Keyword - Pre-processing 0.0015 0.0009 0.0008 0.0008 0.0008

HyKSS - Set Weights 0.1011 2.8681 2.0313 0.0762 1.4828

HyKSS - Dynamic Weights 0.0942 2.8744 2.0344 0.0610 1.5009

HyKSS - Single Ontology 0.0907 0.0524 0.0503 0.0605 0.0699

Keyword - Soft Semantics 0.0898 2.8864 2.0050 0.0601 1.5055

Keyword - Hard Semantics 0.0709 2.1264 1.4650 0.0585 0.7223

Soft Semantic Ranking 0.0919 2.8751 1.9892 0.0709 1.4771

Soft Semantics 0.0974 2.8573 2.0136 0.0651 1.4846

Hard Semantics 0.0703 2.1722 1.4969 0.0579 0.7208

Table 5.7: The execution times in seconds (rounded to the nearest millisecond) for each
ranking approach for the experiment using the training query set over the blind document set.
These execution times correspond to the MAP scores for the first experiment in Table 5.2.

query execution speed. When measuring the query execution times present in Table 5.7 our

semantic index included the annotations generated by all five ontology libraries.

The table shows the average execution time in seconds for each query in the training

query set. The average includes all queries in the query set, not just those with relevant

documents in the document set. The execution time includes time required for query

evaluation as well as any time required by the system for output messaging. Query execution

times vary slightly across each running of the experiments but the general patterns remain

the same.

5.6 Discussion

The results of the experiments are quite favorable towards HyKSS and hybrid search in

general. Across all experiments, HyKSS generally outscored the other approaches in terms of

mean average precision. The other hybrid approaches using keyword search ranking with

semantic filters typically followed close behind.

In Table 5.1, we were quite surprised to find that the Number, Generic Units, and

Vehicle Units ontology libraries all received the same estimation for keyword weight to

maximize MAP. We expected this value to be highest for the Number ontology library and
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to gradually decrease as the level of semantic modeling increases. This decrease occurs as the

sliding scale moves from the Vehicle Units ontology library to the Vehicle ontology library.

Thus, there is some indication that the importance of the keyword score decreases once

semantic modeling passes certain thresholds. What those thresholds are, however, remains

unclear.

As expected, Table 5.1 also shows that MAP scores increase as the level of semantic

modeling increases. This helps demonstrate the pay-as-you-go nature of HyKSS. Users will

likely see an increase in retrieval performance if they are willing to put in time and effort to

create higher levels of semantic modeling. The other result of interest is that the dynamic

weighting approach performs essentially the same as using the preset weights for each ontology

library. This is significant as the dynamic approach does not require document annotation

effort by the user to compute weights.

The results of the first experiment (Table 5.2), using the training query set over

the blind document set, yields several interesting discussion points. First, it appears that

removing comparison constraints from keyword queries provides only a small benefit in

retrieval performance. Second, the pay-as-you-go nature of HyKSS is reaffirmed as all ranking

methods with a semantic component improve as the level of semantic modeling increases. The

most interesting result, however, is that hybrid search, and especially HyKSS, outperforms all

the other methods. For each ontology library, either “HyKSS - Static Weights” or “HyKSS -

Dynamic Weights” obtained the highest MAP score. In two instances, the “HyKSS - Single

Ontology” approach obtained the same MAP score as the “HyKSS - Dynamic Weights”

approach. However, these two instances are when using the Number and Vehicle ontology

libraries which consist of a single ontology. In all other cases, using multiple ontologies

outperforms choosing and using the single best ontology.

Beyond the HyKSS based methods, the hybrid approaches using keyword ranking

with a semantic filter consistently outperformed other methods except at the lowest and

highest levels of semantic modeling. At the lowest level of semantic modeling, the Number
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ontology library, semantics do not appear to be very useful. Numbers are present in many

documents and knowing that a document contains a number less than N does not add much

value to the search. At the highest level of semantic modeling, the Vehicle+ ontology library,

semantics are extremely useful, and using semantics alone yields positive results, but still

does not perform as well as HyKSS. However, using soft semantics with no ranking performs

relatively poorly. This is because no ranking is provided and documents that passed the filter

using the open world assumption can be in an arbitrary position in the ranking. Ranking the

soft semantic results or using a hard semantic filter yields much higher MAP scores.

