AUTOMATING THE EXTRACTION OF DATA

BEHIND WEB FORMS

by

Sai Ho Yau

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

December 2001

Chapter 1 Introduction

1.1 Problem Description

With the growing trend of using databases and forms to provide information through Web pages, a significant portion of the information on the Web can now only be obtained if a user fills in a form-like Web page which acts as an interface between the user and the serving database. From the server point of view, this paradigm provides better information management and a greater variety of ways to display information. From the user point of view, this paradigm increases flexibility and control over what data is retrieved and displayed. From a Web crawler’s point of view, however, this paradigm makes it difficult to extract the data behind the form interface automatically. This automation is desirable (1) when we wish to have automated agents search for particular items of information, (2) when we wish to wrap a site for higher level queries, and (3) when we wish to extract and integrate information from different sites.

There are many ways to design Web forms, and dealing with all the possibilities is not easy. Web form layouts have different combinations of form fields such as radio buttons, checkboxes, selection lists, and text boxes. Figures 1.1 and 1.2 show two typical Web form layouts for automobile classified advertisements. These two forms include selection lists and text boxes. Besides having various form fields, some Web pages lead to other forms for further inquiry. When a user enters a zip code in Figure 1.2, Figure 1.3 is returned for further processing. Occasionally, returned Web documents include both

[image: image1.wmf](

)

å

=

=

n

i

i

n

N

b

S

1

Figure 1.1: Typical Web Form From an Automobile Advertisement Web Site.
[image: image4.png]] R View Favoites Took Hep =
Jé 5D &@@8‘%- EF
ek T dm w e soch Foes Hiw T8 Db
| Acess [s thesisvweblomvinmebdscNborsucosssT\inaldos_Ohil =l et
| Links (IMovies (_1VisaCards &]Auta Auction of Uteh] Car Sterea Wiing Color Codes €] Customize Links &]DeltaHome &1 FreeHolmall >
4-Wheel Drive - JEEP 1993 WRANGLER, White, 2 Tops, 4 cyl. 5 spd., Am-Fm CD, Alloys, pampered. Ex.cond. §5000. 4]
813-877-4063.
I |
Sport Utility Vehicles - JEEP 1993 CHEROKEE COUNTRY, 4WD, 95K mi., all power, black, 1 owner, 6 cyl, well
maintained, $5800. 813-495-7756
Sport Utllity Vehicles - JEEP 1993 GRAND CHEROKEE 43(4- 6 cyl, excellent condition, lthr, 105K miles, green, CD player
$3900 813-961-0646
Sport Utllity Vehicles - JEEP 1989 CHEROKEE LAREDO- 434, 4dr, new A/C & paint, AM/FM cass. Exc cond!
$35000bo 813-282-7383 ext. 14
Auto Engines, Parts & Misc. - Jeep '87 Wrangler Hdtop $750. Full doors $750/pr. 5 OEM alloy whis $250. 5" custom stuls
Ribump $350. Engine lift & stand $200. Day 813-226-1465 or Eves 813-839-9303
4-Wheel Drive - JEEP 1986 CI7, reblt engine & clutch, 6 cyl. 31" tires, good solid body, runs great, $3100. 813-831-0391
4-Wheel Drive - JEEP 1986 CI7, new tires, new brakes, new seats, garage kept, $4,500 obo 727-365-1498
Trucks - Light Duty - JEEP 1985 -3/4ton PICKUP, 360-2bbl, 8 ton wench, tommygate, a/c, new street tires, extra off road
tires, camper top, many extras. $2500firm. Call Andy 813-294-3278
4-Wheel Drive - JEEP 1984 CJ7, auto trans, 6 cylinder, A/C, war winch, recent tires, starter, exhaust, carb, brakes, ignition,
steering & rear axle. Body in great shape. $5,900 813-805-7657
Automobiles For Sale - ACURA 2000 Integra LS, 5spd, Silver, Fully Loaded, Excellent Condition. Asking $16,500. 813-
784-4761
Automobiles For Sale - ACURA 1999 3.0CL, red, tan lthr int, auto, fully loaded, sunroof, 30k miles, excellent cond, $18,900.
813-503-7443
Autos and Transportation Results - 61 to 75 (1,841 Total)
SPONSORS
This page lists ads 61 through 75 out of 1,841
Automobiles For Sale - ACURA 1998 INTEGRA RS, $13,985 CROWN ACURA (727)507-8866
Automobiles For Sale - ACURA 1998 2.3CL, Light blue, low mi, exc cond, flly loaded, lthr, wood grain, sun rf, a/c, cruise,
$18,500. 813-926-3112
Campers-Travel Trailers - 1997 VIKING pop up Legend 2490. Roof AC, fiidge, awning, side dinette, couch $4400 813643-
0126.
|
[&] Dore [[My Conputer v

Figure 1.2: Web Form From a Different Car Advertisement Web Site.

retrieved data and a form for further processing.

Besides data and forms for further processing, returned pages might contain error messages. In case of unsuccessful retrieval, some error messages are easy to recognize automatically, such as the HTTP error message in Figure 1.4. Other error messages

are difficult to recognize automatically, such as the embedded error messages within the page in Figure 1.5. Users can usually understand these embedded messages, but automated understanding is difficult.

[image: image5.png]2 Automobile Search for New and Used Cars - Microsoft Internet Explorer

54 [81 W 1 stoncbieseach con’

AutomobileSearch.com rorth america

1-888-795-28

A worldwide Buyers and Sellers Marketplace

Services Type: |All Types B

P B Manfacturer. [Any Manufacurer =
Assosiaton Links
Location: [Ary Lovstion 5]

Top News Stories
Current Events Price from|[to [United States Dallars

Trade Magazines Year from: to

Financing
Want Ads o

Information

About Us Automotive
Contact Us Dealer List
ESC Toolbox

Members Only Headline News

USAutoNews.com
Tnuﬁorld
2000.com

Dealer Registration and Fees

Copyright © 1996-2000 by Equipmentsearch.com Inc. Al rights reserved.

NI

&1 Done [[[®imena

Sometimes all the data behind a form can be retrieved with a single query. At other times, the data must be obtained piecemeal using multiple queries with different

Figure 1.3: Resulting Form After the Form in Figure 1.2 is Submitted.

[image: image6.png]3 Used Cars. Sell Your Car, Auto Financing & Insurance - AutoTrader.com Home

icrosoft Internet Explorer

I

4 [81 i 1o st con?

A utoTrader D

Your car is wai

Find Your
Car Now!

Search the largest used car
inventory on the Internet. More than
1.5 million listings, updated daily

Select Make Enter Your ZIP Code

| EETE— i —)

NEw €Y "AutoTrader 5" AUCTIONS

Going once...going twice..buy orsell 2 car at By AutoTradercom aucions.

Not Sure Which | Sell Your Car Free | Want to Compare
CarYouWant? | fex mibonsutonbures | Insurance or

Let our Dasision Guids make | Srerf morth uih you Loan Rates?

the process = simple 3z
peint and slide

The biggest and
best used car
site on the planet

Auto Waraaty
Program

Interested in
Collector Cars, Boats,
RV's and
Motorcycles?

Visit aur parners sites

TRADER

© Ineret

AN

[image: image7.png]rosoft Internet Explorer [[oIx]
I5Ttborh- 35 A2 73 Esorh_ypesFriaei]| (P60

2 AutoTrader.com - Used Cars For Sale: Step 2 of

[Aces €7 /o atoracer convincarfindacar_fom2 ke

EXOTICS.

AutoTrader &

Your car is waiting.

Used Cars For Sale

Find Your
Car Now

Sell Your The Acura madel | want is [AllModels £ [—
Car Free
—_— From year to year
New Car Info
——— Within | Any Price Range %] cick and setect to change *
Finance And
Insurance Located within [30miles =] cioh sna setecttochange

Reviews & Info Results are sorted by price (@23)
Find A Doaler

* Setecting *Any Fios" will returm 2 search rsult hat includes vehiotes with na listed .

Decision Guide

Help
Home This will protect your right foot. *

Find Your Car tlow | Sell You Cat Free | aw Car Info | Finance & lnsurance | Revieus &
Information Find 3 Dealer| Desksion Guide | Help | Home Email Us

NI

[&] Done. =

Figure 1.4: Error Message Encompassing an Entire Page.

Figure 1.5: Error Message Embedded Within a Page.

form field settings. When data is obtained piecemeal, we may retrieve duplicate information. We would like to eliminate duplicate information, leaving only a clean set of retrieved data.

