
Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

A SCHEME-DRIVEN NATURAL LANGUAGE QUERY TRANSLATOR

David W. Embley** ++
Brigham Young University

Provo, Utah 84602

Roy E. Kimbrell**
Planning Research Corporation

Bellevue, Nebraska 68005

Abstract

An approach to natural languaqe
que KY translation is presented
that is driven mainly by the Se-
mantics contained in an extended
database scheme. This approach
has the advantage of ease of im-
plementation and thus portability
since the scheme can easily be ex-
tended to interface with the
translation system's natural
language understanding modules.
The required extensions consist of
adding domain specific routines to
recognize and classify literals
and a lexicon to recognize context
keywords. The results from these
recognizers are then presented to
a domain independent translator
for further analysis. A prototype
system has been implemented and
Some initial experimentation has
been done. Observations about the
effectiveness of the translator
and its efficiency are reported.

1. Introduction

Processing database queries is an
imprtant application for natural language
understanding systems. There is a recog-

-_ __._ - - ___I .-.--. -- _.-. -
** Part of this work was done while we

were at the University of Nebraska-Lincoln.
++ This material is based in part on

work supported by the National Science
Foundation under Grant No. MCS-8219941.

PermIssion IO copy wlthout fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercrat advantage, the ACM copyrtght notice and the title of the
publlcatlon and its date appear, and notice is given that copying is by
permlsalon of the Association for Computing Machinery. To copy

otherwlse. or to republish. requires a fee and, or specific permission.

c 19x5 ,A(‘M OXY791-150-4 X5 003 0292 500.75

nized need for natural language communica-
tion especially for database users who are
noncomputer specialists [Blanning 84,
Kelly 841. This need, coupled with the
increased likelihood of
interpreting database queries

successfully
because of

the limitations imposed on the domain of
discourse, has encouraged several
researchers to develop natural language
query processors [e.g., Woods et al. 72.
Waltz 76, Harris 77, Hendrix et al. 78,
Codd 78, Ballard et al. 841. With varying
degrees of success, these systems apply
techniques of natural language
[Tennant

processing
811 to analyze requests and gen-

erate formal database access queries.

Like these systems, Knemos* generates
database access queries from natural
language input. Mnemos differs from these
systems in its direct use of the database
scheme as its knowledge base for natural
language understanding. This approach has
the advantage of ease of implementation
and thus portability since the scheme can
easily be extended to interface with the
natural language understanding modules of
Mnemos. In this regard Mnemos is similar
to CC-OP [Kaplan 841 and INTELLECT [Harris
77, AIC 821, but differs from these sy s-
tems in the details of its approach.

This paper reports our investigation
of the Mnemos approach for interpreting
natural languaye queries. In Section 2.
specifics about the scheme requirements
are stated and the interpretation
generation routines are explained. A pro-
totype Mnemos interpreter has been imple-
mented, and the extent to which it under-
stands queries posed by naive database
users and the speed at which it executes
have been assessed. The implementation
and observations about its use and its
potential are discussed in Section 3.

--___---_------ -__-.-
*Mnemosyne, from which the name Mnemos

('ne mos) was taken, was the goddess of
memory in Greek mythology. One theory of
how human memory is used to understand na-
tural written communication corresponds to
how Mnemos uses computer memory to inter-
pret database queries [Anderson and Bower
731.

292

Proceedings ofthe 1985 ACM Computer Science Conference-Agenda forcomputing Research:The Challenge forcreativity, 1985 March 12-14

2. Mnemos

TraditiCnal database schemes have
been augmented in various ways to capture
more information about the organization or
system being modeled [Smith and Smith 77,
Coda 79, Borkin 801. The augmented scheme
for Mnemos is comparatively simple. To a
large extent, the scheme is a reorganiza-
tion Of informati0n already part of the
scheme or database support system.

MnemOs assumes that the database
scheme is relational and is derived from
an entity-relationship model [Chen, 761.
As an addition to the entity-relationship
model, each attribute, entity, and rela-
tionship is described by a data frame
[Embley 80, Khan et al. 821. A data frame
encapsulates knowledge about the appear-
ance, behavior, and context of a data ele-
ment or collection Of data elements.
Specific information about the written
appearance of data-element literals, about
applicable operations that can be per-
formed on the data elements, and about
words that commonly refer to or are found
in context with data elements, collections
of data elements, or applicable operations
are all contained in data frames.