Using this same query set over the blind document set with additional noise (Table 5.4)

confirms many of the results discovered in the first experiment. However, the addition of

noise also results in consistently lower MAP scores. The noise had other affects on the results

as well. At the lowest level of semantic modeling, the Number ontology library, the “Keyword

- Pre-processing” approach outperformed all other ranking approaches. The addition of so

many documents containing a wide variety of numerical values likely rendered the low level of

semantics largely useless. As the semantic modeling increased the hybrid approaches began

to outperform other approaches. Again, using soft semantics without ranking performed

poorly relative to the other methods. The inclusion of additional noise made this approach

unusable to the point that it was less effective than keyword search at even the highest level

of semantic modeling.

The experiments involving the blind test query set (Tables 5.3 and 5.5) also reveal

interesting results. The HyKSS approaches outperform all other approaches for all ontology

libraries. However, when using the blind test query set over the test vehicle document set

(Table 5.3) the HyKSS approach using a single ontology performed as well as the multiple

ontology approach at all but the highest level of semantic modeling. As using a single ontology

in HyKSS results in much faster query execution there may be trade-offs to consider in this

regard for a real-world system.
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The final experiment using vehicle-based queries, using the blind test query set over the

test document set with noise (Table 5.5) confirms the same trends as the other experiments.

This experiment has, by far, the lowest MAP scores of any of the vehicle query experiments.

This is expected because both the query set and document set were blind to the ontology

designers, and the document set intentionally contains additional noise. HyKSS once again

outperforms all other methods although the margins are not as large as in the previous

experiments.

Our last experiment, using five queries targeting domains in the noisy document set

(Table 5.6), gives exploratory insights into using HyKSS for non-targeted domains. Hybrid

methods once again outperformed using keyword or semantic search in isolation, but HyKSS

did not receive the highest MAP score. The hybrid approaches using keyword ranking and

semantic filters outperformed HyKSS. In fact, although not reported in the table, using

keyword ranking without removing comparison constraints significantly outperformed all

other methods (0.39433 for both soft and hard filters). We did not generally report on this

approach because it was generally comparable to the approach removing constraints; almost

always the same or a little better, a little worse in a few cases. Further inspection is needed to

discover why leaving comparison constraints in these queries made such a dramatic difference.

Intuitively, it seems that the presence of comparison-constraint words helped lead keyword

search to relevant documents. (The keyword “over”, for example, may commonly occur in

mountain pages, and “longer than” in roller coaster pages. These words indicate bigger and

better—possibly a common theme for mountains and roller coasters.) There are not enough

queries in this experiment to be convincing, but it may indicate that keyword ranking with a

filter may be superior for non-target domains. More experimentation is needed to draw any

meaningful conclusions.

To further validate our claim that HyKSS outperforms the other ranking approaches

we tested for statistically significant differences in their performances. Specifically we test for

statistically significant differences between ranking approaches across the various document
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sets, query sets, and semantic modeling levels used in our experiments. Our experiments

supply us with 21 mean average precision data points for each ranking approach (five each for

the first four experiments and one for the last experiment). We use the Student’s paired t-test

method (see [SAC07]) for computing statistical significance. This approach computes the

probability that two test subjects, ranking approaches in our case, are statistically identical

according to some normal distribution. If the probability of being the same is low enough,

we consider the difference between the subjects to be statistically significant.

We found that there are statistically significant differences between the HyKSS-based

ranking approaches and most other ranking approaches. Specifically, our results confirm that

the three HyKSS methods outperform the “Keyword”, “Keyword - Query Pre-processing”,

“Soft Semantic Ranking”, “Hard Semantics”, and “Soft Semantic” methods. The difference is

statistically significant for p < 0.005. We also found that there is a statistically significant

difference between the HyKSS methods and the “Keyword - Soft Semantics” and “Keyword

- Hard Semantics” methods for p < 0.05. Our results also indicate that there is not a

statistically significant difference between the three HyKSS methods. This certainly favors

the dynamic weight approach to the set weight approach because it requires less effort from

users. However, it also favors using a single ontology due to the runtime efficiency of not

considering cross-ontology queries. It should be noted, however, that 4 of the 21 data points

for each approach are using ontology libraries containing only a single ontology. This may or

may not have affected the outcome of the significance testing. Also of note, we found that

removing comparison constraints from keyword queries did not have a statistically significant

impact on query performance in terms of mean average precision.

