
GENERATING DATA-EXTRACTION ONTOLOGIES BY EXAMPLE

by

Yuanqiu Zhou

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

December 2005

Copyright © 2005 Yuanqiu Zhou

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by
Yuanqiu Zhou

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date David W. Embley, Chair

Date Stephen W. Liddle

Date Michael Jones

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Yuanqiu Zhou in
its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date David W. Embley

Chair, Graduate Committee

Accepted for the Department
 Parris K. Egbert

Graduate Coordinator

Accepted for the College
 G. Rex Bryce, Associate Dean,

College of Physical and Mathematical
Sciences

ABSTRACT

GENERATING DATA-EXTRACTION ONTOLOGIES BY EXAMPLE

Yuanqiu Zhou

Department of Computer Science

Master of Science

 Ontology-based data-extraction is a resilient web data-extraction approach. A

major limitation of this approach is that ontology experts must manually develop and

maintain data-extraction ontologies. The limitation prevents ordinary users who have

little knowledge of conceptual models from making use of this resilient approach. In this

thesis we have designed and implemented a general framework, OntoByE, to generate data-

extraction ontologies semi-automatically through a small set of examples collected by users.

With the assistance of a limited amount of prior knowledge, experimental evidence shows

that OntoByE is capable of interacting with users to generate data-extraction ontologies

for domains of interest to them.

ACKNOWLEDGMENTS

I am indebted to many people for their assistance and support to my thesis work.

I would like to give my great appreciations to the following people:

All my committee members for their time and efforts on my behalf. Particularly,

my graduate advisor and committee chair, Dr. David Embley, for his invaluable

suggestions to my research and for his attentions in his very busy days.

All my fellow members at DEG group, whose work inspired me and provided me

with various tools. Special thanks to my friends: Yihong Ding, ZongHui Lian and Cui

Tao for their assistances during my trips back to Provo from Los Angeles.

My friends: Jie Liu, Janice Fu and Jiayun Zhuang in Los Angeles where I am

currently living and working. Without their kindly care through my physical hardship

since early this year, I could never possibly finish my thesis on time.

My friend and co-worker, Robert Humphreys, a senior technical writer at J2

Global Communications Inc., for his time and efforts to polish my thesis.

My parents and siblings, who always support me all the time in my life.

This research has been supported in part by the National Science Foundation

under grant #IIS-0083127.

In memory of those days at Provo, UT and all those people whom I get to know

there.

Table of Contents

Table of Contents... xiii

List of Figures ... xv

List of Tables .. xvii

1 Introduction.. 1

1.1 Background and Related Work.. 1

1.2 Thesis Statement.. 3

2 Extraction Ontology... 5

3 OntoByE System Architecture... 11

3.1 User Interface .. 12

3.2 Data Frame Library ... 13

3.3 Ontology Generator ... 14

4 User Interface... 17

4.1 Creating Forms .. 17

4.1.1 Form Titles .. 17

4.1.2 Form Editor Toolbar.. 18

4.1.3 Creating Basic Form Elements.. 18

4.1.3.1 Creating Form Elements in Pattern A... 19

4.1.3.2 Creating Form Elements in Pattern B ... 20

4.1.3.3 Creating Form Elements in Pattern C ... 20

4.1.3.4 Creating Form Elements in Pattern D... 21

4.1.3.5 Creating Form Elements in Pattern E ... 22

4.1.4 Nesting Forms ... 24

4.1.5 Sample Application Dependent Forms ... 25

4.2 Preparing Sample HTML Documents ... 27

5 Data-Extraction Ontology Generation ... 31

5.1 Constructing Object and Relationship Sets and Constraints 31

xiii

5.2 Constructing Data Frames for Object Sets .. 34

5.2.1 Context Phrase Locator ... 35

5.2.2 Data Frame Matcher.. 37

5.2.3 Keyword and Context Expression Recognizer.. 39

5.2.3.1 Constructing Context Expressions.. 40

5.2.3.2 Constructing Keywords .. 42

5.2.4 Data Frame Editor ... 43

5.3 Generating Data-Extraction Ontologies .. 46

6 Experimental Observations and Analyses ... 49

6.1 Preparation... 49

6.2 Results and Observations... 52

6.2.1 Digital Camera Advertisement.. 53

6.2.2 Apartment Rental Advertisement.. 55

6.3 Summary of OntoByE’s Strengths and Weaknesses... 58

7 Conclusion, Limitations and Future Work... 61

Bibliography ... 63

xiv

List of Figures

Figure 1: An Ontology Diagram for the Digital Camera Application 6

Figure 2: A Data Frame for the Object Set Digital Zoom ... 8

Figure 3: A Partial Sample Digital Camera Advertisement... 8

Figure 4: OntoByE System Architecture ... 11

Figure 5: OntoByE System User Interface .. 13

Figure 6: The Workflow of Ontology Generator... 15

Figure 7: Form Editor Toolbar... 18

Figure 8(a): Input Dialog for Creating Form Elements in Pattern A............................... 19

Figure 8(b): A Sample Form Element Created in Pattern A.. 19

Figure 9(a): Input Dialogs for Creating Form Elements in Pattern B.............................. 20

Figure 9(b): A Sample Form Element Created in Pattern B.. 20

Figure 10(a): Input Dialog for Creating Form Elements in Pattern C 21

Figure 10(b): A Sample Form Element Created in Pattern C.. 21

Figure 11(a): Input Dialogs for Creating Form Elements in Pattern D 21

Figure 11(b): A Sample Form Element created in Pattern D... 22

Figure 12(a): Dialogs for Creating Form Elements in Pattern E 22

Figure 12(b): A Sample Form Element Created in Pattern E .. 23

Figure 13: A Sample Base Form with Elements of Five Basic Patterns 23

Figure 14: Nested Forms in the Base Form ... 25

Figure 15: Navigating Nested Forms... 25

Figure 16: Application-Dependent Forms for the Digital Camera Application 26

Figure 17(a): Nested Form Zooms in the Base Form Digital Camera 27

Figure 17(b): Nested Form Dimensions in the Base Form Digital Camera 27

Figure 18: Training Web Document Preparation... 28

Figure 19: The Configuration Window for the Ontology Generator............................... 31

Figure 20: Object and Relationship Sets and Constraints for the Base Form.................. 32

Figure 21: Object and Relationship Sets and Constraints for Nested Forms in the Base

Form ... 33

xv

Figure 22: Object and Relationship Sets and Constraints from the Digital Camera

Application Forms.. 34

Figure 23: User-marked Data and Their Context Phrases for the Object Set Digital Zoom

in the Digital Camera Application ... 36

Figure 24: Matching Data Frames for the Digital Camera Application 39

Figure 25: Recognizing Keywords and Context Expressions for the Object Set Digital

Zoom from Its Context Phrases .. 41

Figure 26(a): Constructing Value Expressions and Context Expressions for a New Data

Frame Digital Zoom ... 44

Figure 26(b): Constructing Keywords for a New Data Frame Digital Zoom 45

Figure 27: The Partial Data-Extraction Ontology for the Digital Camera Application... 48

Figure 28: Forms for the Apartment Rental Application... 51

Figure 29: A Sample Marked HTML Page for the Apartment Rental Application......... 51

Figure 30: Object and Relationship Sets and Constraints for the Apartment Rental

Application ... 56

xvi

List of Tables

Table 1: Experimental Results of Constructing Data Frames for the Digital Camera

Application... 54

Table 2: Experimental Results of Constructing Data Frames for the Apartment Rental

Application... 58

xvii

1 Introduction

1.1 Background and Related Work

The amount of useful information on the World Wide Web continues to grow at a

stunning pace. Typically, humans browse web pages but cannot easily query desired

content of the pages. Many researchers have expended a tremendous amount of energy

working on the problem of how to extract semi-structured web data and convert it into a

structured form that can be easily queried. They have proposed a number of different

information-extraction (IE) approaches in the past decade; several surveys ([Eikvil99,

Muslea99, and LRST02]) summarize these approaches.

The most common way to extract web data is by generating wrappers.

Researchers have constructed wrappers manually (e.g. TSIMMIS [HGNY+97]), semi-

automatically (e.g. RAPIER [CM99], SRV [Freitag98], WHISK [Soderland99], WIEN

[KWD97], SoftMealy [Hsu98], STALKER [MMK99], XWRAP Elite [BLP01] and

DEByE [RLS01]) and even fully automatically (e.g. RoadRunner [CMM01]). Since the

extraction patterns generated by all these systems are more or less based on delimiters or

HTML tags bound to the text to be extracted, they are sensitive to changes of web page

format. In this sense, they are source-dependent, because they need to be either reworked

or rerun to discover new patterns following source-page changes. Furthermore, the

wrappers they produce do not work for new pages in the same domain.