For Mnemos the role of domain
descriptior.s for the data elements in the
scheme is substantially increased.
Instead of merely specifying the type gen-
erally as one of integer, real, or charac-
ter string, data elements are defined with
more restrictive types such as dollar
amount, social security number, account
number, department name, and date. Nar-
rowly defined input routines recognize and
classify literals so that $21.43, for
example, is associated with the dollar
amount data frame and 630-75-4485 with the
social security number data frame. Con-
text keyword recognizers properly associ-
ate wor ds and phrases with data frames,
for example amount, cost, price, subtotal,
and total with the dollar amount data
frame. Data frames for entities and rela-
tionships also contain context keyword
recoqnizers that, for example, would asso-
ciate teacher, instructor, and professor
with a data frame for the entity faculty
member.

It is the ability to recognize and
classify literals, WOK&r and phrases and
to make sense of their meaning in the con-
text of an entity-relationship model that
allows Mnemos to interpret natural
language queries. Once Mnemos has made an
initiz-:l classification of unit words and
phrases in a query, an attempt is made to
combine these interpreted low-level units
into high-level units. This is done in
one of two ways:

(1) match operators with operands, and

(2) embed low-level interpretations in a
graph of the entity-relationship
diagram.

Unit words and phrases such
"greater than", "total", and "how man;'
refer to OpeKatOKS. Each operator expects
certain operands: "greater than" demands
two quantities that can be compared,
"total" requires two or more quantities
that can be summed, and “how many" needs a
column in a relation so that the distinct
values in the column can be counted. When
a query includes an operation, the
operands should appear either explicitly
as literals ot implicitly as references to
attributes in the database where values
can be found. The data frame in which an
operator resides contains information
about the operator's operands and thus
enables operator-operand matching.

As an example of matching operators
with operands to formulate a database
request, consider the query

Give me the names of employees in
the accounting department whose
salary is greater than $50,000

in a database with a relation

EMPLOYEE(ID#, NAME, ADDRESS,
DEPARTMENT, SALARY).

Figure 1 shows a low-level interpretation
that would be generated by Mnemos. Given
this low-level interpretation, Mnemos

&srd or Phrase Assoclatlon Prooeru

Give

me

the

"STleS

of

employees

in

the

accounting

department

whose

Sal sty

is

greater than

$50,000

Figure 1.

NAME

EMPLOYEE

DEPARTMENT

DEPARTMENT

SALARY

>

DOLLAR-ANT

Common Word

common Word

Common Word

Data Frame: Name
context Keyword
Attribute of EMPLOYEE

Common Word

Relation
Context Keyword

Common Word

common Word

Data Fume: DepSrtment
Literal
Attribute of EMPLOYEE

Data Frame: Department
Context Keyword
Attribute of EMPLOYEE

Common Word

Data Frame: Dollar-AT&
Context Keyword
Attribute of EMPLOYEE

Common Word

Data Frame: Dolla1 Amt.
Context Keyword
operator

Data Frame: Dollar-Amt
Literal
Attribute of EMPLOYEE

A Sample Low-level Interpretation
Involving an Operator.

293

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

would combine SALARY, 5, and $50,000 into
the expression

SALARY > 50000

by matching interpreted fragments from the
sentence with expected operands for the
greater-than operation. This interpreta-
tion is now ready to be converted into the
expression

SELECT NAME

FROM EMPLOYEE

WHERE SALARY > 50000 AND
DEPARTMENT = 'ACCOUNTING'

which can be passed to a database manage-
ment system to retrieve the results.

The second method of creating high-
level interpretations from low-level
interpretations is by an embedding in an
entity-relationship diagram. By consider-
ing entities and relationships as nodes in
a graph and by marking nodes that are
referenced in low-level interpretations,
contiguous paths linking marked entities
and relationships can be observed.

fc.r example, consider the query

HOW many students who have Dr.
Jones for an advisor are taking
CS352?

in the context of the entity-relationship
diagram and derived relational scheme
shown in Figure 2. A low-level interpre-

FACULTY(FNAME, DEPT)
STUDENT(ID#, SNAME. ADDR, MAJOR, COLLEGE)
COURSE(COURSE#, CRHRS)
AWISOR(FNAME, ID#)
HAS-TAKEN(IDB, WLJRSE#, SEM, GRADE)
IS-TAKING(ID#, COURSEI)
HAS-TAUGHT(FNAME, COURSEI, SEM)
IS-TEACHING(FNAME, COURSE#)

Figure 2. Entity-Relationship Diagram and Derived
Scheme for a Sample Database.

