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ABSTRACT

Automating Mini-Ontology Generation from Canonical Tables

Stephen Lynn
Department of Computer Science

Master of Science

In this thesis work we develop and test MOGO (a Mini-Ontology GeneratOr.) MOGO
automates the generation of mini-ontologies from canonicalized tables of data. This will help
anyone trying to organize large amounts of existing data into a more searchable and accessible
form. By using a number of different heuristic rules for selecting, enhancing, and modifying
ontology elements, MOGO allows users to automatically, semi-automatically, or manually
generate conceptual mini-ontologies from canonicalized tables of data. Ideally, MOGO operates
fully automatically while allowing users to intervene to direct and correct when necessary so that
they can always satisfactorily complete the translation of canonicalized tables into mini-
ontologies. Experimental results show that MOGO is able to automatically identify the concepts,
relationships, and constraints that exist in arbitrary tables of values with a relatively high level of
accuracy. This automation significantly reduces the work required to translate canonicalized

tables into mini-ontologies.
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CHAPTER 1: INTRODUCTION

From libraries filled with millions of books to the Internet accessible to anyone
with a web browser, the amount of information available in the world is growing
exponentially. With this information explosion comes new challenges in organizing and
finding information that is relevant to a user’s needs. Most of the available information
does not follow any consistent format or structure, making it difficult to extract in a way
that supports queries beyond common keyword searching. One possible solution to this
problem is structuring the information on the Internet into standardized ontologies which
represent the inherent concepts, relationships, and constraints found in the information.
Exposing the information in an ontological model enables an entire new class of search
algorithms allowing queries to be expressed more completely and more explicitly, well
beyond anything currently available in today’s standard keyword searches.

Few use ontology-based representations to organize information on the Internet
because creating an ontology takes too much time and effort and requires a high degree
of expertise. TANGO [21] is a project which will reduce the time, effort, and degree of
expertise needed by automating the process of creating an ontology from the concepts,
relationships, and constraints found in sets of tabular data. As the second component of
the overall TANGO project, MOGO (a Mini-Ontology GeneratOr) develops and
implements the necessary algorithms and user interfaces for automatically, semi-
automatically, or manually generating mini-ontologies from canonicalized tables of data.
(The first component of the TANGO project interprets raw tables found on the web and

elsewhere and reorganizes them as canonical tables. The third component merges a set of



mini-ontologies into a large ontology representing a body of knowledge that is usable as a

means of organizing information on the Internet.)

Region and State Information

Location Population (2000) | Latitude | Longitude
Northeast 2,122,869

Delaware 817,376 45 -90

Maine 1,305,493 44 -93
Northwest 9,690,665

Oregon 3,559,547 45 -120

Washington 6,131,118 43 -120

Figure 1. Sample Table.

Given a table like the one in Figure 1, MOGO generates a conceptual model
(mini-ontology) that accurately represents the table of data by iterating through a set of
heuristics. Each heuristic deals with one of three main tasks: concept recognition,
relationship discovery, or constraint discovery. During each step of the process, MOGO
populates the conceptual model with the data in the original table. Figure 2 shows the
conceptual model (mini-ontology) MOGO generates from the table in Figure 1. The four
states in Figure 1 are members of the State object set in Figure 2. The two regions are in
the Region object set. Together the regions and states constitute the elements of the
Location object set. The states aggregated together constitute the different regions. The
values in the population, latitude, and longitude columns of the table in Figure 1 are
members of the Population, Latitude, and Longitude object sets respectively. Latitude
and longitude values aggregated together constitute the Geographic Coordinate object

set. For each location there are associated populations and geographic coordinates.



Geographic Coordinate

re———

| Latitude |

Region.Population = sum(Population); Region

Figure 2. Sample mini-ontology, produced by MOGO for the table in Figure 1.

Our contribution is a tool, called MOGO, that accurately generates mini-
ontologies from canonicalized tables of data automatically, semi-automatically, or
manually. This tool is unique in that it combines both spatial and linguistic clues for
generating the conceptual model, and it is easily extensible, allowing the addition of new
algorithms at run time without the need for program recompilation.

The remainder of this thesis contains an overview of previous work and how it
relates to this project. After that, we provide a detailed implementation description
including an architectural overview, as well as detailed explanations of each of the
heuristics MOGO uses to generate conceptual models. We conduct an evaluation study
of MOGO on a set of randomly chosen tables and present precision and recall results in

the areas of concept/value recognition, relationship discovery, and constraint discovery.



CHAPTER 2: RELATED WORK

Automating the creation of ontologies has become a widely researched area over
the past few years, and researchers from many different backgrounds have contributed a
variety of solutions. A common approach in the area of natural language processing
(NLP) attempts to “learn” ontologies by finding the terms, concepts, relations, and
concept hierarchies existing in large collections of unstructured text documents. The lack
of structure and appropriate metadata in these documents has so far made these
approaches less than accurate, thus requiring significant human post-processing before
the results can actually be used [5]. These approaches rely on a variety of methods to
identify concepts in free form text documents including: word co-occurrence [9], formal
concept analysis [23] for extracting concept hierarchies [6], and even fuzzy logic
principles [20]. These methods often result in concept recognition but do little by way of
understanding the relationships and constraints between these concepts. Our approach
differs from typical NLP approaches by using tabular data as the source information.
Using tabular data is useful in the creation of ontologies because the data has been
structured by humans into a form representing the relationships found in the data. This
structure makes the automatic discovery of relationship information much more effective
than algorithms based solely on unstructured text documents.

Some researchers in the area of reverse engineering have worked on the problem
of automatic generation of ontologies. Benslimane et al. [2] focus on generating OWL
ontologies using HTML web forms in conjunction with the database schema associated
with the forms. While this method shows promise, their approach differs from ours in

that it relies on access to an underlying database schema and is based on web forms rather



than tables. Significant work has been done over the years on reverse engineering
databases into conceptual models [1, 4, 7, 13, 15, 17, 19]. This work has focused on
using an existing database schema and deriving the concepts, relationships, and
constraints from the information implicit in the schema. While these projects have an
output goal similar to MOGO (generating conceptual models), the input data is
drastically different in that a database schema is a highly formalized structure which
significantly increases the predictability of the data. In the case of MOGO, tables can
have an arbitrary number of dimensions (unlike databases schemas which deal
exclusively with tables having only column headers), and for MOGO there are no
guarantees about the uniformity of table data values.

Pivk et al. [18] have approached automatic ontology creation in a manner similar
to MOGO. Their approach (implemented as a system called TARTAR) uses tabular data
as the input in the same way MOGO does, with the eventual output being an ontology
representation using F-Logic frames. F-Logic frames have their roots in object-oriented
program modeling and constitute a formal way to represent object identity, complex
objects, inheritance, polymorphic types, query methods, and encapsulation [16].
TARTAR focuses primarily on using statistical methods for string recognition and
grouping to discover concepts and relationships in a table. Our approach makes use of
some similar pattern matching heuristics but also includes a strong emphasis on heuristics

employing linguistic clues to discover concepts, relationships, and constraints in a table.



CHAPTER 3: MINI-ONTOLOGY GENERATION

MOGO takes as input canonicalized tables of data based on Wang notation [22].
This notation preserves the labels found in the source table as well as their associated
data values. The notation organizes label information in simple data structures called
dimensions. Each dimension corresponds to a different axis of the table similar to the
different axes of a multi-dimensional array. Combining these dimensions allows every
data cell to be referenced using an element from each dimension. Because Wang
notation can represent any set of tabular data independent of layout, MOGO is agnostic to
the data’s original form.

To further enhance MOGQ’s ability to produce a useful mini-ontology, we
enhance standard Wang notation so information beyond row and column labels and data
values is preserved in a canonicalized form. These enhancements include the
identification of a table’s title, caption, and footnotes as well as row, column, and value
augmentations such as units of measure. For practical reasons we also keep track of the
original source URL of the document.

Based on the canonicalized input data, MOGO tries to produce a mini-ontology
that conforms to the OSM data modeling language [12]. OSM provides a standard way of
representing concepts, relationships, and constraints. Thus the input to MOGO is a
canonicalized table in an XML document, and the output of MOGO is a conceptual
model in OSM. MOGO uses the following basic steps to automatically generate a mini-

ontology:



1. Concept/Value Recognition: MOGO extracts the set of concepts found in each of
the dimensions, and associates the table’s data values with the appropriate
concepts.
2. Relationship Discovery: MOGO adds relationship information to the concepts
using structural and linguistic clues.
3. Constraint Discovery: MOGO adds constraint information to the mini-ontology
by examining the table’s data values.
MOGO performs all of these steps automatically and allows the user to: accept the mini-
ontology without review, make adjustments to the mini-ontology, or manually rebuild the
mini-ontology.

