
An Integrated Ontology Development
Environment for Data Extraction

Stephen W. Liddle1,∗ Kimball A. Hewett2 David W. Embley2,∗

1Information Systems Group and Rollins eBusiness Center
2Computer Science Department

Brigham Young University, Provo, Utah 84602, U.S.A.
liddle@byu.edu, khewett@epixtech.com, embley@cs.byu.edu

Abstract: Data extraction is a necessary technology to deal with the huge and grow-
ing collection of unstructured and semistructured information available on the World
Wide Web. Ontology-based data extraction is a robust approach, but the construction
of ontologies is a technical task requiring the services of a human expert. We present
a Java-based tool for the graphical creation and testing of data extraction ontologies.
This tool leverages standards such as Java and XML to provide a portable, extensi-
ble, maintainable, feature-rich environment. This tool reduces the burden on expert
ontology developers and simplifies the task of ontology creation.

1 Introduction

The amount and variety of information available on the World Wide Web continues to grow
at a dramatic pace. Unfortunately, most Web data is mainly unstructured or semistructured,
making it relatively difficult to search. Keyword searches tend to be imprecise, too often
finding many irrelevant candidate responses while missing highly relevant results [Ape94].
We cannot conduct traditional database queries, which tend to give precise results, because
the Web lacks the regular structure necessary for such queries.

Recently the Semantic Web has been proposed as a possible solution to this problem
[BLHL01]. However its timeline has a long horizon, and even if it is ultimately successful,
not all Web participants will supply precise metadata to characterize posted information.
Furthermore, different readers may characterize posted information differently, so that a
single, author-supplied meta-description will not be sufficient for all potential uses of the
information.

Other approaches include virtual database technology [GHR97], Web data modeling (e.g.
[AMM97]), natural-language processing (e.g. [CL96]), semistructured and Web query
languages (e.g. [ACC+97]), and the mediator-related concept of wrappers (e.g. [AK97]).
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(See [LRNdST02] for a thorough survey of this related work.) Wrapper generation is the
most common approach to supplying a layer of structure for unstructured and semistruc-
tured sources.

A wrapper adds structure to data by extracting portions of the data in a wrapper-defined
way. For example, someone wishing to build a database of facts about countries might
design a wrapper to extract data from the CIA World Factbook Web site [CIA02]. A visitor
to the page about Ukraine would discover “land: 603,700 sq km” which indicates the land
area of the country in square kilometers. Austria’s page contains the phrase “land: 82,738
sq km”. A wrapper could be programmed to recognize the “land:” and “sq km” tokens
and then extract the bounded integer. We could then issue a structured query through the
wrapper for countries with an area greater than, say, 50,000 but less than 1,000,000 square
kilometers. It is common for wrappers to use specific textual items (like “land:” or “sq
km”) or hidden HTML tags (such as the <i>...</i> tags used to make “land:” appear
in italics on the Web page) as markers to indicate where information of interest is located.

A major difficulty with the wrapper approach is that Web sites change frequently, often
breaking the wrappers. Even if the information content is the same, changing its layout
or the associated HTML markup can easily break most wrappers. Significant effort goes
into implementing and maintaining site-specific wrappers. There are several projects that
seek to ease the burden of wrapper implementation and maintenance (e.g. [Ade98, AK97,
DEW97]), but the task remains difficult.

Our approach to data extraction [ECJ+99] uses an application ontology that describes a
data-rich, ontologically narrow domain in a conceptual fashion. From this application
ontology our system automatically generates a single wrapper that can be applied to any
page relevant to the application domain.

Because the ontology describes information of interest in a general way, our approach is
(1) applicable to a wide variety of Web pages relevant to the given domain, and (2) resilient
to changes in relevant Web pages over time. The most difficult aspect of our robust and
resilient approach to data extraction is the need for a domain expert to represent domain
knowledge by manually creating an application ontology.

