DON MEDLEY
Editor and Program Chairman

ELLEN MARIE RANDALL
Editorial/Production Specialist

HERBERT SAFFORD
Conference Chairman

AFIPS PRESS

1815 NORTH LYNN STREET
ARLINGTON, VIRGINIA 22209

AFIPS

CONFERENCE
PROCEEDINGS

1980

NATIONAL
COMPUTER
CONFERENCE

May 19-22, 1980

Anaheim, California

et ———

by DAVID W. EMBLEY

University of Nebraska
Lincoln, Nebraska

INTRODUCTION

Processing everyday data items such as dollar amounts,
time, dates, and account numbers constitutes a significant
portion of real-world computer applications. Programmers
involved with everyday data items confront the drudgery of
writing routines to recognize, validate, transform, store, re-
' trieve, manipulate, and display these items and also the chal-
lenge to develop user-friendly data-entry systems and insure
data integrity. They usually meet these challenges using var-
ious and sundry ad hoc techniques.

Sometimes, much of the burden is transferred to data-
entry personnel who are asked to adhere to rigid input for-
mats and to insure accuracy by tedious double checking. As
explained by Gilb and Weinberg in their book Humanized
- Input, many poor system designs have been saved by the
accurate touch of the keypunch operators.!

In an attempt to systematically address the problems en-
countered when processing everyday data items, the concept
of a data frame is proposed. A data frame provides a means
to encapsulate the concept of a data item with all of its es-
sential properties including alternative natural language writ-
ten forms, computer representation, applicable contextual
information, permissible operations, and relationships with
other data items.

DATA FRAMES

The name ‘‘data frame’* has been coined because of the
concept’s similarity to data abstractions>® and Minsky
frames.* A data frame can be thought of as an extension to
data abstractions or as a Minsky frame cast in the form of
an abstract data type.

Minsky’s theory of frames is a theory of rich symbolic
structure where a frame represents a particular situation.
Included in the frame is information about how to use the
knowledge, what can be expected, and what to do if expec-
tations are not confirmed. Data frames represent data items
instead of situations, but the information included and its
purpose are quite similar.

[
|
E
s

* This material is based upon work supported by the National Science Foun-
dation under Grant No. MCS-7904126.

ST e —

301

Programming with data frames for everyday data items*

An attempt to precisely define the syntactic structure that
includes all information that might be needed for all possible
applications is premature, but it seems reasonable to extend
the structure of data abstractions to represent the additional
information required. The aim is to appropriately model the
behavior of a particular data item.

Figure 1 shows some of the essential features for a data
frame for dollar amounts. There are several acceptable writ-
ten forms for U. S. currency, for example, $25.63, $2,-

638,457.00, $.63, 63¢, $47, 47% or just plain 25.63 when the

context is understood. In general, the dollar amount input
routine should accept any of these forms and perform the
necessary translation to an internal computer representation.
A return code supplied by the input routine gives the com-
pletion status and provides information for error messages.
The corresponding output routine produces a formatted
string ready to be displayed. A more detailed description of
input/output conversions is given elsewhere.’

The context keywords in Figure 1 are extracted from the
forms in common use in the Computer Science Department
at the University of Nebraska. In the context of one of these
keywords, if a data item is expected, it is quite certain that
the type of the data item is a dollar amount. Also extracted
from the forms are the operations addition, subtraction, and
multiplication by an integer, along with context keywords
that indicate an operator’s applicability.

A library of commonly used data frames would be a val-
uable asset to application programmers who could then ex-
tract, possibly modify, and use them along with data frames
created by themselves to fit their needs. A general dollar
amount data frame taken from a library, for instance, could
be adopted for use in an application involving UNL Com-
puter Science departmental forms with very little if any al-
teration. The general library version might have a somewhat
longer or different list of context keywords and an additional
operator or two, but would be essentially the same.

Data frames can also be grouped together to model items
more complex than a data element. Indeed, a data frame
group is indistinguishable from a data frame for an elemen-
tary item except that selector operations would be available
to provide access to an item within the group. A date, for
instance, may be constructed as an elementary- data frame
or as a data frame group with selector functions for day,
month, and year.