To illustrate how MOGO works, we use the table of geopolitical data in Figure 1
as an example. We compiled a small amount of data from multiple tables to create a
single sample table that illustrates the various facets of MOGO’s processing abilities.
Figure 3 shows the sample table in Figure 1 in canonicalized form in an XML document.
The input XML must validate against an XML-Schema specification previously
developed by others as part of the TANGO project. The Table tag contains a number of
attributes useful to the overall TANGO project for uniquely identifying different tables.
It also contains a title attribute which contains the table’s title if there is one. Each
element in the XML document has an object identifier (OID) for uniquely identifying the
different nodes. CategoryNodes contain all of the labels found in the table. The
CategoryParentNodes section captures the tree structure of the labels in each dimension.
The DataCells section contains all of the data values in the table as well as references
back to the labels that give the values a meaningful context. The final section,
Augmentations, describes all of the augmentations found in the table which can include

row, column, data, or table augmentations such as footnotes, values in labels (like the

value 2000 in Figure 1), and units of measure. MOGO uses JAXB 2.0, an XML binding



framework available as part of Java 6, to read and validate canonicalized XML input and
convert that input into simple Java objects.

Figure 4 shows a graphical representation of the canonicalized table in Figure 3.
Each dimension of the table forms a tree structure with the depth of the tree determined
by how many levels of label nesting exist in the dimension. The second dimension in the
canonicalized table has no label value so a placeholder label of “[Dimension2]” is used.
Each label in the dimension represents a node in the tree and connects to other tree nodes
using a solid black line. Data values, at the bottom of the figure, connect to one node
from each dimension using a dashed line. The dotted line connecting the “Population”
node and the value “2000” indicates that the “2000 is an augmentation of the

“Population” node. The title of the table is also captured and marked as such.

3.1 Auxiliary Services

Many of MOGO’s algorithms rely on access to a base set of common services.
These services provide access to basic lexical information and data frame classification

operations.

3.1.1 Lexical Service

Many of the algorithms MOGO uses require access to external lexical
information. Rather than tie the system directly to a specific implementation of some
lexical resource, MOGO establishes an implementation-independent lexical service
interface (in the form of a Java interface) to access lexical information. This Java
interface defines what operations this service can perform, what parameters are required

for each operation, and what information will be returned by each operation.



<InterpretedTable>

<Table TableOID="Tablel” Title="Region and State Information” Number="1" DocumentCitation="*>

<CategoryNodes>
<CategoryNode CategoryNodeOID="C1” Label="Location” />
<CategoryNode CategoryNodeOID="C1.1” Label="Northeast” />
<CategoryNode CategoryNodeOID="C1.1.1” Label="" />
<CategoryNode CategoryNodeOID="C1.1.2” Label="Delaware” />
<CategoryNode CategoryNodeOID="C1.1.3” Label="Maine” />
<CategoryNode CategoryNodeOID="C1.2” Label="Northwest” />
<CategoryNode CategoryNodeOID="C1.2.1” Label="" />
<CategoryNode CategoryNodeOID="C1.2.2” Label="Oregon” />
<CategoryNode CategoryNodeOID="C1.2.3” Label="Washington” />
<CategoryNode CategoryNodeOID="C2" Label="" />
<CategoryNode CategoryNodeOID="C2.1" Label="Population” />
<CategoryNode CategoryNodeOID="C2.2” Label="Latitude” />
<CategoryNode CategoryNodeOID="C2.3” Label="Longitude” />
</CategoryNodes>
</Table>
<CategoryParentNodes>
<CategoryParentNode CategoryParentNodeOID="C1">
<CategoryNodes>
<CategoryNode CategoryNodeOID="C1.1” />
<CategoryNode CategoryNodeOID="C1.2” />
</CategoryNodes>
</CategoryParentNode>
<CategoryParentNode CategoryParentNodeOID="C2">
<CategoryNodes>
<CategoryNode CategoryNodeOID="C2.1" />
<CategoryNode CategoryNodeOID="C2.2” />
<CategoryNode CategoryNodeOID="C2.3” />
</CategoryNodes>
</CategoryParentNode>
<CategoryParentNode CategoryParentNodeOID="C1.1">
<CategoryNodes>
<CategoryNode CategoryNodeOID="C1.1.1"/>
<CategoryNode CategoryNodeOID="C1.1.2”/>
<CategoryNode CategoryNodeOID="C1.1.3"/>
</CategoryNodes>
</CategoryParentNode>

</CategoryParentNodes>
<DataCells>
<DataCell DataCellOID="D1” DataValue="2,122,869">
<CategoryLeafNode CategoryLeafNodeOID="C1.1.1" />
<CategoryLeafNode CategoryLeafNodeOID="C2.1" />
</DataCell>
<DataCell DataCellOID="D2” DataValue="*“>
<CategoryLeafNode CategoryLeafNodeOID="C1.1.1" />
<CategoryLeafNode CategoryLeafNodeOID="C2.2” />
</DataCell>
<DataCell DataCellOID="D4" DataValue="817,376">
<CategoryLeafNode CategoryLeafNodeOID="C1.1.2” />
<CategoryLeafNode CategoryLeafNodeOID="C2.1" />
</DataCell>

</DataCells>
<Augmentations>
<Augmentation Augmentation="2000" AugmentationType="value”>
<CategoryNodes>
<CategoryNode CategoryNodeOID="C2.1" />
</CategoryNodes>
</Augmentation>
</Augmentations>
</InterpretedTable>

Figure 3. XML version of canonicalized table.

9



Title: Region and State Information

Location [Dimension2]
T 2000
Northeast Northwest
A /\ * Population Latitude Longitude
Delaware Maine\\\ Oregon Washington
2,122,869 817,376 . . -120

Figure 4. Graphical view of canonicalized sample table.

Supported operations include term normalization, and testing whether one word is a

hypernym, hyponym, meronym, or holonym of another word. Because all access to

lexical information in MOGO is done through this interface, the user can modify,

augment, or replace the underlying lexical service implementation without requiring

source code changes to MOGQ'’s various heuristic procedures.

In this implementation, MOGO uses WordNet, an electronic lexical database [14],

for accessing lexical information. WordNet provides a number of freely available APIs

enabling programmatic access to the underlying lexical repository. MOGO uses the Java

API for WordNet Searching (JAWS) as its API for accessing WordNet resources.

Because JAWS does not provide a mechanism for looking up a word’s inherited

hypernym list directly, MOGQ’s lexical service implementation builds these lists by

looking up a word in WordNet and then recursively looking up each of the hypernyms of

all senses of that word until a word with no hypernyms is reached. Similar operations are

available for looking up a word’s inherited hyponym and holonym lists.

10



To help increase the accuracy of lexical operations, MOGOQO’s lexical service
provides a term normalization routine. When doing term comparisons, it is important
that the operations are performed using a unified lexicon so that matches can be correctly
identified. MOGO normalizes all terms by looking terms up in WordNet and capturing
all the associated word forms. Comparison operations involve looking for an exact match
in at least one word form of a normalized term. For example, when the lexical service
normalizes the term “lowa”, WordNet returns the word forms: “lowa”, “loway”,
“Hawkeye State”, and “IA”. For term comparisons, these different word forms are all
treated as equivalent and an exact match with any one of them will return a valid match

for the entire normalized term.

3.1.2 Data Frame Library Service

Another service that MOGO uses is the data frame library service. Data frames
provide a mechanism for recognizing different types of objects from strings of data using
regular expression recognizers [10]. MOGQ’s data frame library service takes a string as
input, iterates over a collection of data frame recognizers attempting to classify the string,
and returns the data frame (and the associated ontology fragment) that matches that
string. Each ontology fragment associated with a data frame contains one or more
concepts, zero or more relationship sets, and zero or more constraints. In every case, one
concept in the fragment is marked as the primary concept for the fragment. This primary
concept serves as the connection point for MOGOQO’s data frame related algorithms.

To illustrate how this works, suppose the string *12-08-2007’ needs to be
classified. MOGQ'’s data frame service takes the string and loops through each of the

data frame recognizers looking for a match. In this case the Date data frame recognizes

11



dates in the form MM-DD-YYY'Y and will successfully match the search string. The
data frame service returns the specific object set (concept) on which the search terms
match, as well as a reference to the entire ontology fragment associated with this data

frame.