To solve these problems, the Data Extraction Group ([DEG]) at Brigham Young

University has developed a resilient approach to wrapper generation based on conceptual

models or ontologies ([ECJL+99]). An ontology, which is defined using a conceptual

1

model, describes the data of interest, including relationships, lexical appearance, and

context keywords. Since the ontology-based approach does not depend on delimiters or

HTML tags to identify the data to be extracted, the ontology developed for a particular

domain works for all web pages in that domain, and is not sensitive to changes in web

page format. By parsing the ontology, the BYU system automatically produces a

database schema and recognizers for constants and keywords. A major limitation of this

ontology approach, however, is that ontology experts must manually develop and

maintain the ontology. Thus, a principal effort of our current research aims to generate

ontologies, if not automatically, at least semi-automatically.

One possible solution to semi-automatically generate ontologies is a “by-

example” approach motivated by Query by Example (QBE) ([Zloof77]) and

Programming by Example (PBE) ([PBE01]). The DEByE (Data Extraction by Example)

system ([FSLE02a, FSLE02b and LRS02]) was the first to make use of an example-based

approach for web data-extraction. This approach offers a demonstration-oriented

interface in which the user shows the system which information to extract. Using a

graphical interface, the user performs extraction by example, showing the application

which data to extract. This by-example approach is relatively user-friendly, in that it

does not require that the user possess expert knowledge in wrapper coding. However,

since DEByE uses delimiter-based extraction patterns and cannot induce the structure of

the concepts in the domain of interest, it is brittle: a DEByE-generated wrapper will break

when a site changes or when it encounters a new site with a different structure.

2

1.2 Thesis Statement

In this thesis work we have employed the by-example approach to build a system

called OntoByE (Ontology By Example) that semi-automatically generates ontologies for

our conceptual-model-based data-extraction system. The OntoByE system is designed to

provide users with an intuitive interface through which a small number of data examples

are collected and subsequently used to construct an extraction ontology for general use in

the domain of user interest. Utilizing a set of forms, the OntoByE system interface first

helps users to define the data in which they are interested. Users are then guided through

a process during which they show OntoByE sample data of interest from a small number

of web pages, highlighting the desired data and filling in the forms. Finally, OntoByE

generates data-extraction ontologies based on user-defined forms and the information

gathered from sample pages. OntoByE does not use HTML tags or page-dependent

delimiters when generating its data-extraction ontology, thereby retaining the resilience

to induce the concepts in the domain of interest. We built our OntoByE system with

assistance of previous work done in the Data Extraction Group of Brigham Young

University. OntoByE provides a more efficient way to generate ontologies for our

conceptual-model-based data-extraction system and serves as a useful tool to facilitate

future ontology-based data-extraction research by the DEG group.

This thesis presents details specific to the development and design of the

OntoByE system. To keep this thesis self-contained, Chapter 2 briefly explains the

conceptual model used to specify the domain of interest for data extraction. Chapter 3

describes a system-wide overview of OntoByE. Chapter 4 demonstrates the usage of the

OntoByE system interface. Chapter 5 describes the back-end ontology generation

3

process. Chapter 6 describes our experience with brief field tests and subsequent

observations and analyses of the strengths and weaknesses of OntoByE. Finally,

Chapter 7 concludes the thesis, discusses OntoByE limitations, and explores possibilities

for future work.

4

2 Extraction Ontology

An extraction ontology is an instance of a conceptual model, or Object-oriented

System Model (OSM), for a narrow domain of interest. It consists of two components:

� An Object-Relationship Model (ORM) instance that describes sets of

objects sets of relationships among objects, and constraints over object

and relationship sets. We represent the conceptual model of our ontologies

as ORM diagrams as described in [Emb98].

� A data frame that defines the contents of each object set. A data frame for

an object set defines the lexical appearance of constant objects for the

object set and establishes appropriate keywords that are likely to appear in

a document when objects in the object set are recognized.

In ORM diagrams, object sets are depicted as boxes with interconnecting lines.

Figure 1 shows the ORM diagram of our ontology for a digital camera application, a

running example that will be used throughout the thesis. Each object set depicted in the

ORM diagram may be nonlexical, represented by a solid border, or lexical, represented

by a dashed border. Lexical objects are objects that are indistinguishable from their

representation. The object set Price is lexical because a price is indistinguishable from

its representation as a number. Nonlexical objects are those that must be represented by

identifiers. The object set Digital Camera is nonlexical because its instances are

identifiers, such as DC01, DC02 and so on. In an extraction ontology, there is one and

only one object set designated as the primary object set, the highest-level concept to be

5

extracted. The primary object set is denoted by an arrow followed by a dot (Æ•). In our

Digital Camera ontology diagram in Figure 1, Digital Camera is the primary object set.

Figure 1: An Ontology Diagram for the Digital Camera Application

Relationship sets, depicted by lines between the boxes in ORM diagrams, connect

the object sets in an extraction ontology. Each relationship set has a name and a reading-

direction. For example, the relationship between Digital Camera and Price reads, Digital

Camera has Price. Each relationship set is also labeled with a participation constraint

that indicates the number of times an object in the object set may participate in this

relationship set. The participation constraint consists of a minimum, and a maximum

number, each separated by colons. In our notation, a star represents an arbitrarily large

number. For example, the participation constraint 0:1 next to Digital Camera on the

6

relationship set between Digital Camera and Price indicates that a Digital Camera object

may be related to at most one Price. The participation constraint 1:* next to Price

indicates that a Price object may be related to one or more Digital Camera objects.

In addition to components found in an ORM diagram, an extraction ontology also

has a data frame for each object set. A data frame contains a list of value phrases and, in

some cases, a list of keyword phrases. A value phrase consists of a value expression

with encapsulating left and right context expressions. A value expression is an extraction

pattern, written as a regular expression, that describes the data content to be extracted. A

context expression describes the characters immediately adjacent to the beginning and

end of the data content of a value phrase. A keyword phrase consists of keyword

expressions which are typically meaningful indicators of the presence of a particular set

of values. Keywords occur near, but not necessarily immediately adjacent to, data to be

extracted. Figure 2 shows a sample data frame for an object set named Digital Zoom

from our Digital Camera ontology. The value phrase in the data frame Digital Zoom

matches a digit, optionally followed by a period and another digit, but only when

followed by an character “x”. The trailing “x” may be uppercase or lowercase and it can

be separated from the preceding number by a white-space character (e.g. space or tab).

Sometimes, the value phrase of a data frame matches with multiple value candidates for

an object, such as 4.1 and 3 in “4.1 x digital zoom” and “3 x optical zoom” for the digital

zoom of a digital camera. In such a case, the presence of the keywords from the data

frame, such as “Digital Zoom” or “digital zoom”, will help the data-extraction engine to

select the most appropriate candidate, such as 4.1 in this example.

7

Value Phrase
Value Expression: \d(\.\d)?

Left Context Expression:

Right Context Expression: (\s)?(x|X)

Keyword Phrase

Keyword Expression: Digital\sZoom|digital\szoom

Figure 2: A Data Frame for the Object Set Digital Zoom

Given a data-extraction ontology, such as a Digital Camera ontology, we can

apply it to text such as the digital camera advertisement in Figure 3. In Figure 3, the

highlighted text (4.1) is recognized by the data frame Digital Zoom in the extraction

ontology. Given the recognized text, we can use the ontology, its constraints and implied

relationships, to extract the information and populate the ontology with corresponding

instance data.

Figure 3: A Partial Sample Digital Camera Advertisement

Our general approach to information extraction consists of the following steps.

1. We develop the data-extraction ontology over the area of interest.

2. We parse this ontology to generate a database schema and to generate

rules for matching constants and keywords.

3. Given an applicable web page with multiple records (like classified ads),

we invoke a record extractor that separates an unstructured web document into

8

individual record-size chunks, removes markup-language tags, and presents

them as individual unstructured record documents for further processing.

4. We invoke recognizers that employ matching rules obtained from the data

frames to identify potential constant data values and their keywords and

keyword expressions in the cleaned records.

5. Finally, we populate the generated database by using heuristics to

determine which constants populate which records in the database. These

heuristics correlate extracted keywords with extracted constants and use

cardinality constraints in the ontology to determine how to construct records

and insert them into the database. Once the data is extracted, we can issue

queries using a standard database query language. To make our approach

general, we fix the ontology parser, web record extractor, keyword and

constant recognizer, and database record generator; we change only the

ontology as we move from one application domain to another.

9

10

3 OntoByE System Architecture

The OntoByE system consists of three major components:

� A graphical user interface (GUI)

� A data frame library

� A back-end data-extraction ontology generator

Figure 4 illustrates the OntoByE system architecture. Subsequent sections

describe the function of each component in detail.

Sample Pages Data Frame Library

Ontology
Generator

FormsMarked Pages

1 User Interface

Populated D Extraction Engine Target Pagesatabase

Figure 4: OntoByE System Architecture

11

3.1 User Interface

OntoByE presents a graphical user interface that helps users describe the data in

which they are interested and provide sample data values from sample HTML pages. A

form editor assists users in creating application-dependent forms that allow them to

describe the data in which they are interested. Users then specify, or mark, the desired

data values by filling in user-defined forms with values from sample HTML pages.