In this paper we present an integrated ontology development environment that helps do-
main experts by providing a graphical interface for ontology creation and testing. The
remainder of the paper is organized as follows. We explain the concepts of ontologies and
our particular approach to data extraction in Section 2. Then we describe our integrated
ontology development environment in Section 3. We report on the implementation process
and lessons learned in Section 4. We conclude and discuss future work in Section 5.

2 Ontology-Based Data Extraction

Ontology is the branch of science concerned with the nature of being and relations among
things that exist [Bun77]. In computer science, the term generally refers to the specifica-
tion of some conceptualization. While this is similar to the definition of conceptual model,
ontologies differ from conceptual models by (1) focusing especially on extended defini-
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Figure 1: Data Extraction and Structuring Process

tions of relationships and concepts, and (2) having the explicit goal of sharing knowledge
by defining a common theoretical framework and vocabulary so that interested agents can
make and share a particular ontological commitment [Gru93].

For our purposes, an ontology is an instance of an augmented conceptual model that de-
scribes not only objects, relationships, and their constraints, but also rules regarding how
objects may appear in an unstructured source. We start with an object-oriented conceptual
model, OSM [EKW92], and add data frames [Emb80] to describe additional information
needed for data extraction. Data frames specify patterns and keywords that may indicate
the presence of an instance of a particular kind of object. They also specify data conversion
rules and other useful information.

As illustrated in Figure 1, our data extraction method consists of the following five steps.

1. We develop an application ontology that describes an area of interest.

2. We parse this ontology to generate a database scheme and to generate rules for
matching constants and keywords.

3. To obtain data from the Web, we invoke a record extractor that divides an unstruc-
tured Web document into individual record-size chunks, cleans them by removing
markup-language tags, and presents them as individual unstructured record docu-
ments for further processing.



1. Car [-> object]; Car [0:1] has Year [1:*];
2. Car [0:1] has Make [1:*]; Car [0:1] has Model [1:*];
3. Car [0:1] has Mileage [1:*]; Car [0:*] has Feature [1:*];
4. Car [0:1] has Price [1:*]; Car [0:1] has PhoneNr [1:*];
5. Year matches [4]
6. constant {extract "\d{2}"; context "\b’[1-9]\d\b";
7. substitute "ˆ" -> "19"; }, ...
8. Mileage matches [8]
9. keyword "\bmiles\b", "\bmi\.", "\bmi\b",

10. "\bmileage\b", "\bodometer\b";
11. ...

Figure 2: Car-Ads Extraction Ontology (Partial)

4. We invoke recognizers that use the matching rules generated by the parser to extract
from the cleaned individual unstructured documents the objects expected to populate
the model instance.

5. Finally, we use heuristics to determine which constants populate which records in
the database scheme. These heuristics correlate extracted keywords with extracted
constants and use relationship sets and cardinality constraints in the ontology to
determine how to construct records and insert them into the database scheme. Once
the data is extracted, we can query the structure using a standard database query
language.

To make our approach general, we fix the ontology parser, Web record extractor, keyword
and constant recognizer, and database record generator; we change only the ontology as we
move from one application domain to another. A significant contribution of this approach
is that we only perform the manual step, ontology development, once for a particular
domain. This ontology covers all Web pages for that domain, regardless of HTML format.
Other approaches that rely on HTML structure or the order of data within an unstructured
record must specify multiple wrappers (one for each structure pattern), and when a Web
page undergoes a format change (a common occurrence), such wrappers must be rewritten
to accommodate the new format [GHR97]. Our system generally does not rely on the
order of data or the specific nature of a particular Web-page layout.

We now consider a specific example. Figure 2 shows a portion of an application ontol-
ogy for the domain of car advertisements. The first four lines define object sets (such as
Car, Year, Make, and Model) and relationship sets (such as Car has Year and Car has
Make). The constraint [–> object] indicates that Car is the primary object set of interest
for this domain, so when we extract data from a record using this ontology, we expect
to find information about a single car. The numbers in square brackets are participation
constraints. For example, Car [0:1] has Year [1:*]; means that a car may have at most
one associated year, but a year corresponds to one or more cars.