All these issues present difficulties for automation. How does a system recognize a form and its fields? How can a system automatically fill in the fields of a form and submit it? How can a system deal with retrieved data, duplicate information, possible error messages or error notification pages, and embedded Web forms inside retrieved documents? In this thesis, we tackle these problems and make automated Web form filling possible.

1.2 The Framework

With the motivation of tackling the problems and automating the data extraction process, we build a system to fill in Web forms automatically, extract information behind forms, screen out errors, filter duplicate data and merge resulting information. A larger, encompassing system takes the raw data returned from form filling and extracts information of interest. Figure 1.6 shows the framework of the system. The portion within the dotted area represents the work done for this thesis.

A Web form document is first input into the system. The system analyzes the Web form, fills in the form automatically by constructing a query based on the form fields, and sends it to the target site. Returned pages are checked for usable data or possible errors. The system filters possible duplicate data when multiple queries with various form settings are sent.

[image: image8.png]A HTTP 404 Not Found - Mi

osoft Intemet Explorer

I

4 [i v semobleseach am/rtod/ st

3 The page cannot be found

The page you are looking for might have been removed, had its
name changed, or is temporarily unavailable.

Please try the following

« If you typed the page address in the Address bar, make
sure that itis spelled correctly

« Open the wwn.automobilesearch.com hame page, and then
loak for links ta the infarmation you want.

« Click the ® Back button to try another link.

« Cliek € Search to look for informatian on the Internet.

HTTP 404 - File not found
Internet Explorer

&1 Done

Internet

N

[image: image9.png]Select Make
Select Model
Select Style

GREENLIGHT.COM

Find Your
Car Now

Sell Your
Car Froo

New Car Info

Finance And
Insurance

AutoTrader &

Your car is waiting.

Search Results

Reviows & Info

Find A Dealer

Used Cars For Sale

No Cars Found

We'e sorry, but there were no results that matched your criteria. Please modify

your search and try again, or click help for further information

,.:-:ﬁ:" You can’t predict

the fyture.

Help

Decision Guide

Find Your Car tlow | Sell You Cat Free | aw Car Info | Finance & lnsurance | Revieus &

Iformation Find 3 Dealer | Desiion Guide | Halp | Home

Email e

Home

Afewwrds of oautian about buying 2 oe-ouned car.
@200 AutaTradercom LLC.

By using this semvie, you acoept the tems of ur Visitr Agreement Please read it

NI

&1 Done

[image: image10.png]] R View Favoites Took Hep =
Jé 5D &@@8‘%- EF
ek T dm w e soch Foes Hiw T8 Db
| Acess [s thesisvweblomvinmebdscNborsucosssT\inaldos_Ohil =l et
| Links (IMovies (_1VisaCards &]Auta Auction of Uteh] Car Sterea Wiing Color Codes €] Customize Links &]DeltaHome &1 FreeHolmall >
4-Wheel Drive - JEEP 1993 WRANGLER, White, 2 Tops, 4 cyl. 5 spd., Am-Fm CD, Alloys, pampered. Ex.cond. §5000. 4]
813-877-4063.
I |
Sport Utility Vehicles - JEEP 1993 CHEROKEE COUNTRY, 4WD, 95K mi., all power, black, 1 owner, 6 cyl, well
maintained, $5800. 813-495-7756
Sport Utllity Vehicles - JEEP 1993 GRAND CHEROKEE 43(4- 6 cyl, excellent condition, lthr, 105K miles, green, CD player
$3900 813-961-0646
Sport Utllity Vehicles - JEEP 1989 CHEROKEE LAREDO- 434, 4dr, new A/C & paint, AM/FM cass. Exc cond!
$35000bo 813-282-7383 ext. 14
Auto Engines, Parts & Misc. - Jeep '87 Wrangler Hdtop $750. Full doors $750/pr. 5 OEM alloy whis $250. 5" custom stuls
Ribump $350. Engine lift & stand $200. Day 813-226-1465 or Eves 813-839-9303
4-Wheel Drive - JEEP 1986 CI7, reblt engine & clutch, 6 cyl. 31" tires, good solid body, runs great, $3100. 813-831-0391
4-Wheel Drive - JEEP 1986 CI7, new tires, new brakes, new seats, garage kept, $4,500 obo 727-365-1498
Trucks - Light Duty - JEEP 1985 -3/4ton PICKUP, 360-2bbl, 8 ton wench, tommygate, a/c, new street tires, extra off road
tires, camper top, many extras. $2500firm. Call Andy 813-294-3278
4-Wheel Drive - JEEP 1984 CJ7, auto trans, 6 cylinder, A/C, war winch, recent tires, starter, exhaust, carb, brakes, ignition,
steering & rear axle. Body in great shape. $5,900 813-805-7657
Automobiles For Sale - ACURA 2000 Integra LS, 5spd, Silver, Fully Loaded, Excellent Condition. Asking $16,500. 813-
784-4761
Automobiles For Sale - ACURA 1999 3.0CL, red, tan lthr int, auto, fully loaded, sunroof, 30k miles, excellent cond, $18,900.
813-503-7443
Autos and Transportation Results - 61 to 75 (1,841 Total)
SPONSORS
This page lists ads 61 through 75 out of 1,841
Automobiles For Sale - ACURA 1998 INTEGRA RS, $13,985 CROWN ACURA (727)507-8866
Automobiles For Sale - ACURA 1998 2.3CL, Light blue, low mi, exc cond, flly loaded, lthr, wood grain, sun rf, a/c, cruise,
$18,500. 813-926-3112
Campers-Travel Trailers - 1997 VIKING pop up Legend 2490. Roof AC, fiidge, awning, side dinette, couch $4400 813643-
0126.
|
[&] Dore [[My Conputer v

[image: image11.png]2 Autos and Transportation Results : 1 to 15 (1.852 Total)

rosoft Intemet Explorer

=10/x]

| Addiess [./t abvacat comseach col L ConewstNEWSmrens tantCP-1o2_LAPAT]

-ta

aru- e =] @

XY [Searen -] vahoot companios [Snin] @ Wy el ~ <ANews + 2 Ertetamert ~ >

533-4000
Locatiol
Source

FL Date: 11/24/2001
ampa Tribune

|

Sport Utility Vehicles - JEEP 1999 GR CHEROKEE
4x4, air, loaded, $17,981 Autoway Dodge 727-

$18,500 obo. 813-760-2134
Locatiot L Date: 11/24/2001
Source: Tampa Tribune

Sport Utility Vehicles - JEEP 1999 Wrangler
Sahara, auto, hard top & soft top, loaded, 25K
mi, exc cond. Must sell, baby on the way!

Location: FL Date: 11/24/2001
Source: Tampa Tribune

Sport Utility Vehicles - JEEP 1998 Grand Cherokee
Limited, dxd, black, rebuilt title, TMU, new
engine w/ 3 yr warranty, $9,400. 813-727-8551

Location: FL Date: 11/18/2001
Source: Tampa Tribune

Sport Utility Vehicles - JEEP 1998 CHEROKEE
SPORT, 4dr, auto, all power, one non-smoking
owner, 90k miles, $9,700, 813-230-7317

Location: FL Date: 11/24/2001
Source: Tampa Tribune

Sport Utility Vehicles - JEEP 1998 GRAND
Cherokee Laredo. BIK, Ithr, a/c, pl, pw, 2wd, 62K,
cruise, perfect, $9950 obo. 813-478-6966 Scott

S o

-

12345678910 Nextpage

Want to save time?

the results!

Let ad notifier search for you and e-mail you

e

sow,

§

s s

[[[®imena 7

Figure 1.6: The Framework For a System to Extract Information Behind Web Form.

1.3 Thesis Outline

The thesis is divided into six chapters. This first chapter introduces the thesis topic and lays some of the groundwork. Chapter 2 describes the analysis of a Web form, the construction of an input query based on the criteria specified within the Web form, and the strategies for query submission. Chapter 3 focuses on processing retrieved documents. It describes the strategies for handling retrieved documents, detecting

error messages, and filtering possible duplicate information. Chapter 4 describes the experimental results. Chapter 5 reviews related work. Chapter 6 concludes with a summary of the contributions and a discussion of future work.