Finally, the interface allows users to save both forms and marked HTML training pages

for further processing.

As shown in Figure 5, the GUI is embedded in a web browser and consists of two

panes. The left pane of the GUI allows a user to display a sample HTML page through

the web browser. The right pane contains a form editor Java applet running within the

browser. The form editor helps users define application-dependent forms. In typical

operation, a user would define a form in the right pane and upload a sample page in the

left pane. The user then selects the desired data on the sample page and fills in the forms

on the right. Simultaneously, values selected on the sample page are marked with special

tags indicating the labels as specified in the form. Finally, users can save their forms and

marked HTML pages in designated directories on their local machine for future

modifications and further ontology generation. Chapter 4 describes the usage of the

interface in detail.

12

Figure 5: OntoByE System User Interface

3.2 Data Frame Library

A data frame library is a collection of prior knowledge in the form of data frames

for data values to be extracted. To do ontology-based web data-extraction, experts need

to construct an initial set of data frames to accommodate some common types of data

(e.g. number, date, phone number, and price), which apply across different data-

extraction applications. In the process of ontology generation by OntoByE, the system

takes advantage of the prior knowledge in the library by searching for appropriate data

frames for user-marked data on the sample pages. Users then interact with OntoByE to

select existing data frames or to construct new data frames for their applications. The

new data frames could be used to expand the library for other data-extraction applications

in the future. As times goes by, the library will grow more comprehensive and the need

for expert involvement and user interaction with the library will be diminished.

13

3.3 Ontology Generator

As described in Chapter 2, a data-extraction ontology consists of two major

components: (1) object and relationship sets together with related constraints, and (2)

data frames for the object sets. The OntoByE’s ontology-generator component performs

the back-end generation of a compliant data-extraction ontology using the user defined

forms and marked HTML pages from the GUI as inputs with the assistance of the data

frame library. The ontology generator consists of the following sub-components:

� The Form Analyzer constructs object and relationship sets, along with

their constraints, based on the user-defined forms.

� The Context Phrase Locator extracts a list of context phrases within

marked data for each object set from the marked HTML pages and passes

context phrases to the Data Frame Matcher.

� The Data Frame Matcher matches the list of context phrases against all

data frames from the data frame library to find all matching data frames

for each object set, and ranks the matching data frames for each object set

based on some heuristics.

� The Keyword and Context Expression Recognizer scans the list of context

phrases to recognize possible keywords and context expressions for user-

marked data.

� The Data Frame Editor presents a ranked list of matching data frames,

along with recognized keywords and context expressions, for the user’s

14

examination. The user selects an appropriate existing data frame, if any,

from the ranked list of matching data frames returned by the Data Frame

Matcher, or creates a new data frame for the domain of their interest with

the assistance of those matching data frames in the library and keywords

and context expressions constructed by the Keyword and Context

Expression Recognizer.

The workflow of these sub-components of the ontology generator is shown in

Figure 6. After the user selects or constructs a data frame for each object set, OntoByE

combines the object and relationship sets and constraints constructed from the forms to

generate a data-extraction ontology for the domain of interest.

1.1.

Form AnalyzerUser-defined
Forms

Keyword and Context

Ontology Generator

Extraction Ontology
Figure 6: The Workflow of Ontology Generator

15

16

4 User Interface

OntoByE provides a GUI, shown in Figure 5 of Chapter 3, through which web

users can define forms, provide sample HTML pages, fill in the forms with desired data

and mark the data with special tags on the training pages for future processing. The

following sections describe the form creation and the marked HTML page preparation in

detail.

4.1 Creating Forms

The form editor is a Java applet tool that provides users with an intuitive method

for defining forms. First of all, it allows users to give forms meaningful titles. Then, it

provides five basic patterns, or building blocks, through a toolbar with which users can

construct form elements. After users title a form, they can add to the current form any

number of elements by clicking on patterns or icons in the toolbar. Although users can

define one and only one base form for each application, they can recursively construct

nested forms inside elements of the base form. The nested forms allow users to describe

their interests in more structured and meaningful ways and are defined in separate panels

in the same way as users define the base form. The following sections show how to use

the form editor to create form elements and nested forms, and then demonstrate a set of

forms for a Digital Camera application.

4.1.1 Form Titles

To create a base form, a user needs to give the form a meaningful title for a real

application of interest, such as Digital Camera, Car, Book and so on. The default title

that the editor provides is BaseForm. Users can specify the form title when creating a

17

form, or can change the title of an existing form at any time by clicking on the title in the

form and typing another name.

4.1.2 Form Editor Toolbar

The form editor presents a tool bar, shown in Figure 7, to help users create, edit

and save forms. The usage of toolbar icons are summarized as follows: The first three

icons are a set of icons for New, Open and Save operations on form files.

The next five icons create form elements in five pre-defined basic

patterns. The next icon creates nested forms inside form elements. The next icon

 deletes elements from forms. The following icons are for filling in or

deleting from forms the selected data values from sample HTML pages (See Section 4.2).

Finally, the last icon invokes the ontology generation process (See Chapter

5).

Figure 7: Form Editor Toolbar

4.1.3 Creating Basic Form Elements

After users specify form titles, they use the icons on the

toolbar to add form elements in five basic patterns, pattern A through E from left to right

respectively. Each form element may contain one or more columns, each column having

a label and one or more value fields. Users select the pattern that best describes the data

of their interest and label the columns with meaningful names.

18

Toolbar icons for patterns A, B and C will allow users to construct a form element

which represents a single column with one value field, a limited number of value fields or

an unlimited number of value fields respectively. Patterns D or E will help users generate

a form element which represents a group of columns with a limited number of value

fields or an unlimited number of value fields respectively.

4.1.3.1 Creating Form Elements in Pattern A

For the form elements in pattern A, the number of columns and the number of

value fields are both pre-set to 1. To add an element from pattern A to a form, users

specify the label of the column in an input dialog as shown in Figure 8(a).

Figure 8(a): Input Dialog for Creating Form Elements in Pattern A

 The form editor adds an element consisting of a single column and a

single value field with the column label provided in the input dialog. Figure 8(b) shows

an element generated from pattern A based on the information from the input dialog in

Figure 8(a).

Figure 8(b): A Sample Form Element Created in Pattern A

19

4.1.3.2 Creating Form Elements in Pattern B

For the form elements in pattern B, the number of columns is pre-set to 1. Users

specify the label of the column, such as B, and the number of value fields in the column,

such as 3, in input dialogs as shown in Figure 9(a).

Figure 9(a): Input Dialogs for Creating Form Elements in Pattern B

The form editor adds an element consisting of a single column and a limited

number of value fields with the column label provided in the input dialogs. Figure 9(b)

shows an element generated from pattern B based on the information from the input

dialogs in Figure 9(a).

Figure 9(b): A Sample Form Element Created in Pattern B

4.1.3.3 Creating Form Elements in Pattern C

For the form elements in pattern C, the number of columns is pre-set to 1 and the

number of value fields is pre-set to unlimited. Users specify the label of the column, such

as C, through an input dialog shown in Figure 10(a).

20

Figure 10(a): Input Dialog for Creating Form Elements in Pattern C

The form editor adds an element consisting of a single column and a text area

with the column label provided in the input dialogs. The form editor uses the text area to

represent an unlimited number of value fields. Figure 10(b) shows an element generated

from pattern C based on the information from the input dialog in Figure 10(a).

Figure 10(b): A Sample Form Element Created in Pattern C

4.1.3.4 Creating Form Elements in Pattern D

For form elements in pattern D, through the input dialogs depicted in Figure

11(a), users specify the number of columns, the number of values fields, and a label for

each column.

Figure 11(a): Input Dialogs for Creating Form Elements in Pattern D

21

 The form editor adds an element consisting of multiple columns and

multiple value fields with the labels provided in the input dialogs. Figure 11(b) shows an

element generated using pattern D based on the information from the input dialogs in

Figure 11(a).

Figure 11(b): A Sample Form Element created in Pattern D

4.1.3.5 Creating Form Elements in Pattern E

For the form elements in pattern E, the number of value fields is pre-set to

unlimited. Through the input dialogs depicted in Figure 12(a), users specify the number

of columns, and the label for each column.

Figure 12(a): Dialogs for Creating Form Elements in Pattern E

The form editor adds an element consisting of multiple columns and multiple text

areas with the labels provided in the input dialogs. The form editor uses a text area to

represent an unlimited number of value fields. Figure 12(b) shows an element generated

using pattern E based on the information from the input dialogs in Figure 12(a).

22

Figure 12(b): A Sample Form Element Created in Pattern E

Figure 13 shows a final sample form titled “Base Form” with the form elements

created in Figures 8-12.