Prowarflee

How many

students

who

have

Dr. JOIXS

COUNT

STUDENT

FNAtlE

operator

Relation
Context Keyword

Common Word

Common Word

Data Frame: Name
Literal
Attribute of FACULTY

for

an

advisor

are taking

Common Word

Common Word

ADVISOR Relation
Context Keyword

IS-TAKING Relation
Context Keyword

cs352 COURSEP Data Frame: Course-Nr
Literal
Attribute of COURSE

Figure 3. A Sample Low-level Interpretation
Involving Several Relations.

tation generated by Mnemos for this query
is given in Figure 3. Observe that the
query covers the nodes FACULTY, ADVISOR,
STUDENT, IS-TAKING, and COURSE. Hence,
these relations are joined to form the
relation from which the results of the
query can be obtained. The request sent
to the database management system for this
query is

SELECT CUlJNT(ID#)

FROM FACCJLTY,ADVISOR,STUDENT,IS-TAKING,
COURSE

WHERE FNAME = ‘JONES’ AND
COURSE# = 'CS352' AND
FACULTY.FNAME = ADVISOR.FNAME AND
AWISOR.ID# = STUDENT.ID# AND
STUDENT.ID# = IS-TAKING.ID# AND
IS-TAKING.C~URSL?# = COURSE.CXIURSE#

[Chamkzrlin
general, SQL-like queries

et al. 761 are generated from
high-level interpretations as follows:

The WHERE clause contains a conjunc-
tion of (1) any explicit boolean
functions (e.g., SALARY > 50000 in
the first example above), (2) boolean
equivalence terms that equate each
literal not already combined into a
high-level operation and the attri-
bute with which it is associated in
the low-level interpretation (e.g.,
COURSE# = CS352 in the second example
above), and (3) the join terms for
the relations in the FROM clause.

The FROM clause is a list of all
stored relations constituting the
path (which may be degenerate if only
one node is covered) in the graph of
the entity-relationship diagram.

294

fi,~~eedingsofthe ~85 ACM Computer Science Conference-Agenda forComputing Research:TheChallenge forcreativity, 1985 March 12-14

The SELECT clause consists of (1) any
nonboolean functions (e.g.,
COUNT(ID#) in the second example
above) and (2) the names of all
attributes referenced and on the path

the FROM clause that are not com-
krned into high-level units or
boolean equivalence terms in the
WHERE clause (e.g., NAME in the first
example above).

Although not yet stated, it should be
clear that low-level and even high-level
interpretation routines can assign more
than one meaning to a word or phrase and
thus create multiple interpretations and
possible ambiguities. Whenever Mnemos
recognizes that more than one interpret?-
tion can be given to a word or phrase, it
creates two or more interpretations, each
with one of the meanings. Since this may
occur repeatedly, a tree of possible
interpretations is generated.

Normally most branches of the
interpretation tree can be pruned by an
;y;iicatit~~of domain independent heuris-

. heuristics are similar to
those of NFQL [Embley 821 and include max-
imal involvement of lexical units in the
queryr minimal path length in the entity-
relationship diagram, and preference for
high-level over low-level interpretations.
The greater than operator in Figure 1, for
example, would be found in almost every
data frame describing an ordered value
set. Because of the possible operands in
the context, however, only the greater
than operator in the dollar amount data
frame would be recognized in a high-level
interpretation. Thus, many possible
branches would be pruned from the
interpretation tree.

Sometimes the request is ambiguous
even after the heuristics are applied. For
the query "List Dr. Jones' courses", which
courses are wanted - those Dr. Jones
currently teaches, has taught, or both?
When there are several equally valid
interpretations, Mnemos can find them all
and thus interact intelligently with a
user to resolve ambiguity.

There are several advantages of the
Mnemos approach to generating interpreta-
tions. (1) Ungrammatical sentences are
easily interpreted. The query "Students
taking CS352, how many Dr. Jones advisor
for?", for example, is interpreted in the
same way and just as easily as the
corresponding query discussed above. (2)
Local chclllqes to data frames such as the
addition of context keywords or operators
do not affect the Nnemos interpretation
modules. There are no restrictions about
what keyword associations may be created.
This tillcws data frames to be tuned
locally without concern for their larger
context and enhances portability. (3)
Since literal and context keyword recogni-

tion routines can operate independently,
there is a high degree of natural paral-
lelism than can potentially be exploited
by advanced-computer architectures.

There are also disadvantages; these
are pointed out in the next section.
These advantages were enough, however, to
encourage us to build and experiment with
a prototype Mnemos system.