We conclude with a discussion of the query execution times13 for HyKSS and the

other ranking approaches in Table 5.7. As expected, the keyword search based methods

significantly outperform the semantic methods in terms of runtime. Keyword search simply

requires less processing, and the Lucene library has been constructed for fast keyword query

13Our analysis of query execution times only considers the times in Table 5.7 and those discussed in our
analysis. We expect similar patterns to hold across the other experiments.
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execution. When using ontology libraries containing a single ontology library the HyKSS and

semantic methods all performed fairly well, maintaining execution times of under a second.

Future work will need to determine how execution times are affected by larger document sets

and larger ontology libraries, and how to scale the system to keep response times reasonable.

Methods that cross ontology boundaries, however, performed poorly when using

ontology libraries containing multiple ontologies. Response times were as high as just under 3

seconds per query using the Generic Units ontology library. Query execution times were even

slower when using the same query set but using the test document collection with additional

noise. In this case the average query execution speed for cross-ontology query methods needed

to be measured in minutes rather than seconds, even when using only a subset of the libraries

to generate the annotations in the index. We also found that using ontologies containing a

single lexical object set in cross-ontology queries quickly exhausts large amounts of memory.

These are significant performance issues that will need to be resolved in future work if using

cross-ontology queries over ontologies is to be viable.14 This may require HyKSS to alter the

structure of the semantic queries it generates. Using HyKSS with a single ontology, however,

resulted in reasonable response times across the board. When designing systems of this

nature it may be prudent to include larger ontologies that match domains of interest and

simply select and use the best one for runtime performance.

14Optimization of SPARQL queries is an active area of research and this problem may resolve itself as
progress is made. Further, other semantic storage options such as relational database management systems
may be more suitable for this type of problem.
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Chapter 6

Related Work

Search systems are increasingly turning to semantics to improve retrieval performance.

Several systems leverage semantics to assist in transforming free-form textual queries into

formal structured queries (e.g., [ZWX+07, TCL09]). Some systems take this a step fur-

ther and execute generated structured queries over underlying annotations (e.g., [Vic06,

AME07, LUM06, KKR+06]). The Avatar [KKR+06] system even allows for keyword match-

ing, in addition to semantic matching, over the underlying annotations. Similar systems

(e.g., [GMM03, RSA04]) retrieve relevant annotations using submitted keyword queries, but

use a process that relies on retrieving instances that match keywords, and then retrieving se-

mantically related instances to the original instance matches. Other systems also allow textual

queries over semantic annotations, but require users to submit full natural language queries

(e.g., [KBZ06, LPM05]). These systems are extremely useful but are semantic search systems,

and are completely dependent on the quality and completeness of underlying annotations

(although these annotations can be extracted from unstructured text).

Pure semantic search systems are not likely to perform as well as hybrid search when

annotations are imprecise and incomplete. A number of hybrid search systems attempt to

combat this weakness by including a textual keyword search component in the search process.

OntoSearch [JT06] presents a system based on a spreading activation algorithm, which is

an approach for searching networks. OntoSearch begins by executing an input query using

keyword search to retrieve an initial set of documents. The underlying annotations for these

documents constitute a seed set for the spreading activation algorithm that runs over the
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network of annotations. This algorithm infers concepts of relevance from a user’s query

based upon the seed set. OntoSearch then constructs a query vector using both keyword and

concept weights, and compares it against the document collection using the traditional vector

space model. This system does not mention the ability to handle cross-ontology queries

although it appears likely to be able to do so. Additionally, OntoSearch does not address the

issue of handling comparison constraints in queries and does not appear to be equipped to

do so. However, this approach does appear to be well suited to handling more traditional

keyword-like queries that do not include comparison constraints.

A number of other hybrid search systems are more similar to the retrieval and ranking

mechanisms used in HyKSS, but require structured queries rather than free-form queries.

The authors of [CFV07] present an adaption of the vector space model for hybrid search.

This system weights concepts (annotations) in documents according to a TF/IDF scheme.

Users submit structured queries and the system retrieves an initial set of tuples in a Boolean

manner. A document retrieval step expands the query using hierarchies and rules to discover

all documents related to an initial query. The document vectors are compared to an extended

query vector to determine the score and ranking of each document. To compensate for

possibly incomplete annotations, a keyword query is generated from the structured input

query and the keyword score for documents is combined with the semantic score using a

linear interpolation. In this scheme, however, the weights for keywords and semantics are set

at 0.5 rather than being dynamic (with special cases for when either of the scores is zero).