Figure 13: A Sample Base Form with Elements of Five Basic Patterns

A previously added element can be removed from a form by selecting the

undesired element and clicking on the toolbar. The element will be deleted only

after user confirmation of a deletion warning dialog.

23

4.1.4 Nesting Forms

After adding elements to the base form, users can further nest forms inside the

elements if they intend to specify information for the elements. To nest a form inside a

form element, users select a column in the element and click the nesting form icon in

the toolbar. The form editor will create a nested form for the selected column and title

the nested form with the label of the selected column. To specify the information

contained in the nested forms, users add form elements in the same way as they do to the

base form. Furthermore, users can recursively nest forms inside the elements of other

forms. Each column in the form elements may contain either text fields for data values or

a nested form, but not both. Figure 14 illustrates the nested forms defined inside

elements from patterns A, B and C.

In the form editor window, the nested forms are defined on separated panels in the

same manner as the base form is defined. The editor provides two methods, shown in

Figure 15, to help users navigate through forms or panels: 1) a tree pane on the left of the

editor window which describes the hierarchy of forms and 2) a tabbed pane at the bottom

of the editor window which shows form titles.

24

Figure 14: Nested Forms in the Base Form

Figure 15: Navigating Nested Forms

4.1.5 Sample Application Dependent Forms

This section presents a set of forms created for a real application “Digital

Camera”. Shown in Figure 16, the base form, titled Digital Camera, has nine elements:

Brand, Model, CCD Resolution, Image Resolution, Zooms, Weight, Dimensions, Price

25

and LCD Size. Among these elements, Zooms and Dimensions contain nested forms

shown in Figure 16. Within the nested forms, Zooms contains the elements Optical Zoom

and Digital Zoom, shown in Figure 17(a), while Dimensions contains Width, Depth and

Height, shown in Figure 17(b).

Figure 16: Application-Dependent Forms for the Digital Camera Application

26

Figure 17(a): Nested Form Zooms in the Base Form Digital Camera

Figure 17(b): Nested Form Dimensions in the Base Form Digital Camera

4.2 Preparing Sample HTML Documents

After users define application-dependent forms to describe the data of their

interest, such as the Digital Camera forms in Figures 16-17, they can load a pre-collected

sample HTML page in the left pane of the interface to fill in forms with sample data

values on the page. To fill in data from the sample page on the left to a value field in a

form on the right, users highlight the desired text value on the HTML document using the

mouse, click the destination value field in the form and click to fill in the field with

the selected text value from the HTML page. During the fill-in, the sample data on the

27

HTML page is marked with a highlighted background for later recognition by users, and

the text data in the HTML content is tagged with the column label from the form. To

delete a selected value from a value field, users click on the value field in the form and

then click . When the value is deleted from the form, the corresponding text value is

de-marked and de-tagged on the HTML page. Figure 18 shows a sample marked HTML

page with the filled-in forms for Digital Camera application.

Figure 18: Training Web Document Preparation

After marking the sample data on one HTML page, users save the marked page to

a directory and repeat the operation for each pre-collected sample page. Users may edit

existing forms and previously marked HTML pages through the user interface. When

users open an existing form and load a previously marked sample page, the previously

marked values on the sample page will automatically fill the forms for easy recognition

28

and further editing. After users finish creating forms and marking desired data on sample

pages, the forms, along with all marked HTML pages, will serve as training information

to the OntoByE system for further ontology-generation purposes.

29

30

5 Data-Extraction Ontology Generation

The back-end ontology generator in OntoByE takes the user-defined forms and

marked HTML pages as inputs and generates data-extraction ontologies with the

assistance from the pre-existing data frame library.

The OntoByE back-end ontology generator is invoked via the ontology generation

icon on the form editor toolbar as in Figure 7 of Chapter 4. Upon initial invocation for a

new application, OntoByE launches an ontology generator configuration wizard, as

depicted in Figure 19, which prompts the user to specify the directory in which the

marked HTML pages reside, along with the Data Frame Library URL.

Figure 19: The Configuration Window for the Ontology Generator

The file path and URL are saved and associated with the application for

subsequent operations. Both attributes may be changed by manually completing the

same configuration wizard. The following sections will describe how OntoByE generates

data-extraction ontologies based on the user-defined forms and the marked HTML

sample pages.

5.1 Constructing Object and Relationship Sets and Constraints

The form analyzer of the ontology generator constructs object and relationship

sets and constraints for a data-extraction ontology after users define the application-

31

dependent forms. Since each form and each column defined in the form represents a

concept or an object set in the data-extraction ontology, the analyzer constructs the names

of object sets from user-specified form titles and column labels.

After supplying a title to the base form of an application, the analyzer constructs a

primary object set, named after the base form title. As elements are added to the forms,

the analyzer constructs object set names for form elements by taking user-specified

column labels. The analyzer constructs relationships between the form element object

sets and the form title object set, and adds participation constraints over these object sets

and their relationships. The following example shows how our system constructs object

and relationship sets and constraints for a base form BaseForm. Using the sample forms

from Figure 13 in Chapter 4, Figure 20 demonstrates the method by which OntoByE

constructs the object and relationship sets and constraints.

BaseForm [0:1] A [1:*]

BaseForm [0:3] B [1:*]

BaseForm [0:*] C [1:*]

BaseForm [0:3] D1 [1:*] D2 [1:*] D3 [1:*]

BaseForm [0:*] E1 [1:*] E2 [1:*] E3 [1:*]

Figure 20: Object and Relationship Sets and Constraints for the Base Form

In Figure 20, A, B, C, D1, D2, D3, E1, E2 and E3 are column labels for patterns

A, B, C, D and E respectively. The analyzer generates binary relationship sets for the

elements of single-column patterns A, B and C and n-ary relationship sets for elements of

multiple-column patterns D and E. For the object set BaseForm representing the current

form, the minimum participation constraint is 0 by default and the maximum constraint is

32

1, 3 (a user-supplied value) or * (an unlimited number). The participation constraints on

the object sets in form elements are always set to [1:*].

As described in section 4.1.4, each column in a form element contains either a

nested form or data value fields. The columns associated with nested forms represent

non-lexical object sets, while the columns containing data value fields represent lexical

objects sets. Accordingly, the analyzer constructs non-lexical object sets for columns

with nested forms and lexical object sets for columns containing data value fields. For

example, if a user defines nested forms as shown in Figure 14, the analyzer constructs

object and relationship sets and constraints, shown in Figure 21, where BaseForm is the

primary object set, A, B and C are non-lexical object sets and A1, A2, B1, C1 and C2 are

lexical object sets. The analyzer constructs participation constraints for non-lexical

object sets in the same way as lexical object sets.

BaseForm [0:1] A [1:*]

BaseForm [0:3] B [1:*]

BaseForm [0:*] C [1:*]

A [0:1] A1 [1:*]

A [0:2] A2 [1:*]

B [0:*] B1 [1:*]

C [0:2] C1 [1:*] C2 [1:*]

Figure 21: Object and Relationship Sets and Constraints for Nested Forms in the Base Form

Detailed in Figure 22 are the object and relationship sets and contraints that the

form analyzer constructed for the Digital Camera application from Figures 16 and 17 in

Chapter 4.

33

Digital Camera [0:1] Brand [1:*]

Digital Camera [0:1] Model [1:*]

Digital Camera [0:1] CCD Resolution [1:*]

Digital Camera [0:3] Image Resolution [1:*]

Digital Camera [0:1] Zooms [1:*]

Digital Camera [0:1] Weight [1:*]

Digital Camera [0:1] Dimensions [1:*]

Digital Camera [0:1] Price [1:*]

Digital Camera [0:1] LCD Size [1:*]

Zooms [0:1] Optical Zoom [1:*]

Zooms [0:1] Digital Zoom [1:*]

Dimensions [0:1] Width [1:*]

Dimensions [0:1] Depth [1:*]

Dimensions [0:1] Height [1:*]

Figure 22: Object and Relationship Sets and Constraints from the Digital Camera Application Forms

5.2 Constructing Data Frames for Object Sets

The back-end ontology generator in OntoByE consists of four components.

� The Context Phrase Locator extracts context phrases for user marked data

from sample pages

� The Data Frame Matcher searches for matching data frames from the data

frame library for user marked data,

� The Keyword and Context Expression Recognizer identifies possible

keyword and context expressions for user-marked data from the context

phrases.

34

� The Data Frame Editor presents the matching data frames, along with

recognized keywords and context expressions from context phrases, if

any, and allows user to select, edit or create data frames for object sets.

The following sections describe how each component of the ontology generator

contributes to data-extraction ontology generation.

5.2.1 Context Phrase Locator

A context phrase of the user-desired data consists of user-marked data values and

their surrounding characters from sample HTML pages. The context phrase may contain

keyword and context expressions from the marked data that help to better describe the

desired data and distinguish the desired data from other data with the same value

expressions. The context phrase locator is designed for extracting context phrases for

user-marked data from sample pages. The context phrases will be used to search data

frames from the data frame library and to facilitate the recognition of context and

keyword expressions in forthcoming ontology generation processes.