Chapter 2 Automated Form Filling

2.1 Analysis of a Web Form

The first step to automatically fill in and submit a form is to recognize a form and its fields. A standard HTML Web form consists of form tags—a start form tag <form> and an end form tag </form> —within which the form fields reside [Htm99, Dar99, Sta96]. Among other form fields
, a form may include radio buttons, check boxes, hidden values, selection lists, and text boxes. Our system parses a Web document and recognizes whether it contains a form by detecting the presence of form tags. If form tags exist, we construct an array of objects based on the fields of the form. Information collected includes form field names, their types (e.g. radio, checkbox, text), and in some cases, their values. Figure 2.1 shows the source for an HTML form for musical instrument classified ads. The first and last lines contain the enclosing form tags. The <select> tag at the end of the 8th line opens a selection list, and the </select> tag on the 17th line closes it. There are seven items on the selection list.

Figure 2.2 shows our system’s mark-up of its internal representation of the Web form in Figure 2.1. The internal representation includes the source URL (Uniform Resource Locator), the action path where the form is sent for processing, the number of fields and the details for each field. The fields are win2_Elem_name_0,
(1)
<form action="/cgi-bin/umg/search.cgi" method="POST"

(2)
enctype="x-www-form-encoded">

(3)

(4)
 <div align="center"><center><table border="0">

(5)
 <tr>

(6)

<td>Category</td>

(7)
 <td><font

(8)
face="Comic Sans MS, Verdana, Arial, Helvetica, sans-serif"><select

(9)
name="category" size="1">

(10)
 <option selected value="">all categories</option>

(11)
 <option value="accessories">accessories</option>

(12)
 <option value="acoustic">acoustic (i.e. "violins")</option>

(13)
 <option value="drums">drums</option>

(14)
 <option value="guitars">guitars</option>

(15)
 <option value="keyboards">keyboards</option>

(16)
 <option value="studio/stage">studio/stage</option>

(17)
</select> </td>

(18)
<td>choose one</td>

(19) </tr>

(20) <tr>

(21)
<td>Manufacturer</td>

(22)
<td><font

(23)
face="Comic Sans MS, Verdana, Arial, Helvetica, sans-serif"><input

(24)
type="text" size="30" name="manuf"> </td>

(25)
<td>example <font

(26)
size="3" face="Arial">Gibson</td>

(27) </tr>

(28)
 <tr>

 …

...

(32)
<input type="text" size="30" name="model">

 …

...

(56) </tr>

(57)
 </table>

(58)
 </center></div><p align="right"><font

(59)

face="Comic Sans MS, Verdana, Arial, Helvetica, sans-serif">Sort

(60)

results in alphabetical order of <select name="sort_by"

(61)

size="1">

(62)
 <option selected value="1">Category</option>

(63)
 <option value="2">Manufacturer</option>

 …

…

(66)

</select>

(67)
 </p>

(68)
 <div align="right"><table border="0">

(69) <tr>

(70)

<td><input type="reset" value="Clear Form"></td>

(71)

<td><input type="submit" name="submit_search" value="SEARCH"></td>

(72) </tr>

(73)
 </table>

(74)
 </div>

(75)
</form>

Figure 2.1: Excerpt of the Source Code of a Web Form.
Domain_Path: http://www.usedmusicgear.com
win2_form_action: /cgi-bin/umg/search.cgi
win2_Elem_length_0: 8

win2_Elem_name_0: category
win2_Elem_type_0: select-one
win2_Elem_value_0:
win2_Elem_option_length: 7
 win2_Elem_option_0_0:

text: all categories
 win2_Elem_option_0_1: accessories;
text: accessories
 win2_Elem_option_0_2: acoustic;

text: acoustic (i.e. “violins”)
 win2_Elem_option_0_3: drums;

text: drums
 win2_Elem_option_0_4: guitars;

text: guitars
 win2_Elem_option_0_5: keyboards;
text: keyboards
 win2_Elem_option_0_6: studio/stage;
text: studio/stage
win2_Elem_name_1: manuf
win2_Elem_type_1: text
win2_Elem_value_1:
win2_Elem_name_2: model
win2_Elem_type_2: text
win2_Elem_value_2:
win2_Elem_name_3: year
win2_Elem_type_3: text
win2_Elem_value_3:
win2_Elem_name_4: condition
win2_Elem_type_4: text
win2_Elem_value_4:
win2_Elem_name_5: sort_by
win2_Elem_type_5: select-one
win2_Elem_value_5: 1
win2_Elem_option_length: 4
 win2_Elem_option_5_0: 1;
text: Category
 win2_Elem_option_5_1: 2;
text: Manufacturer
 win2_Elem_option_5_2: 3;
text: Model
 win2_Elem_option_5_3: 16;
text: Condition
win2_Elem_name_6:
win2_Elem_type_6: reset
win2_Elem_value_6: Clear Form
win2_Elem_name_7: submit_search
win2_Elem_type_7: submit
win2_Elem_value_7: SEARCH

Figure 2.2: Internal Representation of a Web Form.

win2_Elem_name_1,…, and win2_Elem_name_7. Except win2_Elem_name_6, which does not have a name, all the others correspondingly have the names category, manuf, model, year, condition, sort_by, and submit_search. Notice that the default value settings for most of the fields are blank, which means “not restricted.” In contrast, the value under sort_by, which is a selection list, has a non-blank default, namely 1, which means that the result will be sorted by category.

2.2 Input Queries for Web Form Document

According to the standards of HTML, a query in the form of a URL can be represented by concatenating respectively the base URL, the action path, a question mark (?) to delimit the path from the form field settings, and the form fields and their values given by assignment (=) with an ampersand (&) as a field separator. From the sample Web information in Figure 2.2, the base URL is the Domain_Path: http://www.usedmusicgear.com, and the action path is /cgi-bin/umg/search.cgi. The form fields from the Web form are category, manuf, model, year, condition, sort_by, reset, and submit_search. Using the default values from Figure 2.2, the value for category (represented by Win2_Elem_value_0) is blank, which refers to all categories. In this case, the form field setting for category is: category=. Similarly, the rest of the form field settings are assigned, and the query is thus constructed as:

http://www.usedmusicgear.com/cgi-bin/umg/search.cgi?category=&manuf= &model=&year=&condition=&sort_by=1&submit_search=SEARCH

This query is sent by our system to the Web site. It has the same effect as that of

a user pressing the search button without selecting or typing anything on the Web form.

Figure 2.3 shows the returned page for this query.

Figure 2.3: Returned Page Containing Retrieved Data.

We can construct other queries by selecting various combinations of selection-list values, radio-button settings, and check-box selections. Usually, however, it is not easy to fill in text boxes with relevant values automatically. Our system could allow a user to provide values for text boxes, but does not require that values be provided. For forms with text boxes, our system only submits queries that have no entries for text boxes or that have user-supplied text-box values. The text boxes in the query that returned the results in Figure 2.3, for example, were all empty.

2.3 Query Submission

Once an input query is constructed, the next step is to send it to the target site for retrieving information. Various programming languages use different APIs (Application Programming Interfaces) to accomplish this task. But in all cases, the central idea is to send the constructed query as a URL (Uniform Resource Locator) to the target site and retrieve the response as a Web page.

Our goal is to get all the information available within the scope of a Web form. We can obtain this information by filling the form in all possible ways. However, the process (1) may be time consuming, and (2) may have retrieved all the data before submitting all the queries. The latter case is usually due to a default query that obtains all the information in the first place.

If one query can obtain all the necessary information, it is desirable to quit before exhaustively processing all the combinations of the form fields in order to get all the information. We cannot be sure, however, that one query will always obtain all the information. Hence, we send a sampling of queries and try to determine statistically whether we have obtained all the information. One way is to randomly select the sampling of queries among all possible queries. Unfortunately, the randomly selected queries might not thoroughly cover all the criteria. Some criteria may be scarcely chosen while others may be heavily visited. The size of the sampling is another issue. How many samples should be good enough to determine whether we might have retrieved all information or if there still exists new information? In order to have better coverage and an adequate number of sample queries taken from among the various combinations of form field settings, we adopt a stratified sampling method [TDu00, Try96].

2.3.1 Sampling Phase

The particular approach we take is to adopt the Factorial and Fractional techniques [TDu00, MAn84, Pla81] of the stratified sampling method. The essence of the method is to avoid the probability of uneven selection of certain queries that might be biased on certain portions of the criteria. The pattern of the stratified method seeks to be evenly distributed and to cover the possible criteria thoroughly.