Lines 5–10 in Figure 2 give portions of the data frames associated with object sets Year and
Mileage. Here we see that data frames include constant and keyword phrases composed
of various regular expressions. On lines 6–7 we find a description of one form of year.



If the text ’97 were to appear in the unstructured source, this data frame would extract
the constant 1997. We can interpret this Year data frame as “extract two digits in the
context of a word boundary, apostrophe, a digit between 1–9, any digit, and another word
boundary; then substitute 19 at the beginning of the string.” The effect of this specification
is to treat two-digit years from ’40–’99 as 1940–1999. Presumably other specifications in
the full data frame would handle other forms of years such as two-digit years from ’00–’03,
four-digit years, and so forth. The Mileage data frame shows how to specify keywords
that might indicate proximity to a mileage constant. As indicated by this example, finding
the word “miles,” the abbreviation “mi,” or the words “mileage” or “odometer” suggests
that a mileage value could appear nearby. We use the well-accepted Perl syntax to write
regular expressions.

Data frames describe specific forms of constants that may appear in a source document.
The structural specifications of object sets, relationship sets, and constraints describe how
concepts in the car-ads domain relate to one another. We use these descriptions to guide
the process of structuring extracted constants into records. See [ECJ+99] for more details.

The full extraction ontology for car advertisements comprises over 600 lines of code. The
full Year data frame has eight different types of constants (each with its respective ex-
tract/context/substitute phrases as needed). The Make data frame contains dozens of dif-
ferent manufacturers, such as Alfa Romeo which is represented by the regular expression
“\balfa(\s*romeo)?\b”. Many of the regular expressions in the ontology are more intri-
cate. As this example shows, ontology development—even for a relatively narrow domain
like car ads—can be a complex process. The integrated ontology development environ-
ment, described in the next section, provides features to facilitate this creation activity.

3 The Integrated Ontology Development Environment

The integrated ontology development environment (or “Ontology Editor”) is a graphical
tool with three main components:

1. A structural model editor for defining object-relationship structures.

2. A data frame editor for graphically defining regular expressions used to identify
constants and keywords.

3. A document viewer that highlights phrases matching regular expressions.

Figure 3 shows the main window of the Ontology Editor. The structure is similar to that
of many graphics programs. The general architecture follows the “multiple document
interface” paradigm, so the user can have several ontologies open in child windows simul-
taneously. A tool bar along the top provides quick, graphical access to various common
functions.1 These are grouped into file operations (new, open, save), edit operations (align,

1The toolbar in Figure 3 also includes tools for creating behavior-oriented OSM elements that have no impact
on data extraction.



Figure 3: Screen Shot of Main Ontology Editor Window

distribute, change front-to-back order), and element creation operations (create object, ob-
ject set, relationship set, and so on).

The diagram in the child window of Figure 3 represents the same ontology as the one
expressed textually in Figure 2. OSM has fully equivalent textual and graphical notations,
as these figures indicate. However data frames do not lend themselves easily to graphical
diagrams because of the nature of regular expressions. We thus represent structural aspects
of extraction ontologies using the graphical notation (as Figure 3 shows), but we represent
data frames primarily with a textual notation (as Figure 2 shows).

The Ontology Editor makes good use of context-sensitive pop-up menus. For example,
right-clicking on the Car object set results in the pop-up menu in Figure 4. Right-clicking
on a relationship set displays a different pop-up menu with features tailored to the proper-
ties of relationship sets. The Ontology Editor supports various intricate details of editing
OSM model instances such as the high-level, lexical, read-only, and object-set object des-
ignations to which the pop-up menu in Figure 4 alludes.