The context phrase locator takes a list of object set names from the user-defined

forms and scans each sample HTML page in a user-specified directory. For each object

set on each page, the locator identifies the marked object values and a certain number, or

a padding length, of adjacent text characters attached to the beginning and the end of the

marked data. The locator uses the marked data and adjacent characters to construct a

context phrase for the object set. In some instances, two marked data may be so close

together in the text content of sample pages that one marked value may appear in the

context phrase of the other. In such a case, the locator will truncate the related context

phrase from the beginning or the end to ensure that the context phrase of one marked data

35

will not contain the other marked data. The truncation improves the accuracy of locating

meaningful context phrases for the marked data. Figure 23 demonstrates the marked data

for the object set Digital Zoom on three HTML sample pages along with their context

phrases as extracted by the context phrase locator in our Digital Camera application. In

this example, the context phrase locator padding length is set to 40. As observed in

Figure 23, the context phrases for the marked values 4 and 3.2 in sample 2 and sample 3

have been truncated to exclude other marked values from the same pages.

Context Phrase 1:
400, ISO 200, ISO 50 Digital Zoom - 4.1 x Shooting Modes - Frame movie mode

Context Phrase 2:
x Digital Zoom - 4 x Camera Flash - Pop-up flash Red Eye R

Context Phrase 3:
3.2X digital zoom PictBridge compatibl

Figure 23: User-marked Data and Their Context Phrases for the Object Set Digital Zoom in the
Digital Camera Application

When a context phrase is extracted for marked data, the locator saves the start and

end positions of the marked value in the context phrase for future data frame matching.

36

After scanning each sample page, the locator constructs a list of context phrases for each

object set.

5.2.2 Data Frame Matcher

The data frame matcher leverages prior knowledge in the data frame library by

searching for appropriate existing data frames that can recognize the user-marked data for

new domains of interest.

To search for appropriate data frames for each object set, the matcher applies each

data frame in the library to the user-marked data in the context phrases of the object set

constructed from different sample pages by the context phrase locator. If a data frame

recognizes one or more user-marked data for the object set, the matcher records the data

frame as a data frame candidate for the object set. The matcher constructs and returns for

users’ examination a list of data frame candidates for each object set based on the search

results. The list of candidates is ranked for each object set to indicate the degree to which

the data frame candidates matched the user-marked data.

For each object set, the matcher ranks the data frame candidates using the

following heuristic method:

� Candidates are initially ranked by the number of user-marked data that are

recognized by the data frame. The more user-marked data recognized, the

higher the possibility that the data frame is a better candidate.

� If two data frames recognize the same number of user-marked data, the

matcher executes a secondary search for their keywords and context

expressions, if any, for the user-marked data from their context phrases. If

37

one data frame recognizes its keywords and/or context expressions for the

user-marked data from their context phrases while the other data frame

does not, the matcher ranks the former data frame higher than the latter,

since keywords and context usually indicate the presence of user desired

data. For example, in the Digital Camera application, both data frames

Price and RealNumber match all user-marked price values from different

sample pages. But Price also recognizes its keyword, (price|Price), and

its context expression, $(\s)?, in the context phrases of user-marked prices,

while RealNumber does not. Therefore, the matcher ranks Price higher

than RealNumber in the data frame candidate list for the object set Price.

� If two data frames recognize the same number of user-marked data but

neither keywords nor context expressions, the matcher ranks the more

specific data frame higher than the more general one. We define one data

frame as being more specific than the other if the data instances

recognized by one data frame are a subset of those recognized by the

other. For example, in the Digital Camera application, both data frames

Integer (0, positive and negative of any number) and SingleDigit (from 0

to 9) recognize all user-marked Optical Zoom values and neither of the

data frames have keyword or context expressions. Since the data instances

for SingleDigit are a subset of those for Integer, the matcher ranks

SingleDigit higher than Integer in the candidate list.

The matcher displays the ranked list of data frame candidates for each object set

through the selection window shown in Figure 24. Each object set has the names of its

38

data frame candidates contained in a drop-down list. For each object set, users can

browse data frame expressions for all candidates through a data frame editor (refer to

section 5.2.4) by clicking on the “View” button next to the drop-down list.

Figure 24: Matching Data Frames for the Digital Camera Application

5.2.3 Keyword and Context Expression Recognizer

The keyword and context expression recognizer is designed to identify the

possible keyword and context expressions for user-marked data from sample pages. The

identified keywords and context expressions can help users to construct new data frames

or expand the existing data frames for object sets in data-extraction ontologies for the

domains of interest. As described in Chapter 2, the context expressions are the characters

39

immediately adjacent to the beginning or the end of the user desired data, while the

keywords are common strings that appear near, but not always immediately adjacent to,

the data of interest.

5.2.3.1 Constructing Context Expressions

A context expression may consist of a left context expression and a right context

expression. To construct the left and right context expressions, we define, for each

context phrase from sample pages, the left context phrase as the characters from the

beginning of the context phrase to the character immediately adjacent to the left of the

user-marked data and the right context phrase as characters from the character

immediately adjacent to the right of the user-marked data to the end of the context phrase.

To identify the left context expression for user-marked data, the recognizer scans

the list of left context phrases character by character from right to left in a case-

insensitive manner. The recognizer maintains an index pointer for each context phrase.

At the beginning, the indexes are pointed to the right end of left context phrases. Then,

the recognizer compares the characters at the index positions of all context phrases. If the

characters at the index positions of all context phrases are case-insensitively identical, the

recognizer will record the character into the left context expression of the marked data.

If the character appears in both upper and lower case across the context phrases, the

recognizer will record both upper and lower case in a logical OR regular expression

relation, such as (x|X). If the common character is whitespace, the recognizer will record

\s in the context expression. If, at the comparison, the whitespace appears at the index

positions for some, but not all, context phrases, the recognizer will move the index

pointers from the whitespaces to the next characters in those context phrases and record

40

(\s)? in the context expression, thereby indicating the whitespace was skipped during

comparison. The comparison and recording will continue all the way through the left

context phrases from the right to the left until the non-whitespace characters from all

context phrases at the index positions are not case-insensitively identical or the characters

in any left context phrase have been exhausted. The recognizer will return what it

identifies, if not only white-spaces, as the left context expression for user-marked data.

The recognizer constructs the right context expressions in a similar fashion, the only

difference being that scanning goes from left to right in the right context phrases.

Figure 25 shows an example of context phrases (shown previsouly in Figure 23)

for the object set Digital Zoom from sample pages and the left and right context

expressions constructed from these context phrases for user-marked values (4.1, 4 and

3.2). Note that the recognizer identifies nothing in common before the marked data and

an optional white space, (\s)?, followed by a case-insensitive character x, (x|X), after the

marked data. Thus, the recognizer leaves the left context expression empty while it

constructs the right context expression as (\s)?(x|X).

Context Phrase 1:
400, ISO 200, ISO 50 Digital Zoom - 4.1 x Shooting Modes - Frame movie mode

Context Phrase 2:
x Digital Zoom - 4 x Camera Flash - Pop-up flash Red Eye R

Context Phrase 3:
3.2X digital zoom PictBridge compatibl

Left Context Expression:
Right Context Expression: (\s)?(x|X)
 Keywords: Digital\sZoom|digital\szoom

Figure 25: Recognizing Keywords and Context Expressions for the Object Set Digital Zoom from Its
Context Phrases

41

5.2.3.2 Constructing Keywords

Keywords or keyword expressions for the user-marked data are defined as

common strings in context phrases that are neither left nor right context expressions.

They indicate the presence of the desired data during the ontology-based data-extraction.

To identify the keywords, the recognizer tokenizes the left and the right context

phrases for the marked data with common delimiters, such as colon, semi-colon, white

space, comma and so on. The recognizer compares the tokenized strings in a case-

insensitive manner and records distinguished strings, along with the number of times they

appear in the context phrases. If a common string appears more than once in the same

context phrase, such as the string flash in context phrase 2 shown in Figure 25, the

recognizer will count its appearance only once for that context phrase. For common

strings that appear in more than one context phrase, the recognizer eliminates the

common stop-words (such as a, an, the and so on), single letters (such as a, b …, x, y, z)

and common symbols (such as hyphen ‘-’) and saves the remaining common strings as

keyword candidates. The recognizer scans the list of keyword candidates to identify the

longest possible common strings that the keywords form in the context phrases. For

example, shown in Figure 25, though the recognizer identifies both Digital and Zoom as

individual keyword candidates from the context phrases, Digital Zoom is a longer

common string from the context phrases that subsumes them. In such a case, the

recognizer adds the longest possible common string formed by the individual candidates

as a new candidate, such as Digital Zoom, to the list while all subsumed individual

candidates, such as Digital and Zoom, will be discarded. Finally, if a keyword candidate

appears case-sensitively, such as Digital Zoom and digital zoom, the recognizer will

42

record the candidate through a logical OR relation in the keyword expression, such as

(Digital\sZoom|digital\szoom), where the white space is recorded as \s in the expression.