3.1.3 Name Finding Service

The final general service MOGO provides is a name finding service available at
each step of the process for assigning names to unnamed concepts. Titles, footnotes,
captions and augmentations can contain words which are helpful for naming unnamed
concepts. The combined set of words from these sources forms a pool of possible
concept names. Given an unnamed concept, MOGO uses the lexical service to retrieve
the inherited hypernym list of each value assigned to a concept, compares the list with
each of the words in the naming pool, and assigns the concept a name if one of the words
in the pool is a direct match to a word in the hypernym list. If the name finding service
does not find any matches to words in the pool then MOGO attempts to identify an
appropriate label by looking for the first common word in the inherited hypernym lists of
each of the concept’s first ten data values. If a common word is found, MOGO assigns

that word as the concept’s name.

3.2 Concept/Value Recognition

MOGO extracts concepts from a canonicalized table using a set of concept
recognition algorithms and assigns the appropriate data values to those concepts. Each
concept recognition algorithm conforms to a standard interface making it easy to augment

MOGO with additional heuristic algorithms. MOGO implements six concept recognition

12



algorithms. We execute each of the algorithms until each table label and table data value
of the canonicalized table (Figure 2) is recognized as either a concept or a value for a
concept. Each algorithm classifies the table labels and table data values it recognizes,
and subsequent algorithms only evaluate unclassified labels and values until all labels and
values have been classified, at which point MOGO skips any subsequent algorithms.

Table labels can either be concepts or data values for a concept. In Figure 1, the
label Delaware is a data value for the concept State and Northwest is a data value for the
concept Region, but the label Population is a concept containing population values.
Unlike table labels, table data values are always data values for a concept.

A concept is synonymous with an object set in the OSM data modeling language.
According to OSM an object set identifies a group of objects or values [12]. Object sets,
either lexical or non-lexical, are the ontological elements representing the different
concepts found in a table. A lexical object set is one whose members are printable and
represent themselves (e.g., telephone numbers, names of companies). In OSM a lexical
object set is visually represented by a box with a dashed border. A non-lexical object
set’s members are object identifiers that are non-printable (e.g., identifiers that stand for
persons or companies). In OSM a non-lexical object set is visually represented by a box
with a solid border.

The first concept recognition algorithm uses lexical clues to determine to which
dimension labels the table’s data values belong. MOGO uses its lexical service to
compare each data value to its corresponding dimension labels. A data value is said to
“belong” to a label if the data value is a hyponym of at least one of the label’s senses, and

is not a hyponym of any other dimension label associated with that data value. If the

13



majority of the data values “belong” to an associated label, MOGO flags the label as a
potential object set. After evaluating all the dimension labels, if all the labels MOGO
flags belong to the same dimension then it marks all of the labels in that dimension as
lexical object sets and associates the corresponding data values with those object sets.
Otherwise, MOGO clears the flags and proceeds to the next algorithm.

The first concept recognition algorithm fails to discover any concepts for the table
in Figure 1 because all the data values in the table are numbers and there is no way to
determine, using only lexical clues, if those numbers belong to their associated labels.
This algorithm does succeed, however, for the sample table in Figure 5. Figure 6 shows
the object sets the algorithm creates out of each set of data values in the table. MOGO
examines each table value to see if that value belongs to the dimension label associated
with the value. In the case of the first column, the label “City” is found to be a hypernym
of the table values “Salt Lake City” and “Provo”, so MOGO flags the label “City” as a
potential object set. Similarly, the label “State” is found to be a hypernym of the value
“Utah”, so MOGO flags “State” as a potential object set as well. Because all of the
flagged labels are from the same dimension, MOGO creates an object set for each of the

flagged labels and assigns the associated table values to the appropriate object set.

City _ State ---- Assigned Data Values ----
Salt Lake City Utah _
Los Angeles California Salt Lake City ~ Utah
- - - Los Angeles California
San Francisco California S _
an Francisco

Figure 5. Sample table where values "belong" to their labels.
Figure 6. Object sets with values.

The second concept recognition algorithm also uses the lexical service, but in this

case the objective is to determine if a label is an instance of its parent label. Each

14



dimension has one label referred to as the root label. Below that, a dimension can contain
several levels of label nesting. Beginning with the labels directly under the dimension’s
root label, MOGO uses its lexical service to look up each unmarked label in a dimension
and retrieve that label’s list of inherited hypernyms. A label is said to be an instance of
its parent label if either the parent label, or the name of the object set the parent label is
assigned to, is found in the label’s inherited hypernym list. If the majority of the labels at
one level of label nesting are instances of that level’s parent label, MOGO marks all the
labels at that level as values, creates an unnamed lexical object set, and assigns the values
to the object set. MOGO evaluates each succeeding level of label nesting in like manner
until the leaf labels have been evaluated. MOGO uses the name finding service to find an
appropriate name for any unnamed object sets produced by this algorithm. In cases
where labels are found to belong to their parent label and the dimension only contains
one level of label nesting, MOGO creates a single object set, names that object set using
the dimension’s root label, and assigns all of the labels of the dimension as values to that
object set.

For the sample table in Figure 1, Figure 7 shows the object sets and associated
data values the second algorithm creates for each level of label nesting in the “Location”
dimension. The inherited hypernym list for each label in the “Location” dimension
(Northeast, Northwest, Delaware, Maine, etc.) contains the word “Location.” MOGO
marks the labels at each level of nesting as values, creates unnamed lexical object sets for
each level of nesting, and assigns the values from each level to the corresponding object
set. The naming service extracts possible names for these object sets from word tokens in

the title of the table. The inherited hypernym lists for each of the values assigned to the

15



region object set contain the word “Region” which is also a word that appears in the title
of the table. Similarly, each of the inherited hypernym lists for the state values contains
the word “State” which is also a word in the title of the table. MOGO finds these

matches and assigns the names “Region” and “State” to the two unnamed object sets.

---- Assigned Data Values ----

Northeast Delaware

Northwest Maine
Oregon
Washington

Figure 7. Object sets that the second algorithm creates.

The third algorithm checks for labels at the same level of nesting that have the
exact same name. Tables often contain multiple columns with the same type of
information. This is usually manifest in tables that have labels that span multiple
columns or rows and usually only appears in tables with more than one level of label
nesting. Beginning with the labels directly under the dimension’s root label, MOGO
compares each unmarked label with the other labels at that same level to see if all of the
labels are exactly the same. If all the labels at one level of label nesting are the same,
MOGO creates a named object set using the common name of the source labels, and
assigns all of the values associated with those labels to the newly created object set.
MOGO evaluates each succeeding level of label nesting in like manner until the leaf
labels have been evaluated.

The labels in Figure 1 are all different, so this third algorithm does not apply to

the table in Figure 1. For the sample table in Figure 8, Figure 10 shows the object sets
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the third algorithm creates. While the label “Number of Deaths” does not appear twice in
the source table, it does appear twice in the canonicalized version of the table. Figure 9
shows how the canonicalization process duplicates the single source label “Number of
Deaths”. This replication is an artifact of the canonicalization process encountering
labels that span multiple columns. In this case, MOGO recognizes the label duplication,
merges the duplicate labels into one object set, assigns the common label as the name of

the object set, and assigns any values associated with the labels to the newly created

object set.
2002 | 2003

Province Number of Deaths

Quebec 54,896 56,411
Ontario 83,410 84,155

Figure 8. Sample table with label column span.
Province [Dimension2]
Quebec Ontario 2002 2003
Number of Deaths Number of Deaths
54,é96 56,4;11 o e 84,\155

Figure 9. Canonicalized version of sample table in Figure 8.
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--- Assigned Values ---

54,896
83,410
56,111

84,155

Figure 10. Object sets that algorithm three creates.

The fourth concept recognition algorithm takes each unmarked dimension label
and attempts to classify all the data values associated in a row or column with that label
using MOGQ’s data frame service to determine to which dimension labels the table’s
data values belong. If all the data values in a row or column have the same type, MOGO
temporarily associates that type with the dimension label. After MOGO classifies all the
labels for a dimension using its data frame service, if there are at least two labels in the
dimension of different types, MOGO flags all of the labels in the dimension as lexical
object sets and associates the corresponding data values with the object sets. Requiring
two different types avoids misidentifying object sets in a table uniformly populated by
data of the same type, such as a table full of percentages or of currency values.

Using the sample table in Figure 11 as the source table, Figure 12 shows the
object sets the fourth algorithm creates. Using the data frame library service, MOGO
classifies each of the data values found in the source table. For the sample table in Figure
11, the values “Tire”, “Transmission”, and “Steering Wheel” all match the car part data
frame. The values “$115.60”, “$356.45”, and “$32.34” all match the currency data
frame. Because the values in two different columns match two separate data frames,
MOGO creates object sets for each of the columns, uses the label associated with that
column to name the object set, and assigns the values associated with those columns to

the newly created object sets.
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Car_Part Price | Assigned Values --------
Tire $115.60
Transmission | $356.45 Tire $115.60
Steering Wheel | $32.34 Transmission $356.45

Figure 11. Sample table of car parts. Steering Wheel $32.34

Figure 12. Object sets the fourth algorithm creates.