The form field settings from Figure 2.2 can be used to illustrate the formation of a stratified sampling pattern. There are actually 8 form fields in the form, namely category, manuf, model, year, condition, sort_by, reset, and submit. The reset field here

	
	Factor A: category

	Factor B:

sort_by
	
	all categories
	accessories
	acoustic
	drums
	guitars
	keyboards
	studio/

stage

	
	Category
	
	
	
	
	
	
	

	
	Manufacturer
	
	
	
	
	
	
	

	
	Model
	
	
	
	
	
	
	

	
	Condition
	
	
	
	
	
	
	

Table 2.1: A Two-Way Layout.

is not considered to be a criterion, and the submit field is always considered to be chosen. The rest of the fields are considered to be factors that govern the criteria of the queries. In fact, there are actually only two fields, namely category and sort_by, that contribute to the pattern of the form field settings since the others are text boxes which, if left blank, could be considered as optional if they are not required to be filled. Based on a two-factor method [TDu00, MAn84, Pla81], the two factors: category and sort_by, having 7 and 4 levels respectively, can be expressed in a Two-Way layout [TDu00, Leo00, MAn84, Pla81] as Table 2.1 shows.

From Table 2.1, since we have 7 categories and 4 sort_by choices, there are 28 combinations. In order to estimate how many sample queries should be considered, we adapt the 2k Factorial Experiments method [TDu00, MAn84]. Here k is the number of factors and 2k = N where N refers to the total number of possible observations (e.g. in Table 2.1, N = 28). We can consider that the number of sample queries n corresponds to the number of factors k, whereas N is the total number of possible queries. Hence, a sampling number of queries n selected from all possible queries N, based on the total possible combinations of form fields can be obtained by:

n =  log2 N 



Thus, based on the total number of possible queries, the system will prepare n queries. It first sends the default query and then sends an additional n – 1 queries to the

target site. For our example, N is 28, so that n will be 4.8or 5. Thus, the system first
	
	Factor A: category

	Factor B:

sort_by
	
	all categories
	accessories
	acoustic
	drums
	guitars
	keyboards
	studio/

stage

	
	Category
	x
	x
	
	x
	
	
	

	
	Manufacturer
	
	x
	
	
	
	
	

	
	Model
	
	
	
	
	
	
	

	
	Condition
	
	
	
	
	x
	
	

Table 2.2: Random Sampling without Stratified Method.

	
	Factor A: category

	Factor B:

sort_by
	
	all categories
	accessories
	acoustic
	drums
	guitars
	keyboards
	studio/

stage

	
	Category
	x
	
	
	
	x
	
	

	
	Manufacturer
	
	x
	
	
	
	
	

	
	Model
	
	
	x
	
	
	
	

	
	Condition
	
	
	
	x
	
	
	

Table 2.3: Stratified Sampling in Regular Pattern.

	
	Factor A: category

	Factor B:

sort_by
	
	all categories
	accessories
	acoustic
	drums
	guitars
	keyboards
	studio/

stage

	
	Category
	x
	
	
	
	
	x
	

	
	Manufacturer
	
	
	x
	
	
	
	

	
	Model
	
	
	
	
	
	
	x

	
	Condition
	
	
	
	
	x
	
	

Table 2.4: Stratified Random Sampling.

sends the default query (criteria of all categories from Factor A and Category from Factor B) and then sends the other 4 queries. We do not, however, just randomly choose the queries because the overall criteria might not be thoroughly covered. Table 2.2 shows a possible pattern by just random sampling. The disadvantage is that there can be portions heavily selected while other portions are not selected at all. In Table 2.2, for example, 3 levels (all categories, accessories, and drums) out of 7 under Factor A are chosen for Category under Factor B. In addition, accessories under Factor A includes both Category and Manufacturer under Factor B. Moreover, acoustic, keyboards as well as studio/stage under Factor A have not been selected under Factor B. Clearly, the random sampling method might not adequately cover the criteria.

Tables 2.3 and 2.4 show the stratified method in a regular pattern and a random pattern respectively. Table 2.3 covers every level for Factor B and most of the levels of Factor A. However, if the pattern is always chosen in this regular manner, a certain degree of bias is inevitably introduced since the left side of the table is always considered whereas the right side is not. On the other hand, Table 2.4 exhibits the advantage of board coverage and yet evenly distributes the selection randomly. Figure 2.4 shows pseudo-code for the algorithm for constructing the stratified sampling. It randomly selects factors and levels, while at the same time it guarantees maximum coverage.

For three or more factors, the two-factor method can be generalized in the sense that the columns and rows cover replicated portions of factors [TDu00]. Figure 2.5 shows the layout of the replicate portions of factors. Within this layout, the algorithm shown in Figure 2.4 can also be generalized to provide stratified sampling that guarantees maximal coverage over randomly selected levels.

The number n obtained from expression 2.1 is the upper bound of the stratified sampling size for determining the condition that if there is no new discovered information, the system should quit early and declare that all information has been found

n = number of sample queries from expression 2.1;

factor_A_list = list of field names for Factor A;

length_A = total number of field names for Factor A;

factor_B_list = list of field names for Factor B;

length_B = total number of field names for Factor B;

sample_query_string = a pre-constructed query without any selecting criteria from any factors.

while (n > 0) {

Randomly choose a field name from factor_A_list;

Construct the sample_query_string by appending the chosen field name as a criterion;

Decrement length_A by 1;

If (length_A = 0) {

Restore all the field names back into factor_A_list;

Restore length_A with the total number of field names for Factor A;

}

Randomly choose a field name from factor_B_list;

Construct the sample_query_string by appending the chosen field name as a criterion;

Decrement length_B by 1;

If (length_B = 0) {

Restore all the field names back into factor_B_list;

Restore length_B with the total number of field names for Factor B;

}

Send the sample_query_string to the target site and retrieve information;

Reset the sample_query_string to a pre-constructed query without any selecting criteria from any factors;

n = n – 1;

}

Figure 2.4: Pseudo-code for Stratified Sampling Method.

 . . .

.

.

.

.

.

.

. . .
Figure 2.5: The Layout of Replicate Portions of More Than Three Factors.

instead of exhaustively submitting all possible queries. During the submission of the n queries, the system keeps track of returned Web pages and whether the retrieved data has been seen before. In general, the data may be a subset of the first returned Web document resulting from the default query, it may be the same as the default, or it may be different. If no new information has been seen within n sample queries, it is assumed that the default query retrieved all information. If one of the returned Web pages has information that has never been seen before, then it is assumed that the default query has not retrieved all the information. In this case, the system prepares to enter to the exhaustive phase.

2.3.2 Exhaustive Phase

Before exhaustively executing all queries, the total space needed for storing the retrieved information as well as the total remaining time needed to finish the process will be estimated and reported to the user. The user can decide to continue the exhaustive query processing or stop and retrieve the information obtained from the sampling phase.

The total space S can be estimated by multiplying the average of the space for returned information resulting from the n sample queries by the total number N of all possible queries. The estimation can be expressed as

[image: image12.png]1

Fie Edt View Favoies Toos Hep

[-[CIx]

Addes| ./ sednusiogercon/ogptin/unglseachos

acosutic-woodwind
acosutic-wondwind
acoustic-brass trombone
acoustic-brass
acoustic-euphonium
acoustic-string cello
acoustic-string cello
acoustic-string violin
acoustic-string violin
acoustic-string
acoustic-string
acoustic-woodwind alto sax
acoustic-wodwind alto sax
acoustic-wodwind alto sax
acoustic-wodwind alto sax
acoustic-woodwind
acoustic-woodwind
acoustic-woodwind
acoustic-woodwind
acoustic-woodwind

&] Dore.

Emerson P4
keihwerth sl

upiter |U5L4325

King Trombone

King 2260
[Czech.__unknown|full size cello
Karl Knilling | Cello

Lark [Viglin
[Tecchler, Daved_|Master Grade
[Vasil Valtchev |16 1/4" viola
Knilling >

King Professional
Yamaha =
Yamaha

Yamaha /62 Professional
SelmerBundy _|Baritone
Naoblet Professional
LeBlanc. Esprit
Vanagisawa |Professional

57 excellent
1995 [excellent
1957 [excellent
1996 [excellent
1998 [excellent
circa 1900 [excellent
unknown_[excellent
1957 [excellent
1707 [excellent
1995 [excellent
excelent
1924 [good
1996 [excellent
excelent
54 good
1934 [good
& excellent
Iate 1950's[excellent
1996 [excellent
10 years |good

See the next 20 hits

51100
52200
5350
5550
$1500 /0B0|
52450
52110
5189
59500
54500
51200
5750
5720
51050
5420
51750
51200
52200 0BO
5800
51200

© Interet.