After constructing context and keyword expressions, the recognizer presents the

expressions, if any, in regular expressions in a data frame editor.

5.2.4 Data Frame Editor

The data frame editor was originally designed by the BYU DEG group as a tool

for presenting and editing existing data frames. For this thesis, the original data frame

editor has been expanded to show not only the existing data frames that match user-

marked data, but also the keywords and context expressions recognized from the context

phrases on the sample pages. In addition, the expanded editor allows users to construct

new data frames based on both existing data frames and the recognized keywords and

context expressions. Figure 26 (a) illustrates the newly expanded data frame editor,

containing the original “Data Frames” panel, an expanded “Suggested Keyword and

Context Expressions” panel and a set of data frame editing operation buttons such as

“New DataFrame” and “Save Changes”.

43

Figure 26(a): Constructing Value Expressions and Context Expressions for a New Data Frame

Digital Zoom

The “Data Frames” panel displays matching data frames identified from the data

frame library by the data frame matcher. For example, in Figure 26 (a), the “Data

Frames” panel displays the matching data frames RealNumber and SmallPositiveReal for

the object set Digital Zoom. The “Suggested Keyword and Context Expressions” panel

displays any keywords and left and right context expressions recognized by the keyword

and context expression recognizer. As illustrated in Figure 26 (a), the “Suggested

Keyword and Context Expressions” panel displays the right context expression (\s)?(x|X)

and keywords Digital\sZoom|digital\szoom for the object set Digital Zoom.

As described in Section 5.2.2, the data frame matcher ranks the matching data

frames for an object set in some heuristics. Through the data frame editor, if any

matching data frames exist and the highest-ranked data frame does not contain its own

keyword and context expressions, OntoByE automatically constructs a new data frame

named after the object set by copying the value phrases from the highest-ranked data

44

frame and populating the new data frame with the recognized keywords and context

expressions.

Shown in Figures 26(a) and 26(b) together, OntoByE has constructed the new

data frame Digital Zoom for the object set Digital Zoom in the Digital Camera

application. This new data frame contains the value expression \b([0-9]|[1-9][0-

9])(\.\d{1,2})?\b as copied from the existing data frame SmallPositiveReal, and the

keyword Digital\sZoom|digital\szoom and the right context expression (\s)?(x|X)

populated from those recognized in the context phrases.

Figure 26(b): Constructing Keywords for a New Data Frame Digital Zoom

OntoByE allows users to further modify the new data frame manually based on

their knowledge of regular expressions. In the event that the highest-ranked matching

data frame has its own keyword and context expressions, OntoByE does not

automatically construct a new data frame, but leaves it to the users’ discretion to either

expand the existing data frame with the recognized keywords and context expressions, or

45

construct a new data frame manually by clicking on the data frame editor “New

DataFrame” button. For example, in the sample Digital Camera application, the data

frame matcher matches the existing data frame Price with user-marked data for the object

set Price and the data frame Price has its own keywords and context expressions.

Therefore, users may decide to expand the data frame Price with the recognized

keywords and context expressions, if the expressions are different from those in the data

frame. If there are no matching data frames in the library for an object set, OntoByE

constructs a new data frame, named after the object set, with an empty value phrase and

any recognized keywords and context expressions. Users are then required to write

regular expressions on their own to describe the marked-data.

After users expand an existing data frame or construct a new data frame for an

object set and save the changes through the data frame editor, OntoByE will save the data

frame as the user-selected data frame for the corresponding object set in the data frame

matcher window as shown in Figure 24. Users then invoke a new data frame editor and

repeat the same data frame editing process for each object set. After users finish editing

data frames for all object sets, they click the “Save Selected DataFrame” button in the

wizard shown in Figure 24 to resume the ontology generation process.

5.3 Generating Data-Extraction Ontologies

As described in the system overview in Chapter 2, OntoByE generates data-

extraction ontologies for the domains of interest after users create application-dependent

forms, collect HTML sample pages, mark the data of interest from the sample pages, and

edit data frames for object sets by interacting with the back-end ontology generator in

OntoByE.

46

In the running Digital Camera sample application, users created Digital Camera

forms (shown in Figure 16, 17(a) and 17(b) of Chapter 4), and collected and marked

HTML sample pages (illustrated in Figure 18 of Chapter 4). Then, OntoByE constructed

Object and Relationship Sets and Constraints (shown in Figure 22 of Section 5.1) from

the user-defined forms and constructed Data Frames with user-interaction for object sets

(illustrated in Figure 26(a) and 26(b) of Section 5.2) based on the sample pages and the

exisiting data frame library. Finally, OntoByE combines Object and Relationship Sets

and Constraints and Data Frames for object sets to output a data-extraction ontology for

the Digital Camera application.

Figure 27 shows a partial data-extraction ontology generated by OntoByE for the

sample Digital Camera application based on the examples depicted in previous sections

The partial ontology contains object sets (such as a primary object set Digital Camera, a

non-lexical object set Zooms and a lexical object set Digital Zoom), their relationships

and constraints, and the data frame constructed for the lexical object set Digital Zoom.

47

Figure 27: The Partial Data-Extraction Ontology for the Digital Camera Application

48

6 Experimental Observations and Analyses

For the purposes of this thesis, we tested the OntoByE system on two field

applications: digital camera advertisements and apartment rental advertisements. The

system, however, is not limited to the two applications on which we experimented. It

will work with other applications with the assistance of an initial data frame library

containing some common data frames and a small set of user-collected sample HTML

pages from the domains of interest. In this chapter we describe our experimental

structure and report our observations. We also discuss the strengths and weaknesses of

the OntoByE system.

6.1 Preparation

The prerequisites for generating a data-extraction ontology through OntoByE

include the following (see Chapter 3):

� Experts construct an initial data frame library, which contains some

common data frames.

� Users create forms to describe the data of interest in the domain.

� Users collect and mark a small set of sample HTML pages from the

domain.

For our field tests, we began by constructing a small initial data frame library with

common data frames that could be applied across different applications. The library in

our experiments contained the following common data frames: Integer (any integer

49

value), SmallPositiveInteger (from 1 to 99), SingleDigit (from 0 to 9), RealNumber (any

real value), SmallPositiveReal (from 0.01 to 99.99), Date, Email, PhoneNumber, and

Price.

Then for each application we created forms to assist in describing the data of

interest within the application domain. After creating the forms, we collected a small set

of sample pages from different web sites and marked data of interest on the sample pages

by filling them into the forms. The Digital Camera application forms and sample marked

HTML pages have been illustrated throughout previous chapters. For the Apartment

Rental application, by comparison, we used a set of information described in a previous

ontology that was hand-written by a member of our Data Extraction Research Group for

this domain. Using this information, we created a base form titled Apartment Rental, as

shown in Figure 28. The form contains 12 elements: Apt Type, Bedroom Number,

Bathroom Number, Gender Requirement, Date Available, Monthly Rate, Deposit,

Features, Contact Phone, Contact Person, Furnished Condition and Utility, where all

elements contain a single-value field except Features, which contains an unlimited-value

field. We collected and marked the desired data values on a few HTML pages containing

apartment rental advertisements. Figure 29 shows a marked sample page for the

Apartment Rental application.

50

Figure 28: Forms for the Apartment Rental Application

Figure 29: A Sample Marked HTML Page for the Apartment Rental Application

51

6.2 Results and Observations

In the following sections, we observe the ontology-generation process in

OntoByE and analyze the experimental results for both the Digital Camera and

Apartment Rental applications.

A data-extraction ontology consists of two major components (see Chapter 2): (1)

object and relationship sets together with related constraints, and (2) data frames for

object sets. OntoByE constructs object sets, relationship sets, and associated constraints

by translating user-defined forms to corresponding pre-defined sets and constraints, as

described in Section 5.1. The translation is consistent and straightforward. Therefore, in

the analyses of onotology generation by OntoByE, the most challenging part is to

evaluate the performance of the construction of data frames for object sets. Since

OntoByE interacts with users to construct data frames with the assistance of both prior

knowledge and user-marked sample pages, the evaluation of OntoByE performance is

inevitably affected by the following variables:

1. The number and the representativeness of user-collected sample HTML

pages for a specific domain,

2. The quality and the scope of prior knowledge, such as lexicons and regular

expressions, from the intial data frame library, and

3. The user’s knowledge of writing regular rexpressions and their common

knowledge about the domain.

The evaluation of these variables is subjective. We therefore make observations

of the experimental results of OntoByE only with respect to the initial data frame library

52

we have chosen and the sample pages we found for the two applications. Based on these

observations, we discuss the major strengths and limitations of OntoByE in generating

data-extraction ontologies.