K-Search [BCC+08] and GoNTogle [GBDS10] are the two systems most similar to

HyKSS. K-Search motivates the need for hybrid search with similar arguments to those in

this thesis. The authors of K-Search discuss a generic hybrid search architecture and provide

K-Search, a concrete implementation of that architecture. The K-Search interface provides a

tree view of an ontology to use for generating structured queries in a form-like manner. These

structured queries can include keywords either as a separate query component (as in HyKSS)

or within semantic fields (called keyword-in-context). This form-based querying is similar
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to the advanced form interface of HyKSS, but does not include negations, and the query is

built entirely using the ontology tree view rather than starting with an initial free-form query.

By default, results must satisfy a hard semantic filter and are ranked according to keyword

score. This is comparable in concept to the “Keyword - Hard Semantics” approach used in

our experiments. Users can also change initial rankings by focusing on specific annotation

values. The results display of K-Search is similar to HyKSS but has additional features such

as aggregation of data into graphs and multiple-color results highlighting.

GoNTogle is a framework for document annotation and retrieval. A hybrid search

option is available for performing document retrieval over these annotations. GoNTogle

allows users to return the intersection or union of the keyword and semantic search results.

For semantic ranking, GoNTogle uses a scheme that considers the number of tokens in the

document that the annotation covers, the total number of tokens in the document, and the

number of ontology classes used during query execution. The semantic score is combined

with the keyword score using a linear interpolation with pre-set weights. Like K-Search,

GoNTogle requires a structured form-based interface for the semantic portion of the query.

GoNTogle also provides a number of advanced semantic search options such as finding related

documents and confining searches to higher or lower level concepts of an ontology.

A different approach to combining keyword and semantic search is presented in [FGGL10].

This work presents a means of leveraging semantic annotations with existing search engines.

They present a generalization of the PageRank algorithm, ObjectRank, which allows the

ranking process to include objects in addition to pages. In an offline step the system processes

ontological reasoning and generates HTML pages for each object. The system can then

transform formal structured queries into a sequence of standard web search queries and

combine the various results into a single result set. Experiments show that this approach

performs extremely well in terms of precision and recall.

HyKSS is different from these hybrid search systems in its ability to handle free-form

textual queries in addition to structured queries. Although the authors of [CFV07] mention
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that structured queries can be generated from free-form queries, we believe that this task is

non-trivial and introduces further ambiguity into the system. Further, structured queries

likely allow for the specification of comparison constraints and cross-ontology queries, but

require users to explicitly specify necessary constraints. However, these methods do appear

more readily equipped to handle operations over large ontologies. HyKSS appears to be the

only hybrid search system that focuses on the ability to handle comparison constraints from

free-form queries, and one of the few that claims the ability to query over multiple ontologies.

The QUICK [PIW10] system presents another interesting hybrid search approach.

QUICK differs from other hybrid search systems because in addition to considering both

keywords and semantics, it also allows users to submit queries in a hybrid query language.

This query language, referred to as a keyword-based structured query language by the authors,

maintains the flexibility of keyword search but allows for the specification of some constraints

using a simple syntax. It will be interesting to see if untrained users can adapt to a query

paradigm of this nature.

Additional efforts have been placed in making hybrid search systems viable for large-

scale applications. One such architecture, CE2 [WTL08], presents a unified framework to

represent both RDF data and documents in an integrated way. Preliminary results indicate

that hybrid search using this architecture (over millions of triples) shows increased precision

over keyword and semantic search in isolation while maintaining acceptable response times.

The Semplore [ZLZ+07] system is another effort towards a scalable architecture for hybrid

search queries. However, both of these systems require users to submit hybrid queries that

are an extension of formal conjunctive queries. Still, work of this nature indicates that hybrid

search technology may be viable for large-scale applications.