 (2.2)

where N is the total number of possible queries, n is the number of stratified sampling queries, and bi is the total number of bytes of the ith sampling query.

The total remaining time T (the total time minus the time already taken by n sample queries) can be estimated by the expression

[image: image2.wmf](

)

å

å

=

=

-

=

n

i

i

n

i

i

n

N

t

t

T

1

1

(2.3)

or simplified as

[image: image3.wmf](

)

å

=

-

=

n

i

i

n

n

N

t

T

1

(2.4)

where N is the total number of possible queries, n is the number of stratified sampling queries, and ti is the total duration of the ith sampling query.

Chapter 3 Processing Retrieved Documents

3.1 Retrieved Document Categorization

Once an input query is sent, the next step is to retrieve information from the target site. We have considered seven different possible results:

(1) The returned page may contain all the data behind the form.

(2) The returned page may contain data, but not show all the data for the query in a single page. Instead, there may be a “next” button or a link leading to another page of data, such as the “Next page” link in Figure 3.1.

(3) The query might return data, but only part of the data behind the form, because the query is just one of many possible combinations of the form fields.

(4) The query may return a page that not only contains data, but also contains one or more forms.

(5) The query may return a page that has another different form to fill in.

(6) The query might return an error message or an error notification page, stating that certain text fields are required to be filled in, or simply a message stating that there are no records found for that submitted query.

(7) Some other error cases might involve a server being down, an unexpected failure of a network connection, or some other HTTP errors.

Figure 3.1: A Retrieved Web Document with a Link to the Next Page.

Our system maintains a time-out routine to terminate the operation if the case mentioned in (7) occurs. The system reports the possible errors and aborts the current operation. When Web pages are successfully retrieved within the time-out period, they are first saved as files in a temporary directory. The content of each returned page is then analyzed for the rest of the issues mentioned above.

3.1.1 Returned Page Contains All Data

This case occurs when the first default page already contains all the data specified within the scope of all possible combinations of form fields. The system determines that all the data might have been retrieved when consecutive returned pages from all the sampling queries are either equal to or subsumed by the data on the default page.

In order for the system to determine whether the returned page contains the same data or is subsumed by the data on the default page, we adopt and modify the Copy Detection System [Smi00] to discover duplicate portions of information. The details of discovering and filtering duplicate data will be discussed in Section 3.2. If the data from a returned page are all duplicates, then the returned page is either equal to or subsumed by the data of the default page. If none or only some of the data are duplicates, we consider the returned page to belong to the case in Section 3.1.3 and provide another way to handle the document.

3.1.2 Returned Page Includes Next Page

Often, a Web document does not show all information in one page. Usually there

is a link or a “Next” button to get to the next page until the last page is reached (see Figure 3.1). For this case we treat all the consecutive next pages from the returned page as part of one single document by concatenating all the pages into one page.

In Figure 3.1, we can see the result of a retrieved Web document after a Web form has been processed. The page returned is only the first of many that together contain all the data resulting from the form query. To obtain all the data, we must follow the “Next page” links. The system iteratively retrieves consecutive next pages by recognizing the keyword “next” or a sequence of consecutive numbers until all pages have been retrieved.

Once the returned pages have been concatenated, the handling of this constructed page can be performed according to the actions in subsection 3.1.1, 3.1.3 or 3.1.4.

3.1.3 Returned Page Contains Only Partial Data

This case is the common situation that every returned page may be some particular subset of the overall database. In this case, we can assume that even after all the sample queries have been processed, new information would still be available from the database behind the form. As explained in Chapter 2, the system prompts the user asking whether to enter the exhaustive phase or discontinue the operation after the retrieval of the data from the sample queries.

3.1.4 Returned Data and Embedded Forms Together

It is possible that the returned page not only contains data but also includes the original form as well as other forms for the convenience of users’ input. In this case, the system disregards the forms in the returned page so that it will not recursively process forms indefinitely. The data of a returned page is processed through the duplicate filtering method and concatenated into a single document.

3.1.5 One Form Leads to Another Form

After all the sample queries have been processed, all the returned pages may contain another form to be filled in but no data. This case can be discovered by recognizing another form within the retrieved pages. If there is no new information as compared to the first retrieved page, there is most likely an error, and we proceed as in Section 3.1.6. In this case, the system will prompt the user for further action. One possibility is for the user to choose to process the new form.

3.1.6 Returned No-Record Notification or Required Field Filling Alert

This situation occurs when a sample query returns no data or a required field needs to be filled in. The returned page most likely either contains a message such as “No record found,” or if there is a required field to be filled in, might show the form again without any retrieved data. In this case, the system prompts the user for intervention as to whether to abort the operation or manually fill one or more required fields in the form, which is then treated as an original Web form with some fields fixed.

3.2 Filtering Duplicate Records

The content of the returned Web document can be considered as a collection of records of information. In order to find out whether there are duplicate records, we make use of the Copy Detection System [Smi00].

3.2.1 Detect Duplicate Records

The copy detection system we use provides a mechanism to detect duplicate sentences within one document or within multiple documents [Smi00, Che00]. It detects the sentence boundaries by identifying the punctuation that might signal the end of a sentence, such as a period, question mark, exclamation mark, or combinations of these followed by a quote mark. However, within a Web document the relevant information usually appears as collection of records which individually might be (1) less than a sentence or (2) include several sentences or (3) might be a list or (4) a row of a table. Thus, we cannot detect the duplicates based on sentences.

Fortunately, the records of returned Web documents are usually displayed as

paragraphs separated by the HTML [Dar99, Sta96] paragraph tag <p>, rows in a table

.

.

.

 </TR><TR> <TD bgcolor="#D8D8D8">

 drums-drum sets

 </TD>

 <TD bgcolor="#D8D8D8">

 pearl drums

 </TD>

 <TD bgcolor="#D8D8D8">

 mlx professional series

 </TD>

 <TD bgcolor="#D8D8D8">

 1991

 </TD>

 <TD bgcolor="#D8D8D8">

 excellent

 </TD>

 <TD bgcolor="#D8D8D8">

 $1900.00

 </TD>

 <TD bgcolor="#D8D8D8">

 Details

 </TD>

 </TR><TR> <TD bgcolor="#D8D8D8">

 drums-drum sets

 </TD>

 <TD bgcolor="#D8D8D8">

 Noble & Cooley

 </TD>

.

.

.

Figure 3.2: Original Returned Document.

.

.

.

 </TR><s.> <TR> <TD bgcolor="#D8D8D8">

 drums-drum sets

 </TD>

 <TD bgcolor="#D8D8D8">

 pearl drums

 </TD>

 <TD bgcolor="#D8D8D8">

 mlx professional series

 </TD>

 <TD bgcolor="#D8D8D8">

 1991

 </TD>

 <TD bgcolor="#D8D8D8">

 excellent

 </TD>

 <TD bgcolor="#D8D8D8">

 $1900.00

 </TD>

 <TD bgcolor="#D8D8D8">

 Details

 </TD>

 </TR><s.> <TR> <TD bgcolor="#D8D8D8">

 drums-drum sets

 </TD>

 <TD bgcolor="#D8D8D8">

 Noble & Cooley

 </TD>

.

.

.

Figure 3.3:
Returned Document with Inserted Tag <s.>.

separated by table tags <tr></tr>, or blocks of data separated by horizontal line tag <hr>, etc. In order to adapt the copy detection system for a collection of records, we devised a special tag called the sentence boundary separator tag denoted by <s.>. We then modified the copy detection system to acknowledge this special tag as the end of a sentence (i.e. the end of a record). During the duplicate filtering process, this tag is inserted into the retrieved Web documents around certain HTML tags which most likely denote the end of a record. These tags may be </tr>, <hr>, <p>, </table>, </blockquote> and </html>. In the case when none of the above tags except </html> appears in the document, then the whole document is considered as a record. Figure 3.2 and 3.3 respectively show part of an original returned document and the same document with the <s.> tag inserted.

After the <s.> tags have been inserted, all the non-<s.> tags (i.e. all the HTML tags) can be removed because they are no longer relevant to the data we want to retrieve. With this modification, the copy detection system is invoked. The detection system

dbase_wsj_0

1486-1628

1640-2071

2455-2671

2671-2950

21835-21847

22283-22302

22791-22820

Figure 3.4: Start and End Offset of Duplicate Data.

Figure 3.5: Final Concatenated Document of Retrieved Data with Non-Duplicates.

compares every record separated by <s.> with all the records retrieved previously. If duplicate records are found, each of their relative start and end offsets (in units of bytes) are recorded in a file for reference (see Figure 3.4). The detection system keeps track of this information about duplicate data for all newly discovered duplicates.