The data frame editor in Figure 5 is central to the task of developing extraction ontologies.
Because data frames can be fairly complex, it is helpful to the human—especially one
who is a domain expert but not necessarily an ontology-development expert—to use a
GUI template to guide the creation of data frames. The other primary benefit of the data
frame editor is that it supports quick debugging of regular expressions by letting the user
select (1) a source file to view, and (2) colors to associate with various regular expressions.



Figure 4: Context-Sensitive Pop-Up Menu

In Figure 5 we see that the user has selected a color for the context expression \$[1-
9]\d{0,1},\d{3}, and in the text pane to the right the one matching string is highlighted in
the same color. This simple idea is very helpful to the ontology developer, because regular
expressions can be difficult to read, and minor changes in complex regular expressions
often have large effects on the results.

4 Implementation Issues

In this section we describe the lessons learned during our implementation of the Ontology
Editor and its predecessor tools. We began developing graphical editors for the OSM
conceptual model in the early 1990’s. We wrote our first implementation, OSM Composer,
in C++ for the Unix/X-Window environment. This tool used an experimental, high-level
graphical user interface library developed by the user interface research community. We
gave up some control over specific low-level features, but gained much by using an abstract
interface library. However, evolving language, compiler, and operating system issues made
it difficult (but possible) to port Composer from its original HP-UX platform to the other
open-source, Gnu-based platforms (we currently can run Composer on machines running
Sun’s Solaris operating system). For the sake of historical continuity, we may yet port
Composer to Linux, but it will require some effort to do so.

Even though C++ is an object-oriented language and OSM Composer uses an object-
oriented design, the architecture of Composer did not leverage the model-view-controller
approach sufficiently. Also, the event model was fairly monolithic, introducing too much
modality into the event handling code. As was common for its era, Composer used a



Figure 5: Screen Shot of Data Frame Editor Window

proprietary file format for storing model instances, making interchange with other tools
difficult. In spite of these weaknesses, Composer was an excellent first step. We were able
to test numerous ideas in graphical model development and see which ones best suited our
needs.

Our second tool project, OSM Allegro and Design Assistant [Car99], built on the ideas of
Composer but followed a different philosophy. Allegro was written again in C++, but this
time was targeted to the ubiquitous 32-bit Microsoft Windows platform. Allegro did lever-
age the model-view-controller architecture more effectively, and provided a more robust
end-user experience. Because Composer’s architecture was too rigid, the Allegro project
was especially attuned to the issue of providing an extensible platform where tools could
be plugged in. To demonstrate the success of Allegro in this regard, our research group
created the OSM Design Assistant, which leverages the COM aspect of Allegro to wrap
a model-design tool around the diagram editor. Our Design Assistant is a synergistic tool
that helps users apply the design transformations (such as functional dependency-based
data reductions) described in [Emb98].

Allegro turned out to be a great tool, but it also had limitations we wanted to avoid. Like
Composer, Allegro used a proprietary file format, making interchange a bit more complex.
Its Windows-based print capability was page-oriented, making it harder to turn Allegro
diagrams into figures we could embed in our publications. Though most of our community
has access to a Windows desktop, we still wanted to be able to edit diagrams on Unix and
Macintosh platforms. But the largest issue was integration with our other tools.



4.1 Standardizing on Java

We implemented our original data extraction toolkit in a combination of Perl, C++, and
then Java code, running on a Unix platform. Given the diversity of platforms, languages,
and tools we were using, it was clear we needed to simplify and do a better job of using
emerging standards which were beginning to solidify. Java was becoming sufficiently
robust for sophisticated graphical application development, and XML was rapidly gaining
acceptance (and importantly, programming support in the form of high-level, stable code
libraries). We had created a Java-based Pattern Editor tool to help with debugging complex
regular expressions, and newer elements of our code base were increasingly gravitating
toward Java. So it was a natural choice to decide on Java as the common platform for our
tools. We saw the following benefits to adopting Java:

• It has considerable momentum in industry and academia. In a laboratory where
graduate students come and go every year, it is easier to maintain code across gen-
erations of programmers when we use a popular language.