Most of the hybrid systems discussed do not allow, or at least do not discuss, the

ability to handle cross-ontology queries. One system capable of handling cross-ontologies

queries is PowerAqua [LUSM09]. PowerAqua accepts a natural language query and can return

annotations to answer that query from various public structured knowledge repositories.
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In the search for relevant annotations PowerAqua considers multiple ontologies and maps

ontologies together when deemed appropriate. The means for mapping ontologies together

relies on syntactic label similarities, semantic similarities such as ontology hierarchies and

WordNet1 similarities, and a series of heuristics. PowerAqua, by itself, is a semantic search

system. However, recent work [FLS+08] combines PowerAqua with the work of [CFV07] to

construct a cross-ontology hybrid search system. The cross-ontology mechanism in HyKSS

is, in many ways, simpler than the mechanism used in PowerAqua. Similar to PowerAqua,

HyKSS combines ontologies dynamically at runtime in order to answer a user query. In

contrast, HyKSS can rely on data frames within extraction ontologies, along with a series

of simple heuristics, to determine which ontology sets to generate. PowerAqua is not as

fortunate and must rely upon labels and the structure of ontologies without data frames to try

to determine similarities. HyKSS also simplifies processing by only allowing recognized text

to be claimed by a single ontology in an ontology set and thus eliminating joins. PowerAqua

does have an advantage, however, in that it has access to far more ontologies because data

frames are not required. Further, PowerAqua appears to be dealing with larger ontologies

than HyKSS has been tested with.

We found little work in efforts to handle comparison constraints in free-form queries,

and none in the hybrid search arena. Microsoft researchers have done some work on tagging

product queries with structural information [LWA09, ML09]. However, these annotations

map text to concepts and do not discover comparison constraints for concepts such as price.

Further, these efforts focused on the query annotation process and did not experiment with

the effect of such annotations on document retrieval. Recently, however, Microsoft announced

that its search engine Bing2 has natural language capabilities on their shopping site that

interpret and make use of comparison constraints on price in the search process.3 (The search

1http://wordnet.princeton.edu/
2http://www.bing.com/
3http://www.bing.com/community/site blogs/b/search/archive/2011/03/01/bing-feature-update-

searching-for-a-good-deal-new-natural-language-capabilities-in-bing-shopping-understand-prices.aspx
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algorithm for Bing is proprietary, and we do not have the ability to make direct comparisons

with HyKSS.)

We believe that hybrid search is an appropriate component of dataspace support

platforms [FHM05, HFM06]. A dataspace, as opposed to a database, uses a data co-existence

solution. This means that a dataspace support platform must accept all data and provide

functionality over that data regardless of how well integrated the data sources are. A key

aspect of this type of system is that the capabilities of the system improve over time. HyKSS

provides a pay-as-you-go nature of improvement, but does not yet make improvements

automatically or semi-automatically based on usage patterns. While HyKSS is certainly not

a dataspace support platform, we expect hybrid search to be a key component of a successful

dataspace system.

Faceted search is an increasingly common approach for combining keywords and

semantics in the search process. A facet is another term for a semantic category or a

dimension of the data. Users locate relevant information in a faceted search environment by

using both keywords and facet values to drill down to relevant information. This approach

differs from HyKSS and other hybrid search systems in that faceted search generally involves

users iteratively drilling down to relevant information rather than executing a single query

in a hybrid manner. Facted search interfaces are common on commerce web sites, and a

research effort has produced a faceted search interface for Wikipedia [HBS+10].

Finally, it should be mentioned that major search engines are not based entirely upon

keyword search. Even PageRank [BP98], though primarily a keyword search algorithm, takes

advantage of link structures in hypertext, a form of semantic information. Major search

engines are continually searching for new ways to obtain and integrate semantics into their

search algorithms to improve the user search experience. Some semantics are discovered

through automated processes, such as machine learning, and others are gleaned through

annotations created by website providers. However, because these systems are proprietary we

are not aware of how hybrid search algorithms are employed or to what extent they are used.
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Just recently Google, Bing, and Yahoo4 announced a combined effort to create and

support a common vocabulary for annotating information on web pages.5 This effort will allow

web developers to use a single annotation format to provide valuable semantic information to

search engines. While this effort requires annotation by a developer, and search engines will

certainly still use automated means for discovering some semantics, their combined efforts

demonstrate large-scale interest in integrating semantics into search and providing hybrid

search systems.

4http://www.yahoo.com/
5Posted at http://googleblog.blogspot.com/2011/06/introducing-schemaorg-search-engines.html and else-

where.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions and Contributions

This thesis introduced HyKSS, our system for Hybrid K eyword and Semantic Search. HyKSS

employs both keyword and semantic processing in order to improve retrieval ranking results.

The use of keywords and semantics in a hybrid manner helps to mitigate the weaknesses of

either approach used in isolation. HyKSS can process free-form textual queries, as well as

queries presented through a form interface. Our work on HyKSS demonstrates the potential

of hybrid search methods as well as the viability of extraction ontologies as a semantic basis

for a hybrid search system.

