Dynamic Matchmaking Between Messages and Services

in Multi-Agent Information Systems

(A Problem Discussion)

Muhammed Al-Muhammed and David W. Embley

Department of Computer Science

Brigham Young University

Provo, UT 84602

USA

{mja47, embley}@cs.byu.edu

Problem Statement

Agents do not work in isolation; instead they work in cooperative groups to accomplish their assigned tasks. In a multi-agent information system, we assume that each of the agents has and acquires knowledge. We further assume that it is important and useful to be able to share this knowledge and to provide useful knowledge sources to enable activities such as comparison shopping, meeting scheduling, and supply-chain management.

 In order for agents to cooperate, they need to be able to communicate with one another. Communication essentially needs mutual understanding among agents. To achieve this mutual understanding among agents, researchers frequently make three assumptions:

1. Agents share ontologies that define the concepts used by these agents;

2. Agents communicate with the same agent communication language so that they can understand the semantics of the messages; and

3. Agents pre-agree on a message format so that they can correctly parse and understand the communicative act.

These three assumptions are sufficient for agents to communicate; however, they impose many problems. First and foremost, they imply that agents cannot communicate (interoperate with one another) without agreeing in advance on these three assumptions. Hence, these assumptions preclude agents from interoperating on the fly (without a-priori agreement). Second, they explicitly mean that unless one designer or a group of designers (with full communication among them) develops these agents, the communication among agents is not likely to succeed because all or some of the three assumptions will not hold. Third, the assumptions require a designer who develops a new agent for a multi-agent system to know what ontologies other agents in that system use, what language they speak, and what message format they use. This imposes a stiff requirement on an outside developer.

 The importance of making agents interoperate on the fly becomes paramount. Indeed, in an interesting paper on agent interoperability, Uschold says that “the holy grail of semantic integration in architectures” is to “allow two agents to generate needed mappings between them on the fly without a-priori agreement and without them having built-in knowledge of any common ontology.” Consequently, in our research we are working on eliminating all three assumptions and allowing agents to interoperate on the fly without having to share knowledge of any ontology, language, or message format.

Research Questions

To achieve interoperability among agents on the fly, we must have answers to five major research issues: (1) translating between different ontologies, (2) mapping between services and messages, (3) reconciling differences in data formats, (4) reconciling type mismatches, and (5) handling outputs of services so that only the information requested by a message is provided.

1. Given that agents do not share ontologies—they may represent the same concept using

 different vocabularies—how can translation among different ontologies be done?

 1.a. How can the concepts of independent ontologies—related to the same domain—be

 matched? In particular, answers for the following sub-questions are vital.

 1.a.1. How can the semantically related concepts be determined?

 1.a.2. How can the concepts whose names are the same but whose semantics are

 different be distinguished?

 1.b. What is the information needed to make the translation work?

1.b.1. Can this information be extracted from the agents themselves?

1.b.2. What other resources are needed?

1.b.3. How much information from a multi-agent system is sufficient to do the translation

 correctly?

2. How can a message be mapped to an appropriate service?

 2.a. How can the semantics of a message be captured?

 2.a.1. What is the provided information—what will be the values for the service input

 parameters?

2.a.2. What is the required output—what is the message is asking for?

2.a.3. What are the constraints imposed on input (output) parameters?

 2.b. How can a message be mapped to some service provided by a receiving agent? This

 question requires the ability to know the semantics of a service, which requires answers to

 the following.

 2.b.1. What are the semantics of the input parameters and how do these input parameters

 match with those of a message?

2.b.2. What are semantics of the outputs and do the outputs constitute an answer for a

 message?

2.b.3. What are the constraints imposed on inputs and outputs and how can the mismatches

 between service input (output) constraints and message input (output) constraints

 be resolved?

3. How can differences among data formats (different date formats, time formats, currencies) of

 the communicating agents be recognized the and then converted correctly?

 3.a. What are the problems that arise when converting from one format to another and how

 can they be resolved?

 3.b. How can alternative value representations be guaranteed to match under various

 conversions?

4. How can the mismatches between types be handled?

 4.a. Can the proper conversion be guaranteed?

 4.b. Can the loss of precision be recovered?

5. How can any unwanted output of a service be filtered out?

 5.a. How can the expected output, which is represented in the local vocabulary of a receiving

 agent, be recognized?

 5.b. Then, how can this output be sifted so that only the required information is delivered to

 a requesting agent?

We realize that fully resolving these questions is an extremely hard problem. Nevertheless, we believe that the benefits of resolving these issues are of great value. These benefits include: (1) easy development of agents because developers need not be concerned with ontologies other agents use, agent communication languages other agents use, and the format of messages and (2) increased interoperability as agents can generate needed mappings on the fly. Thus, tackling these questions and solving the heterogeneous, semantic-mapping problem would be of great benefit.