The fifth concept recognition algorithm tries to identify concepts among sibling
labels. MOGO first classifies each unmarked dimension label using its data frame
service. For each set of sibling labels that have the same data frame classification,
MOGO marks the labels as values, creates an object set, names the object set with the
same name as the matching concept returned by the data frame service, and associates the
sibling labels with the new object set.

For the sample table in Figure 8, MOGO classifies the labels “2002” and “2003”
as instances of a “Year” object set using the data frame library service. Because both
sibling labels are classified as the same type, MOGO creates an object set, uses the name
of the matching concept to name the object set “Year”, and assigns the labels “2002” and
“2003” as data values to the newly created object set.

If the prior algorithms do not successfully mark all items in the canonicalized
table as object sets or values, MOGO processes the remaining unmarked items based on
whether or not the dimension’s root has a real label or a placeholder label. For
dimensions whose root nodes contain a placeholder labels, MOGO flattens any label
nesting in the dimensions by prepending parent labels to child labels, removes parent
labels until there is no more nesting, and marks all of the unmarked labels as lexical

object sets. If the data values associated with those labels are currently unassigned,
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MOGO assigns the data values to the newly created object sets. For any unmarked labels
in the remaining dimensions, MOGO groups the labels that are at the same level of
nesting in each dimension, treats the labels as values, creates unnamed object sets for
each group of labels, associates the values with the newly created object sets, and uses
the name finding service to find appropriate names for the object sets. For any remaining
data values that are not currently assigned to an object set, MOGO creates a new
unnamed object set and assigns the values to that object set.

Using the sample table in Figure 1 as the source table, Figure 13 shows the results
of running the final algorithm. The algorithm creates lexical object sets for each of the
labels in the “[Dimension2]” dimension because the dimension’s root node contains a
placeholder label and none of its labels are marked as either an object set or a data value
by any of the previous algorithms. MOGO also assigns the associated data values, none
of which are assigned to an object set by previous algorithms, to the newly created object

sets.

i Population i | Latitude | | Longitude |

————————————————————— Assigned Data Values ------------
2,122,869 45 -90
817,376 44 -93
1,305,493 45 -120
9,690,665 43 -120
3,659,547
6,131,118

Figure 13. Object sets created by final algorithm.

Figure 14 shows all the object sets MOGO identifies in our sample table from

Figure 1 after all of the concept/value recognition algorithms have completed.
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Northeast Delaware 2,122,869 45 -90
Northwest Maine 817,376 44 -93
Oregon 1,305,493 45 -120
Washington 9,690,665 43 -120
3,559,547
6,131,118

Figure 14. Discovered object sets and value assignments.

3.3 Relationship Discovery

With all of the concepts identified and the values assigned to those concepts,
MOGO next identifies all of the relationships that exist between the different concepts.
MOGO adds relationship information to the object sets using a set of relationship
discovery algorithms. Each relationship discovery algorithm conforms to a standard
interface making it easy to augment MOGO with additional heuristic algorithms. MOGO
implements five relationship discovery algorithms. We execute the algorithms in order,
passing the newly discovered relationship information on to the next algorithm until each
of the algorithms has successfully run. Unlike the concept recognition algorithms which
only run until all labels and values have been classified, the full set of relationship
recognition algorithms runs — each successively refines the results of the previous.

The first relationship discovery algorithm extracts relationship information from
the dimension trees. For each dimension, MOGO creates relationship sets between the
object sets from that dimension anywhere an edge exists in the dimension trees. When
labels at one level of nesting have been merged into a single object set, MOGO only
creates one relationship set between the parent object set and the child object set. If
sibling object sets (object sets coming from labels in the same level of label nesting) do
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not have any related object sets higher in the tree, MOGO creates an object set of
unknown type, labels it with the dimension’s name (if there is one), and creates
relationship sets between this new object set and each of the sibling object sets.

Figure 15 shows the relationship sets MOGO adds between the different object
sets for our running example beginning with Figure 1. MOGO associates the “Region”
and “State” object sets because they come from different levels of the same dimension,
“State” from the leaf level and “Region” from the intermediate level of the “Location”
tree in Figure 4. The “Population”, “Latitude”, and “Longitude” object sets are sibling
object sets whose parent object set is the placeholder “[Dimension 2]” — meaning that
“Population”, “Latitude”, and “Longitude” have no identified conceptual parent object
set. In this case, MOGO creates an object set of unknown type, and associates the sibling
object sets with the newly created object set. Object sets of unknown type are visually

represented as a shaded box with no border.

i Location i

regon | / ‘ \
J “““ : | Population | Latitude | | Longitude |
| State i

Figure 15. Relationship sets from dimension trees.

The second relationship discovery algorithm modifies the generated ontology
relationship sets using lexical clues. MOGOQO’s lexical service provides a way to analyze
object set labels and sets of values associated with object sets to discover semantic

relationship information like hypernyms, hyponyms, holonyms, and meronyms.
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Hypernyms and hyponyms translate to generalization/specialization relationships
(represented as an empty triangle). Holonyms and meronyms translate to aggregation
relationships (represented as a filled-in triangle). MOGO looks for more specific
relationship information by examining each object set involved in a relationship set to see
if the labels or values in the two object sets contain any of these semantic relationships.
If they do, MOGO adjusts the relationship set by replacing it with an aggregation or
generalization/specialization.

If aggregations are found between the different object sets from one dimension,
MOGO looks for any generalization/specializations that might exist in the table. Using
its lexical service, MOGO looks up the inherited hypernym list of each object set label
participating in the aggregation. If the dimension’s root label is in the inherited
hypernym lists of all the different object sets, MOGO creates a new lexical object set,
labels it with the dimension’s root label, and associates this new object set with each of
the object sets that participate in the aggregation using generalization/specialization.

Figure 16 shows the sample table’s ontology elements in Figure 15 after MOGO
modifies them using lexical clues. Using its lexical service, MOGO finds that
“Delaware” is an instance of an “American State” which is a hyponym of “region.”
MOGO uses this information to create an aggregation constraint from the “Region”
object set to the “State” object set. Because the “Region” and “State” object sets come
from the same dimension, MOGO checks to see if the dimension’s root label is in the
inherited hypernym list of those object sets. MOGO successfully finds the root label

“Location” in the inherited hypernym lists so it transforms the root object set into a
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generalization and associates this object set with the existing object sets as

specializations.

————————————

i Region
___________

1 Location i
A /T | e
| State | i Population | | Latitude | | Longitude |
------------------------------------- ! L ——

Figure 16. Relationship sets after linguistic processing.

The third relationship discovery algorithm uses MOGQ’s data frame service to
find relationships between the object sets. MOGO first attempts to recognize each object
set label using the data frame service and stores any matches found. When all of the
object sets have been classified, MOGO searches the list of matches looking for object
sets that match different concepts in the same data frame ontology fragment and merges
these matches. For each data frame match, MOGO adds the ontology fragment
associated with the data frame to the mini-ontology, removes all of the previous object
sets represented by the new ontology fragment, and updates any relationship sets
associated with the removed object sets to point at the primary object set found in the
data frame ontology fragment. In cases where all of the labels at a given level of label
nesting are classified as the same data frame type, MOGO adds the ontology fragment
associated with the data frame to the mini-ontology, removes all of the previous object
sets represented by the new ontology fragment and assigns their labels as data values to
the appropriate object set in the ontology fragment, and updates any relationship sets
associated with the removed object sets to point at the object set generated from the

parent label.
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Figure 17 shows the results of MOGO’s applying this algorithm. MOGO finds
data frame matches on the “Latitude” and “Longitude” object sets. These object sets
match different object sets in the same data frame so MOGO merges the two matches
into one. The matching data frame contains information about geographical coordinate
objects. MOGO adds the ontology fragment for this data frame to the mini-ontology,
removes the previous “Latitude” and “Longitude” object sets, and transfers any
relationship sets previously connected to the “Latitude” and “Longitude” object sets to
the primary object set of the data frame ontology fragment which in this case is the

“Geographic Coordinate” object set.

Geographic Coordinate

Figure 17. Relationship sets after data frame recognizers.