• Because of its virtual machine strategy, Java is highly portable across the platforms
we are interested in supporting.

• Java is a wonderfully robust language, supporting concurrency, exception handling,
regular expressions, graphics, GUI frameworks, XML, and a slew of other features.
Significantly, this large API support base continues to grow over time. The new
Java Web Services developer pack, for example, promises to simplify our future
XML development efforts.

• Though not an ideal language, Java simplifies certain critical aspects of complex
systems, most notably memory management and handling of pointers.

To be certain, we have experienced our share of frustrations with the Java platform. Mostly
this was due to our desire to access features not yet available, but Java’s rapid evolution
has also created maintenance difficulties. For example, at the time we began our work
on the Ontology Editor, the Java Foundation Classes, or Swing interface, had just been
released and worked with JDK 1.1.7. Later, JDK 1.2 integrated Swing into the core API.
The use of Swing and its advanced event model was a major help to our project. Such
features as support for drawing lines of variable widths was not available until JDK 1.2’s
Java 2D API. This advanced graphics API also provided very useful capabilities to rotate,
scale, and translate graphical objects. Ready support for highlighting text (for our regular
expression debugging feature) was not available until JDK 1.3. Since we finished the
first version of the Ontology Editor, the OROMatcher regular expression library has been
rewritten and incorporated directly into JDK 1.4.

Java performance, while not quite up to native implementation speeds, is acceptable, es-
pecially after the just-in-time compiler has done its work. Similarly, integration with the
Windows environment is sufficient (and ever improving), though not quite as refined as a
native implementation might be.



4.2 Standardizing on XML

When we created OSM, we developed graphical and textual notations for all components
of the model. A textual notation can be stored directly in a text file, but a graphical notation
requires representation in a well-defined, structured format. Our first model analysis tool
used a proprietary, textual format that was well organized for the purposes of performing
formal verification of model constraints. OSM Composer used this same format and added
a layer of presentation information in a separate text-based format. In the early stages of
tool development, it was quite helpful to be able to modify these files in an ad-hoc way in
a text editor. Allegro used a proprietary, binary format that was more efficient for the tool
to read and write, but was impractical to modify in an ad-hoc fashion.

XML was a natural choice for Ontology Editor’s external data representation format.
Many of the same issues arguing for the use of Java likewise favor the use of XML. There
is considerable momentum behind XML. It supports easy information interchange; it is
highly flexible. Drawbacks, such as the space inefficiency of lengthy, redundant markup
tags, are insignificant in the context of our application.

To implement XML support, we had to create a Document Type Definition (DTD) to
specify what constitutes a well-formed XML representation of an OSM model instance.
OSM was one of the first conceptual models to have a complete, formal definition [Cly93].
From the beginning, the OSM metamodel provided a solid foundation for our theoretical
research and tool development. The process of constructing a DTD was a straightfor-
ward representation of the metamodel in DTD syntax. Figures 6 and 7 respectively show
portions of the OSM DTD and XML version of the car-ads extraction ontology.

<!ELEMENT OSM (Style?,(ObjectSet | Object | GeneralConstraint | Note |
RelationshipSet | GenSpec | Association | Aggregation |
State | Transition | Conjunction | Macro | Lexicon)*)>

<!ATTLIST OSM x CDATA #IMPLIED
y CDATA #IMPLIED
order CDATA "0"
width CDATA #IMPLIED
height CDATA #IMPLIED
ID NMTOKEN "1" >

<!ELEMENT ObjectSet (DataFrame?, Style?, OSM?)>
<!ATTLIST ObjectSet

ID NMTOKEN #REQUIRED
Name CDATA "ObjSet"
...
CardinalityConstraint CDATA #IMPLIED > ...