3.2.2 Discarding Duplicates and Merge Resulting Records

Once the locations of the offsets of duplicates are all collected and sorted, the non-duplicate offset locations are obtained by complementing the duplicate offsets. Our system extracts the non-duplicate data based on the offset locations identified by the copy detection system and concatenates them into a single new non-duplicate document. This new document constitutes the output of the system containing the overall retrieved non-duplicate data.

Figure 3.5 shows an example of part of a final document merged from several returned documents with duplicates removed. Note that most of the text strings separated by horizontal lines are indeed the records we expect to find. Some, however, such as “SPONSORS” and “This page lists ads 61 through 75 out of 1,841.” are not records. In this thesis, which merely retrieves the data returned by form processing, we do not attempt to discover and eliminate non-records or even to discover whether we have properly found and formulated real records. Downstream processes are responsible for these activities (see [EJN99] and [EXu00] for an explanation of these downstream processes).

Chapter 4 Experimental Results and Discussion

4.1 Results

We have carried out experiments on various sites that contain Web form interfaces. We found 13 sites with form interfaces to data to which we were able to apply our method. Table 4.1 and 4.2 show the experimental results of applying our procedures to those sites. Table 4.1 contains eight columns. The first column refers to the sites we tested. Their associated URLs are shown in Figure 4.1. The second column refers to the number of possible queries constructed by all the combinations of fields within the scope of a Web form. The third column shows the number of sample queries
	1
	2
	3
	4
	5
	6
	7
	8

	Test

Sites
	Number

of

Possible

Queries
	Number of Sampling

Queries Issued
	Number of Linked Pages

(Sampling Phase)
	Total

Sampling

Time
	Average

Time per

Sample

Query
	Total Estimated

Additional Time

to Issue

All Queries
	Total Actual Additional

Time to Issue All Queries

	1
	2,124
	12
	128
	30m 16.18s
	2m 31.35s
	88h 47m 31.2s
	NAv

	2
	184
	8
	90
	4m 32.14s
	34.02 s
	1h 39m 47.52s
	1h 52m 18.8s

	3
	4,096
	12
	383
	2h 47m
	13m 56.56s
	949h 1m 51.04s
	NAv

	4
	38
	6
	0
	30.29s
	5.05s
	2m 41.6s
	3m 44.05s

	5
	46,464
	16
	18
	4m 35.8s
	17.24s
	222h 26m 3.52s
	NAv

	6
	120
	7
	99
	10m 46.4s
	1m 32.34
	2h 53m 54.42s
	1h 20m 40.8s

	7
	28
	5
	25
	3m 20.0s
	40.0s
	15m 20.0s
	12m 32s

	8
	624
	10
	266
	8m 48.32s
	52.83s
	9h 37.62s
	16h 6m 10.2s

	9
	3
	3
	423
	37m 44.62s
	12m 34.87s
	NA
	NA

	10
	211
	12
	173
	8m 4.55s
	40.38s
	23h 35m 59.52s
	NAv

	11
	31
	5
	63
	10m 41.19s
	2m 8.24s
	55m 34.24s
	15m 57.84s

	12
	8
	3
	19
	1m 20.97s
	26.99s
	2m 14.94s
	2m 19.99s

	13
	37
	6
	1
	36.04s
	6.01s
	3m 6.31s
	6m 10.26s

Table 4.1: Experimental Results After Retrieving Data Behind the Web Forms.

	1
	2
	3
	4
	5
	6

	Test

Sites
	Actual Space of

Output from the

Sampling Phase (bytes)
	Estimated Total Space

(bytes)
	Actual Total

Space

(bytes)
	System

Decision
	Manual

Verification

	1
	205,154
	NA
	NAv
	Covered
	Covered

	2
	260,286
	5,986,578
	596,021
	Not Covered
	Not Covered

	3
	9,676,288
	NA
	NAv
	Covered
	Covered

	4
	7,239
	45,847
	266,879
	Not Covered
	Not Covered

	5
	99,000
	287,496,000
	NAv
	Not Covered
	Not Covered

	6
	223,002
	NA
	287,317
	Covered
	Covered

	7
	268,561
	NA
	270,339
	Covered
	Covered

	8
	472,849
	29,505,778
	8,950,263
	Not Covered
	Not Covered

	9
	262,901
	381,540
	262,901
	Not Covered
	Not Covered

	10
	262,043
	46,206,916
	NAv
	Not Covered
	Not Covered

	11
	63,422
	393,216
	165,933
	Not Covered
	Covered

	12
	24,478
	65,275
	31,243
	Not Covered
	Not Covered

	13
	13,274
	81,856
	210,219
	Not Covered
	Not Covered

Table 4.2: Experimental Results After Retrieving Data Behind the Web Forms.

based on Expression 2.1 (n = log2 Nwhere N is given in the second column). This number, however, excludes error pages such as pages with a message like “No record found,” and thus the number reported is the number of pages retrieved that have data. The fourth column discloses the number of linked pages actually retrieved during the sampling phase. These are pages beyond the first page that are linked by a “next page” mechanism. The fifth through eighth columns report the total sampling time, the average time per sample query, the total estimated additional time to issue all queries, and the total actual time to issue all queries. The total sampling time includes not only the time to retrieve the results of form submission but also the time to retrieve all the “next” linked pages. The total estimated time as well as actual additional time does not include the time of sampling. They refer to the total time needed for processing all the rest of the queries. In addition, when the number of all possible queries is less than or equal to 10 (default setting by the system), the system automatically processes all queries. Some of the fields in the eighth column of Table 4.1 indicate that the data is not available (NAv) because the potential retrieval time is long (nearly a day or more), or the data is not applicable (NA) because it is irrelevant.

Table 4.2 continues to show more experimental results. The second column reports the actual space required by the output from the sampling phase. The third column reports the estimated total space required to store the final results for cases when the system decides that all data has not been retrieved in the sampling phase. The fourth

	Test Sites

	Associated URLs (November/December 2001)

	1
	http://www.slc-classifieds.com/cars/dn/index.htm (2nd form)

	2
	http://www.slc-classifieds.com/cars/dn/index.htm (3rd form)

	3
	http://classifieds.nwsource.com/classified/

	4
	http://www.sunspot.net/cgi-bin/class/search2.cgi?section=classified-marketplace&form=marketplace &subcatname=0000&empcategory=0000&keywords=

	5
	http://www.autotrader.com/findacar/findacar_form2.jtmpl?search_type=used&make=ACURA

&address=84606&borschtid=19360073081201474916&ac_afflt=none&1000414673893=1000414673893&x=25&y=9

	6
	http://autos.tbo.com/

	7
	http://www.usedmusicgear.com/search.html

	8
	http://careers.yahoo.com/

	9
	http://localnet.abracat.com/static/hubs/hub_tra.html?1c=news&cp=tfa2_&news=news_tam
&APATH=tfa2/&om=trahead

	10
	http://classifieds.yahoo.com/display/automobiles?cr=Salt_Lake_City&srid=375000125

&ct_hft=browse&action=browse&nodeid=750000268&intl=us

	11
	http://mom.cc/classifieds/

	12
	http://www.themusicpages.com/

	13
	http://southflorida.sun-sentinel.com/gencls/resale.html

Figure 4.1: URLs for Test Sites.
column reports the actual total space required. The fifth column records the decisions made by the system after the sampling phase, and the sixth column reports the verification through human judgment. The decisions are classified as “Covered” and

	1
	2
	3
	4
	5

	Test Site
	Sampling Query Sequence
	Size of First

Retrieved Page (bytes)
	Size of Complete Document without Tags (bytes)
	Size of Non-Duplicate Data (bytes)

	6
	1 (default)
	71,426
	518,200
	177,759

	
	2
	31,923
	2,316
	31

	
	3
	35,720
	2,121
	71

	
	4
	35,720
	2,119
	14

	
	5
	56,672
	3,979
	74

	
	6
	69,686
	9,824
	203

	
	7
	69,549
	7,214
	124

Table 4.3:
Non-Duplicate Data Size from Default Query that Covers All Data.