For the sample canonicalized table in Figure 18, Figure 19 shows the relationship
sets that the third relationship discovery algorithm finds. MOGQ’s data frame service
recognizes the “2005” and “2006” labels as values in a “Year” object set. Because the
#2005 and “2006” labels represent all of the labels at that level of label nesting, MOGO
adds the *“Year” object set associated with the matched data frame to the mini-ontology,
removes any previous object sets associated with the “2005” and “2006” labels, assigns

these labels as data values to the “Year” object set, assigns the values previously
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associated with those labels to the “Passengers” object set which was generated from

these labels’ parent label, and creates a ternary relationship set among the “Airport”,

“Year”, and “Passengers” object sets.

Airport
Atlanta Chicago

[ATL] [ORD]

85,907,423 76,510,003

2005 2006

84,846,639

Passengers

/\

77,028,134

Figurel18. Sample canonicalized table with nested year labels.

Atlanta[ATL] 2005
Chicago[ORD] 2006

85,907,423
84,846,639
76,510,003
77,028,134

Figure19. Relationship sets for nested label table after data frame recognizers.

The fourth relationship discovery algorithm processes any augmentations that

exist in the canonicalized table. For each row and column augmentation that is a value

and not a unit, footnote, or a parenthetical remark as indicated by the canonicalized table,

MOGO creates a singleton object with the value found in the augmentation, and forms an

n-ary relationship set among the singleton object and the object sets associated with the

augmentation.
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Figure 20 shows the results of MOGO’s applying this algorithm. As Figures 1, 3,
and 4 show, the “Population” column has the augmentation “2000”. MOGO creates a
singleton object of value 2000 and creates a ternary relationship set among the object of
value 2000, the “Population” object set, and the unnamed object set already related to the

“Population” object set.

oo H
+ i Location E 2000
a2

.........................

Geographic Coordinate

Figure 20. Relationship sets after processing augmentations.

The final relationship discovery algorithm merges ontology fragments into a mini-
ontology. Ontology fragments are made up of all of the ontology elements that are inter-
connected via some type of relationship set. MOGO joins the ontology fragments by
creating an n-ary relationship set among the ontology fragment link-in points. An
ontology fragment’s link-in point is the object set in the fragment that came from the
highest level label or labels in the dimension — typically the object set associated with
the dimension’s root label. If one of the link-in points is a placeholder object set and
there is only one other ontology fragment, MOGO removes the placeholder object set and
the n-ary relationship set, and transfers all of the removed object set’s relationships to the

remaining ontology fragment’s link-in point.
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In our sample table, there are two ontology fragments. Figure 21 shows the result
of merging the two sample ontology fragments into a mini-ontology. MOGO removes
the placeholder object set from the one ontology fragment because there is only one other
ontology fragment. MOGO then assigns the orphaned relations to the link-in point of the

other ontology fragment (the “Location” object set).

1 Location Geographic Coordinate

Figure 21. Mini-ontology results from fragment merge.

3.4 Constraint Discovery

MOGO adds constraints to the mini-ontology using a set of constraint discovery
algorithms. Each constraint discovery algorithm conforms to a standard interface making
it easy to augment MOGO with additional heuristic algorithms. MOGO implements four
constraint discovery algorithms. We execute each algorithm until each has run
successfully. Each checks for a single kind of constraint; if an algorithm finds that the
constraint it is checking holds, it adds the constraint to the mini-ontology being created.

The first constraint discovery algorithm adds constraints to
generalization/specialization relationships that exist in the mini-ontology. A
generalization/specialization relationship can be constrained to be a union, a mutual

exclusion, or a partition. MOGO constrains a generalization/specialization relationship to
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be a union (represented as a triangle containing a U) if all values in the generalization
object set are also in at least one of the specialization object sets. MOGO adds a mutual
exclusion constraint (represented as a triangle containing a +) if there is no overlap in the
values in each of the specialization object sets. When the generalization/specialization is
constrained by both union and mutual exclusion, MOGO assigns a partition constraint
(represented as a triangle containing both a U and a +) to the relationship.

Figure 22 shows the results of running this algorithm on our sample table.
MOGO determines that there are no values assigned to the “Location” object set that are
not also assigned to the “Region” or “State” object sets. The values in the “Region” and
“State” object sets are also found to be mutually exclusive. Thus, MOGO assigns a

partition constraint to the generalization/specialization relationship in the mini-ontology.

Geographic Coordinate

Figure 22. Mini-ontology with generalization/specialization constraints.

The second constraint discovery algorithm looks for any computed values in the
table. Tables often include columns or rows that contain the summation, average, or
other aggregates of values in the table. MOGO examines the values related to object sets
that come from dimensions with label nesting. By computing aggregates of the values

from related object sets and comparing them to given values to test whether the
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aggregates hold, MOGO captures these constraints and adds them as annotations to the
mini-ontology.

Figure 23 shows the results of running this algorithm on our sample table.
Looking for possible aggregate values, MOGO determines that the population values
related to the “Region” object set values are the summation of the population values
related to the “State” object set. MOGO thus adds the constraint “Region.Population =
sum(Population); Region” to the mini-ontology. (The notation here means that a region’s
population is the sum of the population values grouped by Region; it is adapted from [8],

which defines computational expressions over ER conceptual models).

Geographic Coordinate

re———

| Latitude |

Region.Population = sum(Population); Region

Figure 23. Mini-ontology with computed value constraint.

The third constraint discovery algorithm looks for functional relationship sets.
Each of the data values in a table is functionally determined by the set of dimension
labels associated with those values. MOGO identifies the object sets that contain the
table’s data values and marks the relationship sets coming into those object sets as
functional. Object sets assigned values that are dimension labels are handled separately.
MOGO evaluates each of these object sets to see if the values assigned to the object set

functionally map to values assigned to any related object sets (i.e. checks each domain
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value or combination of domain values to see if there is at most one range value). If so,
MOGO marks the relationship set as functional.

Figure 24 shows the results of running this algorithm on our sample table. The
“Population”, “Latitude”, and “Longitude” object sets contain the data values from the
canonicalized tables, so MOGO marks the relationship sets coming into these object sets
as functional. Because the “Latitude” and “Longitude” object sets were replaced by an
ontology fragment associated with a data frame, MOGO marks the relationship sets
coming into the “Geographic Coordinate” object set (the ontology fragment’s primary
object set) as functional. The “Region” and “State” object sets contain values from
dimension labels. Because the values assigned to the “State” object set appear to
functionally determine the values assigned to the “Region” object set (i.e. there is only
one region for each state), MOGO marks the relationship set from the “State” object set

to the aggregation connecting it to the “Region” object set as functional.

Geographic Coordinate

Region.Population = sum(Population); Region

Figure 24. Mini-ontology with functional constraints.

The final constraint discovery algorithm determines if objects in an object set
participate mandatorily or optionally in associated relationship sets. Optional

participation is represented in OSM as an o placed near the object set’s connection point
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to a relationship set line. MOGO identifies object sets whose objects have optional
participation in relationship sets by considering empty value cells in the canonicalized
table. MOGO determines where these non-existing values mapped in the mini-ontology
and marks participation in any relationship sets between one of these object sets and any
other object set as optional.

Figure 25 shows the results of running this algorithm on our sample table. The
canonicalized table contains four empty data cells. These non-existing values “belong”
to the “Longitude” and “Latitude” object sets. MOGO thus marks participation of object
sets in any relationship sets coming into either of these object sets as optional. Because
these object sets were replaced by an ontology fragment associated with a data frame,
MOGO marks the connection between the “Location” object set and the relationship set
that comes into the data frame’s primary object set, the “Geographical Coordinate” object

set, as optional.

Geographic Coordinate

Region.Population = sum(Population); Region

Figure 25. Final mini-ontology MOGO produces.
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CHAPTER 4: EXPERIMENTAL RESULTS

We evaluated MOGO using a test set of tables found on the Internet by a third-
party participant. We asked the participant to capture the URL of twenty different web
pages that contain tables. Because tables can vary drastically in form and complexity, we
asked that the test tables meet the following criteria: the tables should come from at least
three distinct sites; the tables should contain a mix of simple tables (one-dimensional
with no label nesting) and complex tables (multi-dimensional with or without label
nesting); and that all the tables be from the geopolitical domain.

For each test URL gathered by the participant, we saved a local copy of the page’s
source HTML and used the tools created in the first component of the TANGO [21]
project to canonicalize the tables. MOGO processed each of the twenty canonicalized
tables and the resulting mini-ontologies were formatted and saved for evaluation. We
evaluate each mini-ontology in three different areas: concept/value recognition,
relationship discovery, and constraint discovery.

