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Abstract. Ontologies on the Semantic Web are by nature decentralized. From
the body of ontology mapping approaches, we can draw a conclusion that an
effective approach to automate ontology mapping requires both data and meta-
data in application domains. Most existing approaches usually represent data and
metadata by ad-hoc data structures, which is lack of formalisms to capture the
underlying semantics. Moreover, to approach semantic interoperability, there is
a need to represent mappings between ontologies with well-defined semantics
that guarantee accurate exchange of information. To address these problems, we
propose that domain ontologies attached with extraction procedures are capable
of representing knowledge required to find direct and indirect matches between
ontologies. Also mapping ontologies attached with query procedures not only
support equivalent inferences and computations on equivalent concepts and rela-
tions but also improve query performance by applying query procedures to derive
target-specific views. We conclude that a combination of declarative and proce-
dural representation with ontologies favors the analysis and implementation for
ontology mapping that promises accurate and efficient semantic interoperability.

1 Introduction

Ontologies on the Semantic Web, by nature, are decentralized and built independently
by distinct groups. The research onontology mappingis to compare ontological de-
scriptions for finding and representing semantic affinities between two ontologies. By
analyzing the body of ontology mapping approaches [2] [5] [6] [7] [12] [14] [17], a
key conclusion is that an effective ontology mapping approach requires a principled
combination of several base techniques such as linguistic matching of names of on-
tology elements, detecting overlap in the choice of data types and representation of
data values, considering patterns of relationships between elements, and using domain
knowledge[12].

To support knowledge sharing between base ontology-mapping techniques, a knowl-
edge base that describes domain models is of great value. The knowledge bases in
most existing approaches, however, are represented informally by ad-hoc data struc-
tures, which are difficult to capture well defined semantics effectively. To further facili-
tate interoperability between ontologies, there is a need to represent mappings between
ontologies such that the mapping representation guarantees to successfully exchange
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information. The research work that addressed this ontology-mapping representation
problem is usually done separately from the research that focuses on finding seman-
tic affinities [3] [9] [10] [13], which is lack of support for an efficient approach to
achieve interoperability on the Semantic Web. To approach these problems within one
knowledge-representation framework, we argue that a combination of declarative and
procedural representation based on ontologies favors the analysis and implementation
for ontology mapping and promises accurate and efficient semantic interoperability.

Our declarative representation for ontology mapping includes (1) domain ontologies
that provide semantic bridges to establish communications between base techniques in
order to find semantic affinities between ontologies; and (2) mapping ontologies that
provide means to correctly exchange information. Declaratively, ontologies are usually
expressed in a logic-based language so that detailed, accurate, consistent, sound, and
meaningful distinctions can be made among concepts and relations. Their logic base
therefore promises proper reasoning and inference on ontologies.

However, the expression power of ontologies is limited with ontology mapping.
Ontologies have difficulties to effectively express semantic heterogeneity between on-
tologies. For example, within a domain, different vocabulary terms can describe a same
concept and populated concept instances can have various lexical appearance. Unfor-
tunately, the capability of handling semantic heterogeneity is extremely important for
ontology mapping since its goal is to find and represent semantic affinities between se-
mantically heterogeneous ontologies. Moreover, to support interoperability across on-
tologies, based on a debate on the mailing list of the IEEE Standard Upper Ontology
working group,3 semantic operability is to use logic in order to guarantee that, after data
are transmitted from a sender system to a receiver, all implications made by one system
had to hold and be provable by the other, and that there should be a logical equivalence
between those implications. To express equivalent concepts and relations between two
ontologies, we must issue queries to compute views over ontologies since ontologies
rarely match directly [17]. The associated set of inference rules with ontologies, how-
ever, neither support expressing complex queries nor reasoning queries efficiently.

Procedural attachment is a common technique to enforce the expression power in
case where an expression power is limited [16]. Aprocedural attachmentis a method
that is implemented by an external procedure. We employ two types of procedural at-
tachments in our approach. A domain ontology shared by base ontology-mapping tech-
niques is attached withextraction procedures. An extraction procedure is an encoded
method with extraction patterns that express the lexical instantiations of ontology con-
cepts. A mapping ontology, on the other hand, is attached withquery proceduresto
establish a communication across ontologies. Each mapping instance maps asource
ontology to atargetontology, which is formally specified such that source data is ready
to load into the target. Because it is not always promising that we have direct mappings
[7] [17], a query procedurecomputes a target-specific view over the source so that the
view data satisfies all implications made by the target when we can not map a source
ontology to a target ontology directly.