6.2.1 Digital Camera Advertisement

For the Digital Camera application, OntoByE constructs object and relationship

sets and constraints as shown in Figure 22 of Section 5.1.

Experimental results for the Digital Camera application show that OntoByE

works well when searching for the most appropriate existing data frames for object sets

with numeric values based on limited prior knowledge (i.e. a small initial data frame

library). In Table 1, OntoByE matches the most appropriate existing data frames for 9

object sets (CCD Resolution, Optical Zoom, Digital Zoom, Width, Depth, Height, Price

and LCD Size) from a total possible 12 object sets. Data frame matches include such

examples as SmallPositiveReal for CCD Resolution and SingleDigit for Optical Zoom.

OntoByE, however, did not find appropriate data frames for the three object sets

Brand, Model, and Image Resolution. This failure was expected, since both Brand and

Model rely on application-dependent lexicons, while Image Resolution requires regular

expressions that were not in the intial library. To construct the data frames for these three

object sets in the digital camera ontology, users would need to collect lexicons for Brand

(such as “Nikon”, “Canon”, or “Kodak”) and Model (such as “PowerShot A50” or

“Coolpix 5700”), and also write their own regular expressions for Image Resolution (such

as \d{3,4}(\s)?(x|X)(\s)?\d{3,4}). Although sometimes it is possible to generate regular

expressions for user-marked sample data, the topic is beyond the scope of this thesis.

53

Object Set Matching
Data Frame

Left Context
Expression

Right Context
Expression Keywords

Brand * - - -

Model * - - -

CCD
Resolution SmallPositiveReal - \s(Megapixel

|MegaPixel) -

Image
Resolution * - - -

Optical
Zoom SingleDigit - (\s)?(x|X) (Optical\sZoom

|optical\szoom)

Digital
Zoom SmallPositiveReal - (\s)?(x|X) (Digital\sZoom

|digital\szoom)

Weight SmallPositiveReal - \s(oz|Oz) (Weight|weight)

Width SmallPositiveReal - \s(in) (Width|width)

Depth SmallPositiveReal - \s(in) (Depth|depth)

Height SmallPositiveReal - \s(in) (Height|height)

Price Price ($)(\s)? - (Price|price)

LCD Size SmallPositiveReal - (") LCD

Note: * Application-dependent Lexicons not in Initial Data Frame Library
 - Not Available from Sample Pages

Table 1: Experimental Results of Constructing Data Frames for the Digital Camera Application

The experimental results in Table 1 also demonstrate that OntoByE was

successfully able to identify the keywords and context expressions, if any were present on

sample pages, from the context phrases of user-marked data. In Table 1, OntoByE

properly identifies possible keywords and/or context expressions for 9 object sets (CCD

Resolution, Optical Zoom, Digital Zoom, Width, Depth, Height, Price and LCD Size),

which rely on neither application-dependent lexicons nor regular expressions other than

those existing in our initial data frame library.

Another observation we made during our experiments is that sample pages from

different web sites help improve the accuracy of keyword and context expression

54

recognition for user-desired data, because pages with different layouts help OntoByE

eliminate common strings that are not actually keywords or context for user-marked data.

We observed that OntoByE sometimes recognized more keywords and context

expressions than it should for user-marked data where sample pages from the same web

site had matching layouts. For example, on two sample pages collected from the same

site, OntoByE identified not only the real keyword “Price” but also other common words

such as “List” and “Save” from the context phrases of price values. For these two pages

from the same site, a similar problem occurred during the construction of context

expressions. Because the user-marked prices are always presented with the same layout,

such as “Price: $100” and “Price: $200”, in the context phrases from this site, OntoByE

constructs (Price:)\s$ as the left context of user-marked data 100 and 200. This context

obviously would likely not apply to all other price values on HTML pages from other

web sites. Our experimental results show that collecting sample pages with different

layouts from different sites helps eliminate the non-keyword common words, such as

“List” and “Save”, and the non-context common strings, such as Price:\s, for user-

marked prices. Therefore, to avoid such an over-recognition problem during keyword

and context expression construction, we suggest that users always collect sample pages

with different layouts from different web sites. This suggestion is reasonable because

users usually desire a data-extration ontology which can be applied to all web pages in

the domain, not just the pages with a specific layout or pages from a specific web site.

6.2.2 Apartment Rental Advertisement

We employed an Apartment Rental application to compare the OntoByE-

generated Apartment Rental ontology with a previous Apartment Rental ontology hand-

55

written by a member of the BYU Data Extraction Research Group. This comparison

helped us observe some of the strengths and limitations of our current OntoByE system.

Figure 30 shows the object sets, relationship sets, and related constraints for the

Apartment Rental ontology that OntoByE constructed based on the user-defined form, as

shown in Figure 28, for the Apartment Rental application. Based on our forms, OntoByE

generated exactly the same object sets, relationship sets, and constraints as those in the

human-written ontology. Since OntoByE introduces a user-friendly form editor, ordinary

users are not required to understand abstract conceptual-model concepts, such as object

set, relationship set, and participation constraint. Instead, they only need to know how to

design application-dependent forms through the user interface.

The experimental results in Table 2 show that, in the Apartment Rental

application, OntoByE found the appropriate data frames for only 6 out of a total 12 object

sets (Bedroom Number, Bathroom Number, Monthly Rate, Deposit and Contact Phone),

Apartment Rental [0:1] Apt Type [1:*]

Apartment Rental [0:1] Bedroom Number [1:*]

Apartment Rental [0:1] Bathroom Number [1:*]

Apartment Rental [0:1] Gender Requirement [1:*]

Apartment Rental [0:1] Date Available [1:*]

Apartment Rental [0:1] Monthly Rate [1:*]

Apartment Rental [0:1] Deposit [1:*]

Apartment Rental [0:*] Features [1:*]

Apartment Rental [0:1] Contact Phone [1:*]

Apartment Rental [0:1] Contact Person [1:*]

Apartment Rental [0:1] Furnished Condition [1:*]

Apartment Rental [0:1] Utility [1:*]

Figure 30: Object and Relationship Sets and Constraints for the Apartment Rental Application

56

because all other object sets (Apt Type, Furnished Condition, Gender Requirement,

Utility, Features and Contact Person) rely on application-dependent lexicons not yet in

our initial data frame library. Therefore, the small scope of the initial data frame library

limited OntoByE’s abilities to search for appropriate data frames in this specific

application. However, for an object set with a small set of constant values, such as Apt

Type (“private”, “shared”), Utility (“paid”, “not inclued”), Furnished Condition (“Furn”,

“Unfurn”) and Gender Requirement (“male”, “female”), users can easily make use of the

data frame editor in OntoByE to create a new data frame with value expressions

containing constant values such as private|shared and male|female which are equivalent

to those in the human-written ontology. Furthermore, with considerable future work, we

may have OntoByE learn to analyze user-marked data and gather small sets of values.

Table 2 also shows that OntoByE successfully recognized possible keywords and

context expressions from sample pages. The comparison analysis of the OntoByE-

generated versus human-written ontologies demonstrate that OntoByE’s difficulty

constructing complicated keyword and context expressions is mainly due to 1) the limited

amount of sample data and 2) the complexity of keyword and context representations in

the application. For example, in an apartment ad, people may represent the word

“Bedroom” in different ways, such as “bdrm”, “bedroom” or “bd.” To recognize all

these different representations by OntoByE as keywords, which are constructed in the

human-written ontology, users need to provide the system with at least two samples for

each representation.

57

Object Set Matching
Data Frames

Left Context
Expression

Right Context
Expression Keywords

Apt Type * - - -

Bedroom
Number SingleDigit - - (Bedroom|bdrm)

Bathroom
Number SmallPositiveReal - - (Bathroom|bath)

Furnish
Condition * - - -

Gender
Requirement * - - -

Utility * - - -

Features * - - -

Contact
Phone PhoneNumber - - (Contact|contact)

Contact
Person * - - -

Monthly Rate Price $(\s)? - -

Deposit Price $(\s)? - (Deposit|deposit)

Date
Available Date - - Available

Note: * Application-dependent Lexicons not in Initial Data Frame Library
 - Not Available from Sample Pages

Table 2: Experimental Results of Constructing Data Frames for the Apartment Rental Application

6.3 Summary of OntoByE’s Strengths and Weaknesses

Our experimental evidence demonstrates that OntoByE is capable of helping users

to construct data frames by searching for the appropriate existing data frames for user-

marked data and by recognizing keywords and context expressions from user-provided

sample pages.

In general, the comparison between the OntoByE-generated ontology and the

human-written ontology shows the strengths and weaknesses of generating ontologies

through OntoByE as follows.

Strengths:

58

� OntoByE allows ordinary users, who have little knowledge of conceptual

modeling concepts, to describe information in their domain of interest by

creating a set of forms through a user-friendly interface.