It is necessary to point out that when building ontologies, there is often no “right”
answer. For any given set of data there can be multiple ontologies that are valid

conceptualizations of the data set. For that reason, it is necessary for the evaluation to be

done manually by a trained expert in the field of data conceptualization.

4.1 Concept/Value Recognition

Every table has a fixed number of concepts, concept labels, and data values. We
observe how many concepts, concept labels, and data values MOGO correctly identifies,

how many it misses, and how many it proposes that are invalid. We compute precision
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values with respect to concept/value recognition by dividing the total number of correct
concepts, labels, and data values MOGO finds by the total number of actual concepts,
labels, and data values combined with the incorrect concepts, labels, and data values
MOGO proposes. We compute recall values with respect to concept/value recognition by
dividing the total number of correct concepts, labels, and data values MOGO finds by the

total number of actual concepts, labels, and data values found in the canonicalized table.

4.2 Relationship Discovery

We evaluate relationship discovery by observing how many valid relationship
sets, aggregations, and generalization/specializations MOGO discovers, how many it
proposes that are invalid, and how many MOGO does not discover. In cases where a
relationship set, aggregation, or generalization/specialization should exist but does not
because MOGO did not correctly identify a concept, we count the missing relationship
set, aggregation, or generalization/specialization as one that MOGO did not discover.
We compute precision values with respect to relationship discovery by dividing the total
number of correct relationship sets, aggregations, and generalization/specializations
MOGO finds by the total number of actual relationship sets, aggregations, and
generalization/specializations combined with the incorrect relationship sets, aggregations,
and generalization/specializations MOGO proposes. We compute recall values with
respect to relationship discovery by dividing the total number of relationship sets,
aggregations, and generalization/specializations MOGO finds by the total number of
actual relationship sets, aggregations, and generalization/specializations found in the

canonicalized table.
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4.3 Constraint Discovery

We evaluate constraint discovery by observing how many valid constraints
MOGO discovers, how many invalid constraints it proposes, and how many valid
constraints MOGO does not discover. Observations are made for each of the following
types of constraints: functional dependencies, generalization/specialization constraints,
computed values, and optional participation of objects in object sets and their associated
relationship sets. In cases where constraints should exist but do not because MOGO did
not correctly identify a concept or relationship, we count the missing constraint as one
that MOGO did not discover. We compute precision values with respect to constraint
discovery by dividing the total number of correct constraints MOGO finds by the total
number of actual constraints combined with the incorrect constraints MOGO proposes.
We compute recall values with respect to constraint discovery by dividing the total
number of constraints MOGO finds by the total number of actual constraints found in the

canonicalized table.

4.4 Results

Appendix A contains all of the original HTML tables and the mini-ontologies
MOGO generated as part of the evaluation. We report the accuracy of MOGO with
respect to precision and recall values. Table 1 shows the precision and recall values for
each area of evaluation. MOGO achieves a precision of 87% and recall of 94% for the
concept recognition task, a precision of 73% and recall of 81% for the relationship
discovery task, and a precision of 89% and recall of 91% for the constraint discovery

task. As a combined measure of precision and recall we add F-measures to Table 1.
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Concept recognition and constraint discovery both have an F-measure of 90% while

relationship discovery has an F-measure of 77%.

Precision Recall F-measure

Concept Recognition 87% 94% 90%
Relationship Discovery 73% 81% 7%
Constraint Discovery 89% 91% 90%

Table 1. Precision and recall values for evaluation tables.

Unfortunately, a direct comparison of MOGOQO’s results with results achieved by
TARTAR [18], a similar system for converting tables to conceptual models, is not
possible. TARTAR’s results take into account both the table canonicalization process
and the conversion to a conceptual model. MOGQ’s results are based on a set of
canonicalized tables that were checked to be accurately canonicalized before being
processed by MOGO. So while at first glance it might appear that MOGO performs
significantly better than TARTAR, because the results measure different objects/targets,

it is very difficult to compare the two systems in a meaningful way.

4.5 Issues

One issue that MOGO encounters in concept recognition is generating duplicate
concepts. In our set of evaluation tables, a number of tables had multiple columns that
corresponded to the same concept. The only difference in the columns was in units of the
data values. For example, a table about mountain peaks contains two columns labeled
height but in one column the height is given in meters and in the other column the height
appears in feet. MOGO was unable to correctly merge these concepts into one. Further
enhancements to MOGO’s use of data frames would likely yield the desired results in

these types of cases.
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The other concept recognition area MOGO struggled with is in identifying a valid
label for a concept. There are a number of reasons why this occurs. Sometimes a valid
label for the concept does not even exist in the table. Many tables assume that the reader
can infer the correct label based on the context in which the table occurs. Unfortunately,
this contextual information is not available in the canonicalized table which MOGO uses
as input. In some cases, such as a table containing an unlabeled column of country
names, MOGO is able to successfully identify a valid label using its lexical service. In
other cases, such as an unlabeled column of numbers, MOGO cannot identify a label for
the concept that contains these values.

In the relationship discovery task, MOGO occasionally struggles with identifying
aggregations and generalization/specializations. The main case for which MOGO was
not able to identify aggregations and generalization/specializations is when these types of
relationships exist between two sibling labels. MOGO only looks for these types of
relationships when there is label nesting present in the dimension. In cases where sibling
labels form an aggregation, such as a table with a column full of city names and another
column full of state names, MOGQ’s heuristics do not cover checking for aggregations or
generalization/specializations.

The other main area that MOGO struggles with in relationship discovery is
assigning relationship sets to invalid concepts. Errors in earlier phases of mini-ontology
generation have a cascading effect on errors in later parts of the process. Invalid concepts
found in the concept recognition phase invariably lead to invalid relationship sets in the

relationship discovery phase.
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In the constraint discovery task, MOGO occasionally misclassifies a
nonfunctional relationship set as a functional one. The most common cause of this was
when the canonicalized table values contained lists of items instead of a single value.
MOGO treats all table values as singleton objects and uniformly constrains relationship
sets with the object sets that contain these values as functional. In cases where table
values contain lists of objects, this behavior is incorrect.

The final area in the constraint discovery task that MOGO struggles with is in
tables that contain arbitrary rows and columns that contain totals. When a column or row
only contains values that are the computed sums or averages of the other values in the
table, MOGO does not correctly identify these computed values. Only when the row or
column represents a conceptual aggregation of the other values, such as a state population
containing the computed sum of the populations of the cities in that state, does MOGO

correctly identify the computed value.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

We have created a system called MOGO that automates the generation of mini-
ontologies from canonicalized tables of data. MOGO uses a novel approach to ontology
generation by combining both spatial and linguistic clues for generating conceptual
models, and it is easily extensible allowing the addition of new algorithms at run time
without the need for program recompilation.

Experimental results show that MOGO is able to automatically identify the
concepts, relationships, and constraints that exist in arbitrary tables of values with a
relatively high level of accuracy — with F-measures of 90%, 77%, and 90% respectively
for concept/value recognition, relationship discovery, and constraint discovery in web
tables selected from the geopolitical domain. This automation can significantly reduce

the work required to generate ontologies from canonicalized tables.

5.1 Future Work

The base set of algorithms MOGO uses to generate mini-ontologies cover many
of the common patterns found in tables but they do not constitute an exhaustive set of
algorithms for table conversion. The following possibilities for future work include both

algorithm refinements as well as other possible applications for MOGO.

5.1.1 Linguistic Processing
Many of the algorithms in MOGO take advantage of external lexical resources
using MOGQO’s lexical service. Our current implementation of this lexical service only

uses WordNet [14] for querying lexical information. Future work could be done not only
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in how WordNet is used by the lexical service, but also in the incorporation of other

external linguistic resources.

5.1.2 Data Frame Library

MOGO makes frequent use of a data frame library for recognizing complex data
types using its data frame library service. The idea of data frames has been well thought
out and successfully implemented [10] but the set of data frame recognizers in the library
is still somewhat limited. Increasing the coverage of the set of data frame recognizers in

the data frame library could significantly increase MOGO’s effectiveness.

5.1.3 Domain Specific Algorithms

All the algorithms MOGO uses to generate mini-ontologies are designed to be
very general-purpose algorithms. It is very likely that tables from specific domains
would benefit from algorithms written specifically for that domain. Such algorithms
might be able to recognize common abbreviations, formats, or terms specific to a
particular domain. These algorithms could be written to run in addition to or in place of

MOGQO’s algorithms.