In this paper, we offer the following contributions: (1) attaching extraction proce-
dures with domain ontologies to represent knowledge shared by base techniques to find

3 Message thread on the SUO mailing list initiated at http://suo.ieee.org/email/msg07542html.
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semantic affinities between ontologies; and (2) attaching query procedures with map-
ping ontologies to efficiently interoperate heterogeneous ontologies based on mapping
results produced by base techniques. We present the details of our contribution as fol-
lows. Section 2 describes elements in input and domain ontologies and how to apply
domain ontologies to support finding semantic affinities between ontologies. Section 3
describes source-to-target mappings as mapping ontologies and how the representation
supports accurate and efficient semantic interoperability. Section 4 gives an experimen-
tal result to demonstrate the contribution of applying domain ontologies to ontology
mapping. Finally, we summarize and draw conclusions in Section 5.

2 Domain Model Representations

2.1 Input Ontology

An ontology include classes, slots, slot restrictions, and instances [4]. Classes and in-
stances form an ontology. A class is a collection of entities. Each entity of the class
is said to be an instance of that class. WithIS-A andPART-OFrelationships, classes
constitute a hierarchy. Slots attached to a class describe properties of objects in the
class. Each slot has a set of restrictions on its values, such as cardinalities and ranges.
By adapting an algebra approach to represent ontologies as logical theories [10], We
provide the following definition.

Definition 1. An input ontologyO = (S, A, F ), whereS is thesignaturethat de-
scribes the vocabulary for classes and slots,A is a set ofaxiomsthat specify the intended
interpretation of the vocabulary in some domain of discourse, andF is a set of ground
facts that classifying instances with class and slot symbols in the signatureS.

For discussion convenience, in this paper we use rooted hypergraphs graphs to il-
lustrate structure properties between classes and slots in ontological signatures. A hy-
pergraph includes a set of nodes modeling classes and slots and a set of edges modeling
relations between them. The root node is representing a designated class of primary in-
terest. Figure 1, for example, shows two ontology hypergraphs (whose roots arehouse
andHouse). In hypergraphs, we present a class or slot using either a solid box or a
dashed one where a dashed box indicates that there is data populated for the concept,
a functional relation using a line with an arrow from its domain to its range, and a
nonfunctional relation using a line without arrowhead.

2.2 Domain Ontology

To represent domain knowledge to find semantic affinities between two ontologies, we
use domain ontologies attached with extraction procedures to capture semantics for
ontology mapping. Ground facts are not part of a domain ontology since the domain
ontology is not populated with instances. We define a domain ontology as follows.

Definition 2. A domain ontologyO = (S, A, P ), whereS is the ontological signa-
ture,A is a set of ontological axioms, andP is a set ofproceduresthat extract metadata



4 Li Xu, David W. Embley, and Yihong Ding

househouse

view

address MLS

phone_evening
phone_day

(a) Ontology Signature 1 (partial)

HouseHouse

Water_front

Address

State
City

Street
Golf_course

MLS

Phone

(b) Ontology Signature 2 (partial)

Fig. 1. Signatures of Input Ontologies

and data from vocabulary terms and populated instances of input ontologies based on
extraction rules.

Extraction procedures attached with domain ontologies apply data extraction tech-
niques [8] to retrieve data and metadata when matching two ontologies. Each extraction
procedure is designed for either a class or slot in a domain ontology. When an extraction
procedure is invoked, a recognizer does the extraction by applying a set of extraction
rules specified using regular expressions. Figure 2 shows the regular expressions using
the Perl syntax for slotV iew andPhone in a real-estate domain.

Each list of regular expressions include declarations for data values that can poten-
tially populate a class or slot and keywords that can be used as vocabulary terms to name
classes and slots. We describe the data values usingextractclauses and the keywords
usingkeywordclauses. When applied to an input ontology, both theextractandkeyword
clauses causes a string matching a regular expression to be extracted, where the string
can be a vocabulary term in the ontological signature or a data values classified by the
ontological ground facts.

2.3 Application of Domain Ontology

Figure 3 shows three components in a real-estate domain ontology, which we used
to automate the mapping between two ontologies in Figure 1 and also for mapping
real-world ontologies in the real-estate domain in general. Each dashed box in Fig-
ure 3 associates with an extraction procedure that is capable of extracting both pop-
ulated values and vocabulary terms for the concept. Filled-in (black) triangles denote
aggregation (“PART-OF” relationships). And open (white) triangles denote generaliza-
tion/specialization (“IS-A” superclasses and subclasses).