	1
	2
	3
	4
	5

	Test Site
	Sampling Query Sequence
	Size of First

Retrieved Page (bytes)
	Size of Complete Document without Tags (bytes)
	Size of Non-Duplicate Data (bytes)

	8
	1 (default)
	3,413
	409
	306

	
	2
	36,871
	88,020
	30,742

	
	3
	36,951
	197,451
	60,382

	
	4
	35,949
	180,193
	59,267

	
	5
	36,671
	189,780
	37,710

	
	6
	36,619
	77,439
	24,474

	
	7
	36,600
	99,989
	26,833

	
	8
	35,264
	188,700
	46,331

	
	9
	36,405
	80,161
	26,211

	
	10
	36,732
	200,060
	52,556

Table 4.4:
Non-Duplicate Data Size from Default Query Does Not Cover All Data.

“Not Covered.” “Covered” (“Not Covered”) in the fifth column means that our system declared that the default query already covered (did not already cover) all the data within the scope of the Web form. For the verification in the sixth column, we manually checked to see whether the system’s prediction was correct
.

Tables 4.3 and 4.4 show the size of retrieved data for Sites 6 and 8 whose default query respectively covers and does not cover all the data. Each table has five columns. The first column gives the site (see Figure 4.1). The second column gives the sequence of the sampling queries. The third column shows the size of the first retrieved page before “next page” links (if any) are followed. The fourth column shows the total size of the retrieved document without HTML tags after “next page” links (if any) are followed. The fifth column reports the total size after duplicates are removed.

4.2 Discussion

For the ideal case when the sites do provide default settings of the form that can retrieve all data, we only need to complete the sampling phase. This can save a lot of processing time. Sites 1, 3, 6 and 7 exhibit the ideal situation. For Site 6, as an example, it takes only 10 minutes and 46 seconds to retrieve all the data, but would require an additional hour, 20 minutes and 41 seconds to fill out the form in all possible ways to exhaustively retrieve all the data. The time savings for Site 3 is estimated to be over 947 hours—more than one month! The cost of the time is mostly dominated by the downloading time between the system and the target sites through the Internet.

The comparison between the estimated additional time and the actual additional time to issue all queries for Sites 2, 4, 12 and 13 is reasonably close. The average time per sampling query consistently reflects the actual query time throughout the exhaustive phase. For these sites the time duration is directly proportional to the total number of possible queries as well as the number of linked pages. For Sites 6 and 11, however, the actual remaining time is considerably less than the estimated remaining time because the majority of the retrieved pages during the exhaustive phase are pages with “No record found” messages.

We would expect that the actual space from the sampling phase and the actual space from the exhaustive phase would be the same for the cases where the default query covers all the data. The actual space of output from the exhaustive phase obtained from Sites 6 and 7 are close but slightly larger than the actual space of output from the sampling phase. This is because spurious records, such as “SPONSORS” and “This page lists ads 61 through 75 out of 1,841.” in Figure 3.5 are added when the exhaustive phase runs.

We should have no firm expectations
 about space for the “Not Covered” cases. This small number of sample queries may or may not be good estimators of the space requirements. As it turned out for Sites 2, 9, 11 and 12, the estimated space is greater than the actual space, whereas for Sites 4 and 13, the estimated space is less than the actual space.

Turning now to a discussion of Table 4.3, we can see that the size of the data collected by the default query (177,759 bytes) is comparatively much larger than the size of subsequent retrievals (86 bytes on the average). All subsequent retrievals are less than a minimum threshold, say 5% of what is new on a returned page (e.g. 31/2,316 for Query 2). This non-duplicate data is the “residue” resulting from the copy detection system which recognizes as non-duplicates sentences (or phases) such as “This page lists ads m through n out of 1,841” where m and n differ on different pages.

Table 4.4 shows that there is new data from sampling queries subsequent to the default. The non-duplicate data from the subsequent queries is larger than the data from the default. Further, the non-duplicate content of what is new on a returned page is greater than 5% (e.g. for Query 3 it is about 31% (60,382/197,451)). Hence, the system determines that exhaustive processing is needed.

There are also cases where the system decides inaccurately. For example, the system determines that Site 11 is necessary for exhaustive retrieval, but in fact the default query already covers all the data. This is because the retrieved data contains records that have dynamically generated “item” numbers (i.e. each record is given a display number, 1 through the total returned). As a result, duplicate records with different display numbers appear to be non-duplicates. Thus the system “believes” that the subsequently retrieved records are not duplicates, whereas, in reality, they all are. Keeping these duplicates also explains why the actual total space (165,933 in the fourth column of Table 4.2) is so much larger than the space required by the sampling phase (63,422 in the second column). To solve this problem, we would have to write code to handle this special case.

4.3 Data Retrieval Failures

Our system fails when a Web form has no data behind it, that is, when the purpose of the form is for login, purchase, registration, or some transactions other than information retrieval. This is not a problem except that we currently have no automated way to tell whether a form has a database of information behind it.

Our system sometimes also fails when a form has data behind it. We have

	1
	2
	3
	4
	5

	Test Site
	Sampling Query Sequence
	Size of First

Retrieved Page (bytes)
	Size of Complete Document without Tags (bytes)
	Size of Non-Duplicate Data (bytes)

	http://entertainment.netscape.

com/entertainment/main.tmpl?dcicn=albany
	1 (default)
	7,358
	984
	846

	
	2
	7,358
	984
	6

	
	3
	7,358
	984
	6

	
	4
	7,358
	984
	6

	
	5
	7,358
	984
	6

Table 4.5:
Consistent Error Page Size Statistics.

encountered the following failures. There are sites that do not yield their data because text values are required. Not initially recognizing this, the system submits a form without filling in values for text boxes. In response the system receives error pages stating that text values are required in order to obtain data. The system must now recognize this response. Table 4.5 shows what happens when text values are required. First, in the third column, notice that the size of each retrieved page is the same. Second, in the fourth column, notice that the size of the retrieved documents are the same and small (984 bytes). Finally, in the fifth column, notice that the resulting non-duplicate size coming from each of the sampling queries other than the default is very small. This shows that the retrieved pages likely have essentially the same small content, which implies that we need to send a message that some text fields are required. To completely solve this problem, we must also provide a system-generated Web form with the required text fields for user input. Then the system can capture the user-given text values and reconstruct the query for further processing.

There are certain sites that embed encoded strings such as “&” into the URL which hinders the system from properly sending the correct query string to the target site. This could be solved by identifying and converting all possible non-standard embedded strings into standard strings for URLs.

There are some sites with Web forms that use embedded scripting languages such as JavaScript, PHP or other scripting languages that dynamically generate form components such as selection lists. This can make it hard to construct a proper query for retrieval. To solve this problem, we would need to provide code to trace the scripts (limited to client-side scripts only, for server-side scripts, we might not have access to the code) for clues about form field values. Once found, we would need to submit them and let the form server process the requests in the usual way.

Some sites have a potentially huge combination of all possible queries due to multiple- selection lists. For example, one site we encountered provides 2 multiple-selection lists of up to 51 and 23 options respectively. With other single-selection lists and radio buttons, the number of overall combination of possible queries is more than 274. This huge number makes it unreasonable to configure the stratified sampling method and even more unreasonable if the exhaustive phase is required. To solve this problem, we need to cut the number of queries on each multiple-selection list. Considering possible “and/or” semantics from the lists, we can issue a query with all criteria chosen (i.e. “or” semantics), another query with none of the criteria chosen (i.e. “and” semantics), and another n queries with exactly “one” of each of the n criterion chosen (i.e. “and” semantics with at least one required). Hence, for a multiple-selection list of 51 options, we are actually processing 53 queries instead of 251.

Chapter 5 Related Work

There are other systems that automatically fill out Web forms [e.g. Pat00, Eco99, Inv01]. They usually act as a tool to provide a user’s information such as name, address, contact information, and credit card information to supported target sites by automatically filling in compatible Web forms. There are also services, such as the Microsoft Passport and Wallet system [Mic01], which encrypt a user’s personal information and then automatically fill in Web forms when fields can be recognized. Since many forms share common attributes (especially in the domain of e-commerce), these tools can reliably assist users in entering personal information into Web forms.
The ShopBot project [DEW97], one of the earliest efforts at automated form filling, uses domain-specific heuristics to fill out forms for the purpose of comparison shopping. However, ShopBot has not proposed a general-purpose mechanism for filling in forms for non-shopping domains.
More recently, researchers have considered the problem of assisting the user in a complex information search task that may span many Web sites and multiple Web forms. Davulcu et al. report on an architecture for designing “webbases” that help users perform complex domain-specific searches using a guided, by-example tool [DFK99]. Underlying specifications are written declaratively by experts because webbases are probably too difficult for end users to create themselves. Some heuristics are mentioned, but few details are given regarding the actual process of filling out forms. This project appears to be a good attempt to simplify the creation of domain-specific search services, but it does not try to be a general-purpose crawler for the data behind Web forms.
The most closely related work to our system is the Hidden Web Exposer (HiWE)
project at Stanford [RGa00, RGa01]. The authors propose a way to extend crawlers beyond the publicly indexable Web by giving them the capability to fill out Web forms automatically. Since developing a fully automatic process is quite challenging, HiWE assumes crawlers will be domain specific and human assisted (our system also depends on human assistance at decision points, but it does not currently use domain specific information in retrieving data from a particular site). Starting with a user-provided description of the search task, HiWE learns from successfully extracted information and updates the task description database as it crawls. Besides, it also provides a label matching approach used to identify elements in a form, based on layout position, not proximity within the underlying HTML code. These researchers also present the details of several ranking heuristics together with metrics and experimental results that help evaluate the quality of the proposed process. Our approach is comparatively different but can be considered as complementary to HiWE. For example, we consider the task of duplicate record elimination and we use a stratified sampling approach to decide when a particular source might have been fully extracted.