5.1.4 MOGO as Part of a Semantic Web Annotation System

MOGO’s primary goal is to function as the second component of the larger
TANGO [21] project. The TANGO project focuses on automating the process of
creating an ontology from the concepts, relationships, and constraints found in sets of
tabular data. Another possible application for MOGO would be to use the resultant mini-
ontologies as extraction ontologies [11]. Extraction ontologies are useful for annotating
source tables with ontology information thereby making those tables accessible as part of

the semantic web [3].
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APPENDIX A - EVALUATION TABLES

This appendix includes images of all the original HTML evaluation tables along

with the mini-ontologies generated by MOGO for each table. Object sets with labels

beginning with “osmx” followed by a number are equivalent to unlabeled object sets.

River

1.7 Mile

27 |Amazon

Yangtze
(Chang Jiang)

4. |Mississippi - Missoun

Yenisel - Angara -

=
Selenga
B Yellow
’ {Huang He)

Length | Drainage

Length (miles) area
K miles ared
{fkm) b b4 (km)
6B50 4135 3,349,000
6400 |3980 5,915,000
6300 |3817 1,800,000
6275 |3802 2,980,000
5533|3445 2,580,000
5484 3395 745,000

Average
discharge
(s}

5,100

215,000

31,500

16,200

19 600

2,110

_____________________
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Outflow [

Mediterranean Sea

Atlantic Ocean

East China Sea

Gulf of Mexico

Kara Sea

Bohai Sea
(Balhae)

F======="" i
-- -_:4'_——-{ osmx170 i
1

|\ ;

Countries in the drainage basin

Ethiopia, Eritrea, Sudan, Uganda,
Tanzania, Kenya, Rwanda, Burundi,
Eqypt, Democratic Republic of the
Congo

Erazil, Peru, Bolivia, Colambia,
Ecuador, Wenezuela, Guyana

F.R. China

United States (98.5%), Canada
(1.5%)

Russia, Mongalia

P.R. China



Rank
M

Height
Mountain (4 | ()"
]
Mount Everest!
SagarMatha /|5 5480)
Chaormolungma
k2
Godwin Austen g
Kangchenjunga 8 586
Lhotse 8516
Makalu 8485
Cho Oyu 3,183
Dhaulagiri 8,167

Height
{f(:}lgé Range
Mahalangur

Ll Hirnalaya

28,251 | Baltoro Karakoram

Kangehenjunga

28,189 Hirnalaya

Mahalangur

27,340 Hirnalaya

Mahalangur

27 838 Hirnalaya

26 564 M.ahalangur
Hirnalaya

26,795 Dhaulagiri Himalaya

Region™
M

Mepal /
Tibet

Kashmir
(Pakistan /
Hinjiang)
Mepal /
India

Mepal /
Tibet

Mepal /
Tibet

Mepal /
Tibet

Mepal

Coordinatest

€ 27597
BE°5531"E

) a5a257M
76°30'48"E

¢ 274209
850549 E
O 27ETA2N
86°55'59"E

€ 2753210
87 0519"E

) 280533
B6°39'39"E

¢ 2ana14sm
G372936"E

. Parent
Prominence

int
m! mountain

8,848 none

4 017 | Mount Everest

3922 Mount Everest

E10|Mount Everest

hount Everest

2,368 {Lhotse)

2,340 Mount Everest

3,357 | Mount Everest

First
ascent

I

1953

1954

1955

1956

1955

1954

1960

Ascents®!
(attempts)

145 (121

45 (44)

38 (24)
26 (26)
45 (52)
79 (28)

51 (39)
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U.S. Muslim Population Table

Population Percent of
Ethnic pure Total .
G . 1000 Muslim Definition of Terms
reuping {1990)
Population
B African-Americans: Those
African- persons of African descent
American 2100 42.0 native to the United States of

America.

I South-Asians: Those of

Indian/Pakistani, Bangladeshi,
South =ti Lankan, or Afghan descent
Asians 1220 244 now residing in the United
otates as citizens or permanent
residents.

IR Arabs: Feople fram
Arabic-speaking countries of the
Arabs B20 12.4 Mliddle East and Morth Africa
wha are permanent residents ar
citizens of the United States.

IR Africans: People from the
African continent who are

Africans 260 5.2 citizens ar permanent residents
of the United States
B lranians: People of Persian
Iranians 180 16 descent, usually from Iran, who

are citizens or permanent
residents.

45




Muslim State Population Table

‘ o | Population | M | Fercentof Tota
{1,000} Population
| California | 1000 | 20.0 | 3.4
| NewYork | 800 | 16.0 | 47
| Minois | 420 | 8.4 | 35
| New Jersey | 200 | 40 | 25
| Indiana | 180 | 36 | 3.2
| Michigan | 170 | 34 | 1.5
| virginia | 150 | 30 | 24
| Texas | 140 | 28 | 0.7
| Ohio | 130 | 26 | 1.2
| Maryland | 70 | 1.4 | 1.4
:;- Muslim Population i E- Percentage Total Muslim Populatior:, i Percent of Total State Populatidin
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MEMBERSHIP 5726149

MISSIONS 15
TEMPLES 1
CONGREGATIONS 1,074
FAMILY HISTORY CENTERS 156
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MEMEERSHIP 470,903

MISSIONS 27
TEMPLES 4
CONGREGATIONS 1,756
FAMILY HISTORY CENTERS 284
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Tax Rates Around the World

{(Mote: Cnly the underhined countries are currently ready)

Income Tax .

Country Corporate Individual vat
Argentina 35% 0-35% 21%
Australia 20% 17-47% 10%GST
Austria 29% 21%-50% 20%EsT
Belgium 33.99% 25-50% 21%
Brazil 34 % 15-27.5% 17-25%
Bulgaria 10% 10% 20%
Canada 19,5%(federal]l  15-29%i(Fedaral) 5% gst)
China 25% 5-45% 17 %
Cyprus 10% 20-30% 15%
Czech Rep. 21% 15% 19%
Denmark 24 %% 28-50% 25 %%
Egypt 40% 20-40% - v
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Table 1: Distribution of net worth and financial wealth in the
United States, 1983-2001

Total Het Worth

Top 1 percent | Hext 19 percent | Bottom 80 percent

1983  F38% 47 5% 18.7%
1989 | 37.4% 46 2% 16.4%
1992 |  372% 46 6% 16.3%
1995 |  aE.5% 45 4% 16.1%
1998 | aE1% 45 3% 16 6%
2001  334% S1.0% 15.5%
pooTTTTTTTTTTTTT T H
| Total Net Worth Next 19 percent i
A
_________________________________ [ TTTTTTTTTmmmmmmm e
Tl Net Worth Top 1 percent Toal Net Wortn Bton g0 percn
s
| Year |

50



Table 2: Wealth distribution by type of asset, 2001

Investment Assets

Top 1 percent | Hext @ percent Bottom 0 percant
Business equity 515% 325% 10.4%;
Financial securties 58.0% 30055 11.53%
Trsts 48 55 40 4% 15.5%
Stocks and noatual fands 44 1% 40 4% 15.5%;
Hon-home real estate 34 9% 43 6% 21 5%
TOTAL 47.5% 370 14 5%,
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Table 4: Percentage of wealth held by the Top 10%0 of the adult population
in varions Western countries

wealth owned

country by top 10%
Saritzarland T1.3%
Tmited States H2 3%
Dierunark B5.0%
France A1 .0%
Sereden 55.8%
TE 56.0%
Canada 55.0%
Maovaray 50.5%
Gerrnany 44 4%,
Finland 42.3%

po===be= i
] 1
i country |
I 1
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Fegion

Maorth America

CentralfSouth America

Europe
Africa
Middle East
Asia

Cther

Fercent of
warld
population

17
5.52
862
10,66
9.83
5218
3.14

Fercent of
world net
worth (PP

271
B.51
2642
1.52
507
294
3.7

53

Percent of
wotld net
wirth
(exchange
rates)

3439
4.34
2919
0.54
3.13
2561
256

Fercent of
world GOP
(PPP)

23.88
5.49
228
236
569
31.07
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Fercent of
warld GDP
(exchange
rates)

3367
.44
27 06
1.01
4.1
241
3.38




Five most populous incorporated places in the United States (2006)!"4110'4=]

Population Metropolitan
Rank City within Area Region!'*?!
eity limits popul=tion rank
1| Mew York City 8,214,426 18818536 1] Mortheast
2|Los Angeles 3,849,378 12950129 2 West
3| Chicago 2,833,321 8505748 3 Midwest
4| Houston 2,144,491 5539949 = South
5| Phoenix 1,512,986 4039182 13 West
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no.