Provided with the domain ontology described in Figure 3, we can discover many
semantic affinities between Ontology 1 in Figure 1(a) and Ontology 2 in Figure 1(b) as
follows.

1. Terminological Relationships. The extraction patterns applied by extraction proce-
dures specify common vocabulary terms used to name classes and slots. Based on
thePhone component in Figure 3(b), the vocabulary termphone day in Ontology
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View matches [15] case insensitive
constant

{ extract “\bmountain\sview\b”; },
{ extract “\bwater\sfront\b”; },
{ extract “\briver\sview\b”; },
{ extract “\bpool\sview\b”; },
{ extract “\bgolf\s*course\b”; },
{ extract “\bcoastline\sview\b”; },

...
{ extract “\bgreenbelt\sview\b”; };

keyword
“\bview(s)?\b”;

End;
Phone matches [15] case insensitive

constant
{ extract “\b\d{3}-\d{4}\b”; }, – nnn-nnnn
{ extract “\b\(\d{3}\)\s*\d{3}-\d{4}\b”; }, – (nnn) nnn-nnnn
{ extract “\b\d{3}-\d{3}-\d{4}\b”; }, – nnn-nnn-nnnn
{ extract “\b\d{3}\\\d{3}-\d{4}\b”; }, –nnn\nnn-nnnn
{ extract “\b1-\d{3}-\d{3}-\d{4}\b”; }; – 1-nnn-nnn-nnnn

Keyword
“\bcall\b”,“\bphone\b”;

End;

Fig. 2. Example of regular expressions in a real-estate domain

1 matches with keywords specified for conceptDay Phone and the termPhone
in Ontology 2 matches with keywords for conceptPhone. Based on the “IS-A”
relationship betweenDay Phone andPhone, we can find the semantic affinity
betweenphone day in Ontology 1 andPhone in Ontology 2.

2. Merged/Split Values. Based on theAddress declared in the ontology in Figure 3(a),
the attached extraction procedure detects that (1) the values ofaddress in Ontology
1 match with extraction patterns for conceptAddress, and (2) the values ofStreet,
City, andState in Ontology 2 match with extraction patterns for conceptsStreet,
City, andState respectively. Based on “PART-OF” relationships in Figure 3(a),
we can find the “PART-OF” relationships betweenStreet, City, andState in
Ontology 2 andaddress in Ontology 1.

3. Superset/Subset. By calling extraction procedures attached with in Figure 3(b),
phone day in Ontology 1 matches with both keywords and data value patterns
for Day Phone andphone in Ontology 2 matches withPhone. In Figure 3(b) the
ontology explicitly declaresPhone is a superset ofDay Phone based on the “IS-
A” relationship betweenDay Phone andPhone. Thus we can find the semantic
affinity betweenphone day in Ontology 1 andPhone in Ontology 2.

4. Vocabulary Terms/Data Instances. Extraction procedures apply extraction patterns
to recognize keywords and value patterns over both ontology terms and populated
instances since it is difficult to distinguish boundaries between metadata and pop-
ulated data instances in complex knowledge representation systems. In Ontology
1, Watherfront is data classified forview in its ontological ground facts. In On-
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Fig. 3. Real-estate domain ontology (partial)

tology 2,Water front is a vocabulary term in its ontological signature. Boolean
values “Yes” and “No” associated withWater front in Ontology 2 are not its val-
ues but to show whether the valuesWater front should be included as description
values forview of House in Ontology 1 if we do mapping. The extraction proce-
dure for conceptV iew in Figure 3(c) recognizes terms such asWater front in
Ontology 2 as values while the procedure for conceptWater Front can recognize
keyword “water front” associated withview in Ontology 1. SinceWater Front
“IS-A” V iew in Figure 3(c), by derivation, we can detect thatview in Ontology 1
has a semantic affinity withWater front in Ontology 2.

3 Mapping Result Representation

3.1 Source-to-target Mapping

We adopt an ontology mapping definition as follows [10].