Many researchers have considered the problem of planning the information gathering process in a data integration context. HTML forms can be thought of as query templates with “binding patterns” [RSU95] that limit the “access paths” to the data of interest [Hal00]. Our purpose is slightly different, in that we are not given source descriptions ahead of time —we must automatically create suitable queries to retrieve the information behind forms. We also attempt to extract all of the available data at a particular source, not just answer a specific query at the source.
Chapter 6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we have described our domain-independent approach and implemented a prototype system for automatically retrieving the data behind a given Web form. We use a two-phase approach to gathering data: first we sample the responses from the Web site of interest. If the retrieved sampling data does not cover all information behind the form, we methodically try all possible queries. We trim out all duplicates and output the resulting non-duplicates as data available for the downstream data extraction process.

6.2 Future Work

Automatically filling in text boxes with relevant information is a hard problem. In this thesis, we assume that without filling in any text boxes we may be able to retrieve all the data. However, we also acknowledge that there can be required text fields to be filled in before the data can be retrieved. This problem can potentially be resolved by providing a system-generated Web form with the required text fields for user input. Then the system can capture the user-given text values and reconstruct the query for further processing. For complete automation, we could use domain-specific ontologies [ECJ99], where lists of values may be found to automatically fill in text boxes. While this makes the retrieval process task-specific, it also increases the likelihood of being able to extract just the relevant portion of data at a chosen Web site.

Our system seeks to be resilient to various designs of Web forms. However, there are still challenges and difficulties. For example, forms might have non-standard encoded URLs. To resolve this, we have to identify and convert non-standard URLs into standard URLs. In addition, forms might have fields generated dynamically by programming instructions such as JavaScript, PHP and other scripting languages. Such designs raise the barrier of general analysis of the form field settings since the values of the fields are not known or have not been embedded within the form until it is dynamically constructed through an interaction with a user. Tackling these problems may require programming interfaces to trace the scripts for clues about form-field values or may require monitoring user interactions.

Another problem lies in the huge number of possible queries due to multiple-selection lists. The resolution of selecting all choices is simple enough for multiple-selection lists, but we should use this as a springboard to investigate the harder problem of reducing the total number of queries when the exhaustive phase is required. We should design heuristic methods to trim the number of queries to just those that would likely cover all the data.

Bibliography

[Che00]
Wendy R. Chen. “A Sentence Boundary Detection System,” Masters Thesis, Department of Computer Science, Brigham Young University, Provo, Utah, 2000.

[Dar99]
Rick Darnell, et al. HTML 4 Unleashed, Sams Publishing, Indianapolis, Indiana, 1999.

[DEW97]
Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. “A Scalable Comparison-Shopping Agent for the World-Wide Web,” In Proceedings of the First International Conference on Autonomous Agents, pages 39–48, February 1997.
[DFK+99]
Hasan Davulcu, Juliana Freire, Michael Kifer, and I.V. Ramakrishnan. “A Layered Architecture for Querying Dynamic Web Content,” In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data (SIGMOD'99), Philadelphia, Pennsylvania, pages 491–502, Philadelphia, Pennsylvania, May 1999.
[ECJ+99]
David W. Embley, Douglas M. Campbell, Yuang S. Jiang, Stephen W. Liddle, Daryle W. Lonsdale, Yiu-Kai Ng, and Randy D. Smith. “Conceptual-Model-Based Data Extraction from Multiple-Record Web Pages,” Data & Knowledge Engineering, Vol. 31, pages 227–251, 1999.

[Eco99]
eCode.com home page. http://www.eCode.com. Checked December 29, 1999.

[EJN99]
David W. Embley, Yuang S. Jiang, and Yiu-Kai Ng. “Record-Boundary Discovery in Web Documents,” In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data (SIGMOD'99), Philadelphia, Pennsylvania, pages 467–478, 31 May – 3 June, 1999.

[EXu00]
David W. Embley and Li Xu. “Locating and Reconfiguring Records in Unstructured Multiple-Record Web Documents,” The World Wide Web and Databases, Lecture Notes on Computer Science, Vol. 1997, D. Suciu and G. Vossen (eds.), Springer Verlag, pages 256–274, 2001.

[Hal00]
Alon Y. Halevy. “Answering Queries Using Views: A Survey,” VLDB Journal (to appear), 2000.
[Htm99]
HTML 4.01 specification. http://www.w3.org/TR/html4. Checked December 1999.
[Inv01]
InvisibleWeb.com home page. http://www.invisibleweb.com. Checked August 10, 2001.
[Leo00]
Thomas Leonard. A Course In Categorical Data Analysis, Chapman & Hall/CRC, New York, New York, 2000.

[Mic01]
Microsoft Passport and Wallet services. http://memberservices.passport.com. Checked August 10, 2001.
[MAn84]
Robert A. McLean and Virgil L. Anderson. Applied Factorial and Fractional Designs, Marcel Dekker, Inc., New York, New York, 1984.

[Pat00]
Patil systems home page. http://www.patils.com/. Checked January 3, 2000.
[Pla81]
R. L. Plackett. The Analysis of Categorical Data, 2nd edition, Charles Griffin & Company Ltd., London, Great Britain, 1981.

[RGa00]
Sriram Raghavan and Hector Garcia-Molina. “Crawling the Hidden Web,” Technical Report 2000-36, Computer Science Department, Stanford University, December 2000.
[RGa01]
Sriram Raghavan and Hector Garcia-Molina. “Crawling the Hidden Web,” In Proceedings of the 27th International Conference on Very Large Data Bases(VLDB 2001), Rome, Italy, September 2001.

[RSU95]
Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. “Answering Queries Using Templates with Binding Patterns,” In Proceedings of the 14th Association of Computing Machine Principles of Database Systems (ACM PODS ’95), pages 105–112, San Jose, California, 1995.
[Smi00]
Randy D. Smith. “Copy Detection System for Digital Documents,” Masters Thesis, Computer Science Department, Brigham Young University, Provo, Utah, 2000.

[Sta96]
William R. Stanek. Web Publishing Unleashed: HTML, CGI, SGML, VRML, Java, Sams Publishing, Indianapolis, Indiana,1996.

[TDu00]
Ajit C. Tamhane and Dorothy D. Dunlop. Statistics and Data Analysis: From Elementary to Intermediate, Prentice-Hall, New Jersey, 2000.

[Try96]
Peter Tryfos. Sampling Methods For Applied Research: Text and Cases, Wiley, New York, New York, 1996.

Web Form

Fill in and Submit Form

Obtain and Process Returned Results

Filter Duplicate Records

Input to Data Extraction

Process

Populated

Database

Factor E

Factor C

Factor C

Factor A

Factor A

Factor A

Factor

B

Factor

B

Factor

D

Factor

B

� EMBED PBrush ���

� There are standard form fields specified in [Htm99], including INPUT fields: BUTTON, CHECKBOX, FILE, HIDDEN, IMAGE, PASSWORD, RADIO, RESET, SUMIT, and TEXT; SELECT fields with OPTIONs, and a TEXTAREA field. We focus only on fields that contribute to data retrieval.

� The human expert who checked for “Covered” did not execute all queries, but instead reasoned about which queries would yield all the data and then executed them and checked the results.

� During the exhaustive phase, the system can provide a check to continuously update both time and space expectations and to notify the user of current progress and changes on time and space expectations.

PAGE
21

_1056196607.unknown

_1070986413.unknown

_1068119042

_1056196502.unknown