— RI [I=N |RE ar=2 [T | VTN [ |
(=

calculation Jatitude |1 fud by ariant: metropolitan
hame 2008 latitude | longitude | counfry naine varlants area
LAbidian 3900546 [5.33° |[4.03°W |[Lrery Coast
Lhcora 2280216 [5.56° |[0.20°W  |[Ghana
|Eddiz Abeba |3 144 918 |9.03°N |38.74°E [Ethiopia Addis Abeba, Adis Abeba, Addis Ababa, Finfinnee, Shaggar
Aora 13590073 |27.19°N[78.01°E  |[India Agara, Akbarabad
IAhmadabad |3 867 336 |23.03°N[72.58°E  |India Armdabad, Ahmedabad, Ahmadabad
al-Bagtah 1861523 |30.50°N|[47.83°E  |[rag al-Basrah, Basra, Bassora, Bassorah, Bussora, Bussorah, Busra, Busrah
Lleppo 1671673 |36.23°M|37.17°E  |Syma Halab, Halab:, Haleb, Alep, Heleb (Halab
\Alexandria  ||4 247 414 [31.22°N)|29.95°E  ||[Egvpt al-IskandarTyah, al-Iskandariyah, El Iskandariva, Alexandrie
. al-Taza'ir, Alger, Algier, Al-Tarair, Al-TJaza'ir, El Djazair, El-Jazair, El-Djezair,
L lgiers 2155051 [36.77°H|[3.04°E  ||Algeria Tarmurt 1 Ldzayer
al-Hartim Ao -
et 1594833 |15.64°N|32.52°E  ||Sudan Sati an-1T1, Khartum BahT, Ehartoum Babri, Khartum North al-E hartum
o o oo o e e
1
1 .
I calculation
b o o o o o o o
2008
Geographic Coordinate
r====" ===1 yTT=//======
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Gross domestic product, income-based

2003 2004 2005 2006 2007
% millions
Gross domestic product at market prices 1,213,175 1,290,828 1,375,080 1,446,307 1,531,427
Wages, salaries and supplementary labour income 621,003 654,357 694,041 737,382 782,290
Corporation profits before taxes 144,501 169,151 189,357 198,859 210,426
Gawernrment business enterprise profits before taxes 12,604 12,923 14,578 13,823 15,455
Interest and miscellaneous investrnent income 49,989 54,109 61,070 65,310 68,684
Accrued net income of farm operators from farm production 1,439 3,106 1,321 344 552
Met income of non-farm unincorporated business, including rent 77,181 51,037 83,636 85,980 89,777
Inventory waluation adjustrent 4,262 -1,747 -933 -1,775 2,968
Taxes less subsidies on factors of production 56,072 58,998 61,847 64,421 66,949
Met dornestic product at basic prices 967,051 1,032,534 1,104,917 1,164,344 1,237,131
Taxes less subsidies on products &4,380 59,535 94,334 97,161 100,133
Capital consurnption allowances 161,817 168,274 176,338 184,750 193,814
Statistical discrepancy -73 13z -509 52 349

Sowurce: Statistics Canada, CANSIM, table (for fee) 380-0001 and Catalogue no, 13-001-X,

Last modified: 2008-03-03.

osmx25
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Land and freshwater area, by province and territory

Total area Land Freshwater % of total area
kmz
Canada 9,984,670 9,093,507 891,163 100.0
Mewfoundland and Labrador 405,212 373,872 31,340 4.1
Prince Edward Island 5,660 5,660 o 0.1
Mova Scotia 55,284 53,338 1,946 0.6
Mew Brunswick 72,908 71,450 1,458 0.7
Quebec 1,542,056 1,365,128 176,925 15.4
Ontario 1,076,395 917,741 158,654 10.3
Manitoba 647,797 553,556 94,241 6.5
Saskatchewan 651,036 591,670 59,366 6.5
Alberta 661,848 642,317 19,531 6.6
British Columbia 944,735 925,186 19,549 9.5
rulkon Territory 482,443 474,391 8,052 4.8
Morthwest Territaries 1,346,106 1,153,085 163,021 13.5
Munavut 2,093,190 1,936,113 157,077 21.0

Source: Matural Resources Canada, Geofccess Division,

Last modified: 2005-02-01.

I territory
I 1

osmx81
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Table 2.2 Current AAC on Crown Lands

Units

ML2

M5

ME

Qe

oM

MBS

=14

AB

BC

Start of
Current
Period

year

2006

2000

2001

2002

1995

2001

2006

2001

2005

2003

End of
Current
Period

year

2010

2010

2005

2007

1999

2005

2010

2005

2006

2003

Total
Crown
Land

000 ha

37 856

263

1 100

3 362

74 286

74 1029

25 o424

27 881

32 974™

87 5532

Productive
forest
Crown
Land

000 ha

g 506

256

1030

3 050

45 907

23 §Eef

12 2994

11 975

22 4540

49 145

Area
awvailahle
for
harvest*

000 ha

2 353

216

590

2 901

M/

23 ggaf

Mg

M/l

M/

72 o34k

Current
AAIC
softwood

000 m?

2 312

300

200

3 494

32 070

20 653

5 g7l

4 B34

15 ogzl

71 116!

Current
AAIC
hardwood

000 m?

120

160

3E0

1 870

12 598

11078

2 74ph

3 388

11 172

3218

] 1
i End of Current Period '<——— 0smx89
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MNewfoundland — Island Only

2.4 Wood Supply Projections

Crown Land Industrial Tenure2

Units 2000 2010 2050 2100 2150
Annual supply softwood ann m? 1987 1987 1987 1987 1987
Growing stock softwood oo m® || 104 650 || 102 050 || 95 050 || 94 400 || 103 950
annual supply hardwood® 0oo m? M A M A M A M A M A
Growing stock hardwood2 0oo m? M A M A M A M A M A
|Regenerating area | ) | 23 | 22 | 24 | 26 | 28
Immature area % | 27 | = | 3 | 40 | 38
Mature area % | 50 | 48 | 41 | 34 | =24
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Canadian Island Mational Parks and Island National Park Reserves

Name of Park’'Reserve

Name of Island

Date of Creation

Area (km?)

Arctic Islands

Aulavik Banks 1992 122000
Cluttinirpaag Ellesmers 1983 377750
Sirmilik Baffin 1992 222520
Auyuittug Eaffin 1976 19707 .4
Pacific Islands

Swal Haanas Queen Charlotte 1958 14950
Facific Rim Yancouver Broken Group 1987 2858
Sulf 1zlands Gulf Islands 2003 330

Name of Park/Reserve
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Province or territory Peak Range or other region [+ Height {m} Height {ft)

Yukon fount Logan St. Elias Mountaing 5,959 19,950
British Caolumbia tount Fairveather ™ St. Elias Mountains 4 F63 15,299
Alberta hount Columbia™ Rocky Mountains 3,747 12,293
Morthwest Territories Unnamed Peak, referred to as Mount Mirvana | Backbone Ranges 2773 9098
Munawut Barbeau Peak Britizh Empire Range 2816 8583
Mewfoundland and Labrador | Mount Caubwick = Taorngat Mountains 1,652 5420
Qluebec tont D'lberville = Torngat Mountains 1,651 a417
Saskatchewan Unnarmed point Cypress Hills 1,468 4816
tanitoba Baldy Mountain Duck Mountains G832 2730
Mew Brunswick Mount Carleton 817 2 R30
Ontario Ishpatina Ridge = 593 2274
MNova Scotia White Hill Cape Breton Highlands 432 1745
Prince Edward lsland Glen Walley ((—}' 46720, B3725%) Cueens County 142 466
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The 100 Highest Major Mountain Peaks of Canada

Rank Peak Province Range Elevation Prominence Isolation
1 Mount Logan™ Yukon Saint Elias Mountains fgf;? ff;:;;l 83283?:11 t::
2 Mount Saint Elias LL;ZT(Z Saint Elias Mountains 15843382 13145202 4;64r:|m
3 MWount Lucania fukan Saint Elias Mountains 15?212‘?52 13003110'; Qfls;rr:i
4 King Peak Yukon Saint Elias Mountains 1561;?3,22 13?1?535‘;” ‘;3 l:_::
=3 Mount Steels Yukan Saint Elias Mountains ;580234% ;;g;; ?52? t::
B hount YWood Yukon Saint Elias Mountains flléagggr:[ 13'18%?3;” 1181'?5 l:"::
7 Mount Yancouver fukan Saint Elias Mountains ;158;;'; 28?928? ;3?93 l:::
a] hount Slaggard ukon Saint Elias Mountains ;15?;:82 fgi?ﬁ;l 1?5 t::
9 |Fairweather MountainP! Britisﬁlgsoll:mhia Saint Elias Mountains ;156;;;; 13293;;; 2?25?:1:“
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