Definition 3. A source-to-target mappingMST from OS = (SS , AS , FS) to OT =
(ST , AT , FT ) is a morphismf(S′S) = S′T such thatA′T | = f(A′S), i.e. all interpre-
tations that satisfyO′T axioms also satisfyO′S translated axioms if there exists two
sub-ontologiesO′S = (S′S , A′S , F ′S) (S′S ⊆ SS , A′S ⊆ AS , F ′S ⊆ FS) and O′

T =
(S′T , A′T , F ′T ) (S′T ⊆ ST , A′T ⊆ AT , F ′T ⊆ FT ).

Our representation solution for source-to-target mapping allows a variety of source
derived data based on the discovered semantic affinities between two input ontologies.
These source derive data include missing generalizations and specializations, merged
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and split values, and etc. Therefore, our solution “extends” elements in an ontological
signatureSS of a source ontologyOS by including views computed via queries, each
of which we call aview element. We letVS denote the extension ofSS with derived,
source view elements.

Every source-to-target mappingMST is composed of a set of triples. Each triple
t = (et, es, qe) is a mapping element, whereet ∈ ST , es ∈ VS , qe is either empty
or a mapping expression. We call a triplet = (et, es, qe) a direct matchwhich binds
es ∈ SS to e t ∈ ST , or anindirect matchwhich binds a view elementes ∈ VS −SS to
e t ∈ ST . When a mapping elementt is an indirect match,qe is amapping expression
to illustrate how to compute the view elementes over the source ontologyOS .

To represent source-to-target mapping as logic theories, we specify source-to-target
mappings as populated instances of a mapping ontology, which is defined as follows.

Definition 4. A mapping ontologyO = (S, A, F, P ), whereS is the ontological
signature,A is the set of ontological axioms,F is a set of ground facts presenting
source-to-target mappings, andP is a set of query procedures that describe designed
query behaviors to compute views over ontologies.

If a mapping elementt = (et, es, qe) in a source-to-target mappingMST is an
indirect match, i.e.es is a source view element, a query procedure is attached witht to
computees by applying the mapping expressionqe.

3.2 Mapping Expressions

We can view each class and class slot (including view elements corresponding to either
classes or class slots) in ontologies as single-attribute or multiple-attribute relations.
Relational algebra is ready to be applied to describe procedural behaviors for query
procedures attached with mapping ontologies. Therefore, we present mapping expres-
sions by an extended relational algebra since traditional operators in relational algebra
do not cover the ones required to address problems such asMerged/Split valuesand
Vocabulary Terms/Data Instances.

For example, to addressMerged/Split Values, we designed two operationsCompo-
sitionandDecompositionin the extended relational algebra. We describe the two oper-
ations as follows. In the notation, a relationr has a set of attributes;attr(r) denotes the
set of attributes inr; and|r| denotes the number of tuples inr.

– Compositionλ. Theλ operator has the formλ(A1,...,An),Ar where eachAi, 1 ≤
i ≤ n, is either an attribute ofr or a string, andA is a new attribute. Applying this
operation forms a new relationr′, whereattr(r′) = attr(r) ∪ {A} and|r′| = |r|.
The value ofA for tuplet on rowl in r′ is the concatenation, in the order specified,
of the strings among theAi’s and the string values for attributes among theAi’s for
tuplet′ on rowl in r.

– Decompositionγ. Theγ operator has the formγR
A,A′r whereA is an attribute of

r, andA′ is a new attribute whose values are obtained fromA values by applying
a routineR. Applying this operation forms a new relationr′, whereattr(r′) =
attr(r) ∪ {A′} and|r′| = |r|. The value ofA′ for tuplet on rowl in r′ is obtained
by applying the routineR on the value ofA for tuplet′ on rowl in r.
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Assuming that Ontology 1 in Figure 1(a) is the target and Ontology 2 in Figure 1(b)
is the source, the follow lists the derivation of a view elementHouse − address′ in
Ontology 2 that matches withhouse− address in Ontology 1.

Address−Address′ ⇐πAddress,Address′λ(Street,“, ”,City,“, ”,State),Address′(
Address− Street 1 Address− City 1 Address− State)

House− address′ ⇐ρAddress′←address′πHouse,Address′(House−Address
1 Address−Address′)

The λ operator denotes theCompositionoperation in the relational algebra. The
Composition operation merges values inStreet, City andState for a new concept
Address′.

3.3 Semantic Interoperability

Definition 5. A semantic interoperable systemI = (OT , {OSi
}, {MSiT }), whereOT

is a target ontology,{OSi
} is a set ofn source ontologies, and{MSiT } is a set ofn

source-to-target mappings, such that for each source ontologyOSi
there is a mapping

MSiT from OSi to OT , 1 ≤ i ≤ n.