HyKSS includes several novel techniques for hybrid query processing. The semantic

processing and ranking methods are, to our knowledge, unique to HyKSS. We demonstrated

a method for dynamically generating ontology sets using data frames available in extraction

ontologies. HyKSS is then able to perform queries over multiple ontologies grouped together

in an ontology set and thus is not limited to executing queries using only a single ontology. We

also provided a simple approach for semantic result ranking based on the amount of requested

semantic information a document can supply without violating constraints. Additionally,

for hybrid query processing we presented a novel, query-based method for determining the

keyword and semantic weights for a given query.

Our experimental results indicate that our hybrid search system outperforms keyword

and semantic search used in isolation for most levels of our semantic modeling and for most

of our data and query sets. The only exception to this was using a very low level of semantic
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modeling over a noisy data set, in which case keyword search (with query pre-processing)

outperformed all other methods. The results of hybrid search improved as the level of

semantic modeling increased, which supports the pay-as-you-go-nature of HyKSS. Our results

also indicate that HyKSS outperforms several other varieties of hybrid search over the data

sets used. Moreover, the dynamic query driven weighting approach used by HyKSS performs

similarly to using weights tuned with validation data, but does not require manual annotation.

We found that across the query sets, document sets and semantic modeling levels used

in our experiments the difference in performance between HyKSS (with dynamic weights) and

the non-HyKSS ranking approaches, including keyword, semantic, and a number of hybrid

ranking methods, is statistically significant. However, we also found that using multiple

ontologies does not hold a statistically significant advantage over selecting and using the best

matching ontology. Due to the increase in query execution speed when selecting and using a

single ontology the latter approach may hold an advantage for use in real-world systems.

7.2 Future Work

Our work on HyKSS provides only an introductory look at using hybrid keyword and

semantic search to improve the search experience. There are many lingering questions and

issues that should be addressed. Web users are accustomed to providing extremely short

keyword queries [JSS00], whereas comparison constraints often require several terms to

express. However, there is certainly a training effect that takes place with search engines—we

tend not to ask queries we know the system cannot handle. Studies are needed to determine

if users will ask queries containing comparison constraints when they know the system can

handle them.

Future work could also focus on query response time and scalability. HyKSS needs to

have reasonable query response times as both the size of the document collection and the

number of ontologies in the library increase. The ability to distribute indexes and ontologies,

and parallelize processing where possible is likely key to this effort. Our current semantic
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processing, which relies on the open world assumption for semantic ranking, is intuitive,

but may be computationally expensive. Other semantic ranking mechanisms may provide

more reasonable response times while maintaining retrieval ranking quality. We also plan

to explore other processes and heuristics for generating ontology sets. There are additional

scalability and processing issues when it comes to handling large ontologies that will need to

be explored as well.

Improving retrieval and ranking quality is a continuous effort. A key component of

this effort is improving the quality of underlying annotations. Current and planned work

on our extraction process should assist in this effort. This research includes data frames for

relationship sets, rule execution, and the ability to generate more than one non-lexical object

set per document. This last effort will help us test HyKSS on arbitrary web documents

rather than restricting ourselves to topical documents. We also plan to explore integrating

other extraction tools and knowledge bases. Other methods for weighting the keyword and

semantic components at query time also need further exploration and experimentation.

Several usability updates are planned for our HyKSS interface. HyKSS is currently

limited to using and displaying only the highest ranked ontology set. We can include a side

panel on the results page that will display several top ranked ontology sets. Users can then

select different ontology sets to execute the query against. A similar ranking of ontologies can

also be added to the advanced search form, allowing users to add and remove ontologies, and

thus forms, to and from the set they are working with. The search result page can also be

augmented with a list of object sets from the current ontology set so that users can add and

remove columns from the results table to more readily see the information they are interested

in. These and other improvements can enhance the usability of HyKSS.

Finally, further validation is needed to more fully justify the claims made in this

thesis. Larger query sets, preferably from real-world use of semantic or hybrid systems, will

provide more insight into the effectiveness of HyKSS. Increasing the size and diversity of

document sets and ontology libraries will also be useful in analyzing the use of HyKSS in a
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larger system. Scaling up these types of experiments is necessary to determine if HyKSS is

viable for real-world use.
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