� With a limited amount of prior knowledge, OntoByE works well to search

for and suggest appropriate existing data frames for some object sets with

application-independent values.

� OntoByE recognizes and suggests possible keywords and context

expressions for the user-desired data from sample pages. Users can make

use of the keywords and context expressions to modify existing data

frames or construct new data frames for object sets in their applications.

New data frames could subsequently be applied to new applications in the

future.

Weaknesses:

� The performance of searching for or constructing data frames by OntoByE

is limited by the scope and the quality of prior knowledge.

� The accuracy and completeness of keyword and context expression

construction are limited by the number and representativeness of user

samples.

� Constructing value expressions for application-dependent data frames

requires that users know how to write regular expressions.

59

60

7 Conclusion, Limitations and Future Work

In this research, we designed and implemented a semi-automatic ontology

generation system, OntoByE, which makes two contributions to conceptual-model-based

web data-extraction. First, we implemented a user-friendly interface that helps ordinary

users with little knowledge of conceptual models and data-extraction ontologies to take

advantage of our resilient web data-extraction approach. Second, we developed a

framework for interacting with ordinary users to semi-automatically generate data-

extraction ontologies by example. Through examples, OntoByE can leverage prior

knowledge from an initial data frame library to help users make use of existing data

frames or construct new data frames for a domain of their choosing. The generated data

frames can be used to augment the data frame library for future applications. The

framework gains the advantage of the by-example approach (user-friendly wrapper

creation) without losing the advantage of the BYU DEG approach (resilient wrappers that

do not break when a page changes or the wrapper encounters a new domain-applicable

page). Our experiments show that OntoByE works well to generate extraction ontologies

semi-automatically for two specific domains of interest, the Digital Camera

Advertisement and the Apartment Rental Advertisement, with an initial data frame

library containing only a small set of application-independent data frames.

In general use, however, our system has room for improvement in several places:

� In this thesis, OntoByE is searching for existing data frames for user-

marked data. It does not build application-dependent lexicons for users’

applications. In future work, we may have OntoByE learn to build the

61

lexicons by analyzing user-marked data and by observing patterns of

where the data are located on sample pages.

� Currently, the context phrase locator of OntoByE takes a certain number

of characters around the user-desired data from the HTML source file to

construct context phrases. It does not work well when attempting to locate

context and keywords for structured data such as resides in HTML tables.

Since the construction of more meaningful context phrases results in a

higher probability of locating keywords and context expressions, a more

sophisticated context locator may help the data frame matching process

achieve higher accuracy.

Despite the current limitations, OntoByE provides a successful by-example

framework through which ordinary users can take advantage of the ontology-based

approach for their web data-extraction applications. As time goes by, along with the

expansion of prior knowledge and the improvements of OntoByE’s sub-components, the

system will achieve better performance in helping ordinary users to extract data of

interest from World Wide Web.

62

Bibliography

[BLP01] David Buttler, Ling Liu, Calton Pu. A Fully Automated Object Extract
System for the Web. In Proceedings of the 21st International
Conference on Distributed Computing (ICDCS-21), pp. 361-370,
Phoenix, Arizona, 16-19 April 2001.

[CM99] M. E. Califf and R. J. Mooney. Relational Learning of Pattern-Match
Rules for Information Extraction. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence (AAAI-99), pp. 328-334,
Orlando, Florida, 18-22 July 1999.

[CMM01] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo.
ROADRUNNER: Towards Automatic Data Extraction from Large Web
Sites. In Proceedings of the 27th VLDB Conference, pp. 109-118,
Roma, Italy, 11-14 September 2001.

[DEG] DEG group and ontology demo home page: http://www.deg.byu.edu

[ECJL+99] D.W. Embley, E.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale,
Y.-K. Ng, and R.D. Smith. Conceptual-Model-Based Data Extraction
from Multiple-Record Web Documents, Data and Knowledge
Engineering, Vol. 31, No. 3, pp. 227-251, November 1999.

[Eikvil99] Line Eikvil. Information Extraction from World Wide Web: A Survey.
Technical Report 945, Norwegian Computing Center, 1999.

[Emb98] D. W. Embley. Object Database Development: Concepts and
Principles. Addison-Wesley, Reading, Massachusetts, 1998.

[Freitag98] Dayne Freitag. Information Extraction from HTML: Application of a
General Machine Learning Approach. In Proceedings of the Fifteenth
Conference on Artificial Intelligence AAAI-98, pp. 517-523, Madison,
Wisconsin, 26-30 July 1998.

[FSLE02a] I.M.E. Filha, A.S. da Silva, A.H.F. Laender, and D.W. Embley. Using
Nested Tables for Representing and Querying Semistructured Web
Data, The Fourteenth International Conference on Advanced
Information Systems Engineering (CAiSE 2002), and also A.B. Pidduck,
J. Mylopoulos, C.C. Woo and M.T. Ozsu (editors). Lecture Notes in
Computer Science 2348, pp. 719-723, Toronto, Ontario, Canada, 27-
31 May 2002.

63

[FSLE02b] I.M.E. Filha, A.S. da Silva and A.H.F. Laender and D.W. Embley.
Representing and Querying Semistructured Web Data Using Nested
Tables with Structural Variants. In Proceedings of the 21st
International Conference on Conceptual Modeling (ER2002), pp. 135-
151, Tampere, Finland, 7-11 October 2002.

[Hewett00] Hewett, Kimball A. An Integrated Ontology Development Environment
for Data Extraction. Masters Thesis, Brigham Young University, 2000.

[HGNY+97] Joachim Hammer, Hector Garcia-Molina, Svetlozar Nestorov, Ramana
Yerneni, Marcus Breunig, and Vasilis Vassalos. Template-based
wrappers in the TSIMMIS system. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pp. 532-535,
Tucson, Arizona, 13-15 May 1997.

 [Hsu98] Chun-Nan Hsu. Initial Results on Wrapping Semi-structured Web
Pages with Finite-State Transducers and Contextual Rules. In the
1998 Workshop on AI and Information Integration, pp. 66-73,
Madison, Wisconsin, 26-27 July 1998.

[KWD97] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper Induction for
Information Extraction. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), pp. 729-735, Nagoya,
Japan, 23-29 August 1997.

 [LRS02] A.H.F. Laender, B. Ribeiro-Neto and A. Soares da Silva. DEByE - Data
Extraction by Example. Data and Knowledge Engineering, Vol. 40, No.
2, pp. 121-154, 2002.

[LRST02] A.H.F. Laender, B.A. Ribeiro-Neto, A.S. da Silva and J.S. Teixeira. A
Brief Survey of Web Data Extraction Tools. SIGMOD Record, Vol. 31,
No. 2, pp. 84-93, June 2002.

[MMK99] I. Muslea, S. Minton and G. Knoblock. A Hierarchical Approach to
Wrapper Induction. In Proceedings of the 3rd Conference on
Autonomous Agents (Agents ’99), pp. 190-197, Seattle, Washington,
1-5 May 1999.

[Muslea99] Ion Muslea. Extraction Patterns for Information Extraction Tasks: A
Survey. The AAAI-99 Workshop on Machine Learning for Information
Extraction, Technical Report WS-99-11, Orlando, Florida, 19 July 1999.

64

[PBE01] Henry Lieberman (editor). Your Wish Is My Command: Programming
by Example, Morgan Kaufmann Publishers, San Francisco, California,
2001.

[Soderland99] S. Soderland. Learning information extraction rules for semi-
structured and free text, Journal of Machine Learning, Vol. 34, No. 1-3,
pp. 233-272, 1999.

[Zloof77] Zloof, M. M. Query-by-Example: A Data Base Language. IBM Systems
Journal, Vol. 16, No. 4, pp. 324-343, 1977.

65

	Title
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Thesis Statement

	Extraction Ontology
	OntoByE System Architecture
	User Interface
	Data Frame Library
	Ontology Generator

	User Interface
	Creating Forms
	Form Titles
	Form Editor Toolbar
	Creating Basic Form Elements
	Creating Form Elements in Pattern A
	Creating Form Elements in Pattern B
	Creating Form Elements in Pattern C
	Creating Form Elements in Pattern D
	Creating Form Elements in Pattern E

	Nesting Forms
	Sample Application Dependent Forms

	Preparing Sample HTML Documents

	Data-Extraction Ontology Generation
	Constructing Object and Relationship Sets and Constraints
	Constructing Data Frames for Object Sets
	Context Phrase Locator
	Data Frame Matcher
	Keyword and Context Expression Recognizer
	Constructing Context Expressions
	Constructing Keywords

	Data Frame Editor

	Generating Data-Extraction Ontologies

	Experimental Observations and Analyses
	Preparation
	Results and Observations
	Digital Camera Advertisement
	Apartment Rental Advertisement

	Summary of OntoByE’s Strengths and Weaknesses

	Conclusion, Limitations and Future Work
	Bibliography