[

302 National Computer Conference, 1980

data frame dollar_ amount;

internal representation real;

input (s: string) returns (dollar amount, return code);
(* validate string s and translate it into the internal representation *)

end;

output (a: dollar_amount, f: format specification) returns (string, return code);
(* translate a dollar amount variable a into a string according to a

given format specification f *)

end;

context keywords:

arount, amt, budget, cost, dollar, expense, extension, funds,

honorarium, income, price, rate, sal, salary, sales, total, §;

infix function (al: dollar_amount) + (a2: dollar_amount)

returns (dollar_amount);

context keywords: add, total, +;
return (al+a2);

end;

infix function (al: dollar_amount) - (a2: dollar_amount)

returns (dollar_amount);

context keywords: difference, subtract, -;

return (al-a2);
end;

infix function (a: dollar_amount) * (n: integer) returns (dollar_amount);

context keywords: amounf, extension;

return (a*n);
end;

end.

Figure 1—Illustration of some of the essential features for a dollar amount data frame

In the next three sections, examples are presented to show
how data frame features might be utilized.

Computer-assisted instruction example

One of the problems with CAI is the lack of flexibility in
accepting student responses. The main reason for this ri-
gidity is that input validation and interpretation is so difficult.
For questions that require common items of data as answers,
data frames can help make the development of user-friendly
input requirements easier.

Figure 2 shows several student responses to the question, -
““When was Abraham Lincoln born?’, and a reasonable sys-
tem reply to each response based on information from a
data frame for dates. A date input routine would reject
“Kentucky’® and ‘32 Feb, 1890’ as invalid dates. Both
42/12/1809”° and ¢‘12/2/1809"" would be acceptable because
the ambiguity could be resolved by comparing with the ex-
pected answer. By making use of the available date opera-
tions, dates that are too early, late, or only partially correct
could also be identified.

Programming with Data Frames for Everyday Data Items 303

When was Abraham Lincoln born?
> Kentucky

No, the answer should be a valid date.
Try again.

> 32 Feb 1809

No, the answer should be a valid date.
Try again.

v

2/12/1809

Ok, your answer is correct. (February 12, 1809)

v

12/2/1809
Ok, your answer is correct. (February 12, 1809)

> November 17, 1805

No, he was born after that.
Try again.

> Jan., 4, 1815

No, he was born before that.
Try again.

v

12-2-1808

No, the year is wrong.
Try again.

v

12 February 1809
Ok, your answer 1s correct.
¢

Figure 2—Student responses (preceded by ‘‘>"") and CAl-system replies to
a question requiring a date for an answer

Query language example

At the University of Nebraska, several students and fac-
ulty in the Department of Computer Science together with
personnel from the Computing Network are in the process
of developing SIMPLE, a programming environment de-
signed for instructional use for beginning students and stu-
dents with minimal system requirements.® As part of the
project, a database has been established containing infor-
mation about student users such as account number, name,
account balance, processor usage, and available command
set. A query language was hastily provided to enable in-
structors to access and update the information, but a more

“user-friendly interface based on data-frame ideas is being

designed.

The data-frames query language has no syntactic structure,
neither is it based on natural language processing concepts.
Instead, self-identifying data in its natural language form,
context keywords, and available operators provide the in-
formation necessary for inferring the desired action.

Figure 3 shows a sample dialogue betwgen a class instruc-
tor and the system. In the first request, the *‘$25’ can be
recognized as a dollar amount; then, with the context key-
word ‘‘ 4+’ and the lack of any account designation, the sys-

tem proposes that all accounts receive an additional 25 dol-
lars. In the second request, the English phrase should not
be construed to carry meaning; the presence of the keyword
‘““ADD”’ along with a dollar amount and account numbers
is all that is necessary. In the third request, a context de-
pendency arises since the instructor has just singled out two
specific accounts. In a second attempt, the discrepancy is
resolved. For this request, of course, a data frame on SIM-
PLE commands would have to be available to recognize
GET, PUT, and APPEND as commands and to recognize
ADD as a context keyword associated with set union. (SIM-
PLE allows an instructor to tailor its use by specifying which
commands are available to each user.) The only reasonable
response to a name when no context information applies is
to display information about the individual, and since the
database is not being altered, no confirmation is necessary.
(In SIMPLE all command keywords are uniquely identified
by their first letter.) In the fifth request, SINCE is not rec-
ognized, so more than one reasonable alternative exists. If
an impasse is reached where the system sees no other rea-
sonable alternatives, the query language provides a struc-
tured request format that can be used as a last resort.

Forms-based programming example

In a forms-based approach to programming, an application
programmer describes data processing operations by means
of structures modeled on conventional administrative forms.
For a particular function, the programmer designs the form,
specifies the data type for each item on the form, and defines
relationships among the items. A system of related forms
can be defined so that information is manipulated and routed
among forms, a database, and external devices.”