Figure 6: DTD for OSM Extraction Ontologies (Partial)

Like Java, XML standards continue to evolve rapidly. The newer, more powerful XML
Schema allows for more precise characterization of constraints. We have developed an
XML Schema description of OSM that we will use in the next release of the editor. We
will also use the improved XML support available in the new Java Web Services API.



<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE OSM SYSTEM ’osm.dtd’>
<OSM x="0" y="0" ID="21" width="578" height="337">
<ObjectSet x="146" y="118" ID="1" Name="Car" Primary="Y" order="1">
</ObjectSet> ...
<ObjectSet x="213" y="9" ID="7" Name="Price" Lexical="Y" order="7">

<DataFrame SQLFieldLen="8">
<ValuePhrase Label="DollarPrice"

ValueExpression="[1-9]\d{0,1},{.3}"
ReqContextExpression="$[1-9]\d{0,1},\d{3}"
ReqContextExpColor="ff00ff00" />

</DataFrame>
</ObjectSet> ...

Figure 7: XML Version of Car-Ads Extraction Ontology (Partial)

4.3 Implementation Goals

We established three broad goals when we set out to create the Ontology Editor:

1. Portability. We wanted to be able to use the tool on a wide variety of platforms,
including Windows, Unix, and Macintosh. Java’s virtual machine approach let us
realize this goal.

2. Extensibility. By following Allegro’s lead and using a strong model-view-controller
architecture, we created a clean infrastructure that has room for extension. Also, use
of a pure Java solution enables integration of all our tools (as they are converted to
pure Java) within a single application framework.

3. Maintainability. The Ontology Editor’s code uses javadoc comments extensively for
internal documentation. Also, for improved communication we created high-level
conceptual models of the various Ontology Editor classes.

Extensibility and maintainability are difficult to quantify, but anecdotally, we are satisfied
with the level of achievement in these areas. For example, menus and toolbar buttons are
configured by a simple entry in a properties file (without the need to recompile the applica-
tion). Also, we explicitly tested the extensibility of the major DrawObj class from which
all drawable components inherit by asking another student programmer to implement the
OSM association and aggregation relationship sets. The student accomplished the task
in just a few days, spending most of his time on the relatively complex paint() method.
Since then we have successfully added major components to the Ontology Editor without
compromising its architecture.

5 Conclusion

In this paper we have reported on the results of a project that represents the culmination
of approximately a decade of tool development based around our theoretical research in



object-oriented conceptual models and ontology-based data extraction. Our goal in this
development effort has not been to create a commercial-quality tool, but rather an effec-
tive test bed for our academic research. We have reported on some of the history of that
development, and lessons we have learned along the way.

Because it is an important activity for Web users today, data extraction continues to be a
ripe area for research. We believe we will be able to further our research effectively by
using our integrated ontology development environment as the platform for future work.
We are confident of this because our graduate students continue to be able to leverage the
Ontology Editor platform several years following its initial version.

A more complete description of the initial version of our integrated ontology development
environment is found in [Hew00]. Improvements (such as automatic graphical layout of
ontologies specified using the older textual notation) were also introduced in [Cha03], and
we have current projects that will continue the evolution.

We expect to accomplish the following activities with the Ontology Editor in the future:

• Migrate from DTD to XML Schema for XML metadata.
• As they become available in pure Java (rather than the current mixture of Java and

C++) integrate our data extraction tools more thoroughly into the Ontology Editor
framework.

• Experiment with alternate, high-bandwidth means for creation of data frames. Two
ideas we are considering include using a spreadsheet-style data-input window, or
using a tree view for more rapid navigation. A masters thesis that is currently in
progress will experiment with these possibilities.

• Experiment with the structure of data frames and the process of debugging them.
Current techniques help debug “in the small” by identifying individual matches to
regular expressions. We could also highlight the results of the concept-structuring
step of the data extraction process, so the user can see a more global picture of the
effect of the data frame.
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