The following theorem provides that accurate information exchange between on-
tologies is guaranteed by derived source-to-target mappings.

Theorem 1. Given a semantic interoperable systemI = (OT , {OSi}, {MSiT })
where1 ≤ i ≤ n, data factsFOSi

→OT flowing fromOSi to OT basedMSiT hold and
are provable byOT .

Note that data factsFOSi
flowing from OSi to OT based onMSiT have classifi-

cations to either signature or view elements inOSi . Since a source-to-target mapping
defines a morphismf(S′OSi

) = S′OT
, the data factsFOSi

hence hold the classifications
to the signature elements inOT that correspond source elements inOS .

Assume that user queries issued overI are Select-Project-Join queries and we also
assume that they do not contain comparison predicates such as≤ and 6=. We use the
following standard notation for conjunctive queries.

Q(X) : −P1(X1), ..., Pn(Xn)

X, X1,...,Xn are tuples of variables, andX ⊆ X1

⋃
...

⋃
Xn. The predicatesPi (1 ≤

i ≤ n) is a target signature element. When evaluating query answers for a user queryQ,
the semantic interoperable systemI transparently reformulatesQ asQext, a query over
the target and source ontologies inI. Since each target signature elementPi possibly
corresponds to a set of source elements{s|s → P1}, to obtainQext, we substitutePi

in Q by adjoiningPi to {s|s → Pi}. Note that a source elements in the substitution set
for Pi in Q may be a source view element, derived by invoking a query procedure.

With query reformulation in place, we can now prove that query answers aresound—
every answer to a user queryQ is an entailed fact according to the source(s) and the
target—and that query answers contain all the entailed facts forQ that the sources and
the target have to offer—maximalfor the query reformulation.
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Theorem 2. Let Qext
I be the query answers obtained by evaluatingQExt over I.

Given a user queryQ overI, a tuple< a1, a2, . . . , aM > in QExt
I is a sound answer

in Qext
I for Q.

Theorem 3. If QExt is a reformulated query inI for a queryQ overI, QExt is a
maximally contained reformulation forq with respect toI.

4 Experimental Result

We used a real-world application,Real Estate, to evaluate applications of a domain on-
tology shared by a set of matching technique [17]. TheReal Estateapplication has five
ontologies. We decided to let any one of the ontologies be the target and let any other
ontology be the source. In summary, we tested 20 pairs of ontologies for theReal Estate
application. In the test,Merged/Split Valuesappear four times,Superset/Subsetappear
48 times, andVocabulary Terms/Data Instancesappear 10 times. With all other indirect
and direct matches, there are a total of 876 matches. We evaluate the performance of
our approach based on three measures: precision, recall and the F-measure, a standard
measure for recall and precision together [1]. By exploiting knowledge specified in the
domain ontologies attached with extraction procedures, the performance reached 94%
recall, 90% precision, and an F-measure of 92%4.

One obvious limitation to our approach is the need to manually construct an application-
specific domain ontology with extraction procedures. To facilitate the knowledge ac-
quiring process to build domain ontologies, we can reuse existing ontologies. Machine
learning techniques can also be applied to facilitate the construction of extraction pat-
terns for extraction procedures. Since we predefine a domain ontology for a particular
application, we can compare any two ontologies for the application using the same do-
main ontology. Therefore, the work of creating a domain ontology is amortized over
repeated usage.

5 Conclusions

We have proposed an approach to automate and represent ontology mappings by com-
bining both declarative and procedural representations. We have tested that a set of
base techniques are able to establish communications via domain ontologies attached
with extraction procedures. By sharing the domain ontologies, the base techniques
detected indirect matches related to problems such asSuperset/Subset, Merged/Split
values, as well asVocabulary Terms/Data Instances. To approach semantic interoper-
ability across ontologies, we present source-to-target mappings as mapping ontologies
attached with query procedures, which not only support equivalent inferences and com-
putations on equivalent concepts and relations but also improve query performance by
applying query procedures. The source-to-target mapping instances lead automatically
to a rewriting of every target element as a union of the target element and correspond-
ing virtual source-view elements. Query reformulation thus reduces to rule unfolding

4 See a detailed explanation about the experiment in [17]
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by applying the view definition expressions for the target elements in the same way
database systems apply view definitions.
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