T >4$25

ADD $25 TO ALL ACCOUNTS? (Y/N)
>Y
DONE

>ADD AN ADDITIONAL $10 TO ACCOUNTS CSC0321 AND CSC0607.
ADD $25 TO CSC0321 CSC0607? (Y/N)

>Y

DONE

>ADD GET, PUT, AND APPEND

INCLUDE GET PUT APPEND IN COMMAND SET FOR CSC0321 CSC06077 (Y/N)
>N

INCLUDE GET PUT APPEND IN COMMAND SET FOR ALL ACCOUNTS? (Y/N)
>Y

DONE

>MARK MEYER

ACCOUNT # NAME BALANCE NR. RUNS COMMANDS
CSC0097 MARK MEYER $43.17 12 ABCDFGHILNOPQRT

>NUMBER OF PASCAL RUNS FOR ALL USERS SINCE 12 APR
ON APRIL 12, 19797 (Y/N)

>N

FROM APRIL 12, 1979 TO PRESENT? (Y/N)

>Y

493

Figure 3—SIMPLE query language (lines preceded by ““>’’ are input by the
user)

304 National Computer Conference, 1980

Suppose that the invoice-voucher form shown in Figure
4 is part of a system of forms that models a business oper-
ation. As an application programmer designs the form, blank
spaces for expected entries are specified to be of a certain
type and are associated with key phrases that indicate what
entries are expected. The blank spaces for vendor name,
street, city, state, zip code, and voucher total $ all expect
a single entry. Item no., description, quantity, unit price,
and amount are members of a group of items each containing
an unknown but equal number of entries.

With a library of appropriate data frames at its disposal,
it is conceivable that a forms-based programming system
could select the appropriate frame for each item on the form
and define relationships among the items without any inter-
vention from an application programmer. For the dollar
amount entries, the associated key phrases all contain con-
text keywords that appear in the data frame in Figure 1. It
is not hard to imagine that the other needed data frames

likewise contain the essential context keywords to enable
the entry type to be determined.

In addition to context keywords, data frames used for
forms-based programming also require knowledge about the
nature and layout of forms. The addition operator in the
dollar amount data frame, for instance, must know that a
column of dollar amounts can be added together to produce
a total. For the invoice-voucher, this information coupled
with the expectation of a total in the blank space immediately
below the column of dollar amounts is enough for the system
to propose the relationship Xamount, = voucher total $.

Rows also imply relationships. Record information is often
placed on a row; and therefore, if the item no., description,
and unit price match field descriptors for records in a da-
tabase file, values for these entries could be either double
checked against a database or partially acquired from the file
given only the item no.

The relationship quantity *unit price,=amount, is also de-

INVOICE-VOUCHER

P vendor name
A
X street
E
E L_ ity state zip _J
—
item no. description quantity unit price amount

voucher total $

Figure 4—Invoice-voucher form

Programming with Data Frames for Everyday Data Items 305

ducible from the facts at hand. Where relationships cannot
be deduced or where ambiguities or misunderstandings arise,
an application programmer can supply the information or
resolve the issue and always has the final say.

CONCLUDING REMARK

Although much remains to be done, even a step toward
the encapsulation of the essential properties of everyday data
items in data frames would benefit programmers in many ap-
plications. Extending data abstractions with input/output
routines alone could simplify many programming tasks par-
ticularly for business and interactive computing applications
where handling input and output constitutes a significant
portion of the programming effort.

B

g’

REFERENCES

1. Gilb, T. and Weinberg, G. M., Humanized Input, Winthrop Publishers,
1977.

2. Guttag, J. V., Horowitz, E., and Musser, D. R., ““The Design of Data
Type Specifications,” in Current Trends in Programming Methodology,
R. T. Yeh (ed.), Prentice-Hall, 1978, pp. 60-79.

3. Liskov, B. H. and Zilles, S. N., ‘*Programming with Abstract DataTypes,’
Proceedings of ACM Symposium on Very High Level Languages, SIG-
PLAN Notices, Vol. 9, No. 4, April 1974, pp. 50-59.

4. Minsky, M., ‘A Framework for Representing Knowledge,"” in The Psy-
chology of Computer Vision, P. H. Winston (ed.), McGraw-Hill, 1975, pp.
211-277.

5. Embley, D. W., Data Abstractions for Everyday Data Items, Department
of Computer Science, University of Nebraska-Lincoln, August 1979.

6. Embley, D. W. and Nagy, G., SIMPLE Specifications, Department of
Computer Science, University of Nebraska-Lincoln, June, 1979.

7. Embley, D. W., “‘Forms-Based Automatic Program Generation,”” ACM
78 Proceedings, December 1978, pp. 972-979.