3. Prototype Implementation and Initial
Experimentation

Mnemos wi-8s implemented in Pascal on a
Cyber 170/730 [Kimbrell 821. Most of the
intelligence of Mnemos is contained in
routines that operate on a file of data
frames. For this implementation these
routines are a collection of deterministic
finite automata that recognize lexical
patterns representing the literals, con-
text keywords, and token patterns of the
data frames. This approach increases por-
tability since lexical analyzer generators
and compiler-compliers such as LEX [Lesk
751 and YACC [Johnson 781 can be used to
help augment the database scheme for use
with Mnemos. A variation of LEX was used
in the implementation.

In the implementation patterns are
run sequentially against all partial
interpretations. Initially, the only par-
tial interpretation is the text of the
input query. After all low-level patterns
are exhausted, high-level patterns attempt
to embed partial interpretations into the
given entity-relationship diagram. For
this implementation operator-operand pat-
terns are not recognized.

For our initial experimentation the
Student-Instructor-Course database shown
in Figure 2 was used. Fourteen students
in an undergraduate database systems class
were asked to write English language
queries for this database, which was
described only as one containing informa-
tion on faculty, students, and courses at
a university. The queries were to be
phrased as questions the students might
ask of someone who had information on
faculty, students, and courses. Because
little was specified about the exact con-
tents of the database, many of the queries
asked for information not in the database
(e. g., meeting places for courses).

Before submitting the queries for
analysis by Mnemos, the literals of many
queries were modified to fit the limited
domains recognized
type version.

by the initial proto-

iers
For example, class identif-

were changed to two letters followed
by three digits, department names were
limited to Computer Science, Anthropology,
and English, all faculty names were
faced by Dr. or Prof., and only three !$:I
dent names were used, Tom, Dick, and
Harry.

295

Proceedings of the 1985 ACM Computer Science Conference-Agenda far Computing Research: The Challenge for Creativity. 1985 March 12-14

Except for names, these modifications
were not significant either because the
domain size is small so that literals can
be exhaustively listed in a data frame
(e. g., department name) or the pattern has
only a few standard variations (e.g., stu-
dent id#'s and course identifiers). If
names are prefaced by titles, they are
easily recognized and can often be further
classified (e.g., as faculty member;;, ;f
the number of names is expected
small, a list can be stored in the name
recognizer of a data frame, but large
lists would need to be stored in the data-
base resulting in obvious inefficiencies.
As a compromise, a heuristic that yields
good results is to classify a word as a
name if it is not a common word (standard
lists are available) and not classified by
some other data frame.**

Of the 139 queries submitted, 134
were processed (5 were not processed
because of a failure at the operating sys-
tem level). Of these, 32 were outside the
scope of the information contained in the
database (e. 9. , "How old is the oldest
student?"). Of the remaining 102, Mnemos
generated correct responses for 51%.
Examples of queries not correctly inter-
preted include "Does every student have an
advisor?" and "what students are enrolled
in CS400?“. Of these incorrectly inter-
preted queries, 78% (39 of 50) would have
been properly interpreted had the context
keywords in the data frames been more com-
plete. For example, "What students are
enrolled in CS400?" would have been prop-
erly interpreted if "enrolled" would have
appeared as a context keyword associated
with the relation IS-TAKING. Thus, the
total correct responses generated after
some initial tuning would have been 89%.

Understanding the remainder of these
improperly interpreted queries would have
required knowledge beyond that of Mnemos.
For example, Elnemos thinks it should
return a list of students who have advi-
sors for the query "Does every student
have an advisor?". It does not recognize
that the question concerns the existence
of the complement of this list.

I----------- _---___

** "My name is Alice, but -- '

"It's a stupid name enough!" Huw?ty
Dumpty interrupted impatiently. "What
does it mean?”

“#ust a name mean something?" Al ice
asked doubtfull,y.

"Of co.:rse it must,” HumW Dumpty
said with a short laugh: "my name means
the shape I am -- and a good handsome
shape it is too. With a name like yours,
you might be any shape, almost."

-- From Lewis Carroll's Through the
Looking Glass

In addition to correctly interpreting
natural language queries, the time
required is also important. Mnemos was
designed to run on a machine capable of
supporting many routines executing in
parallel. Implemented serially, it inter-
prets requests slowly, but the pattern
matching routines can and should all run
independently.

To obtain some idea of how long it
might take to interpret a query on an
advanced-architecture, parallel machine,
the code was instrumented to count calls
and time procedure execution. About 90%
Of the calls and 93% of the run time were
attributed to only three procedures.
These three procedures are precisely those
that would normally execute in parallel.
If these routines were run in parallel,
the run time could be reduced consider-
ably. Using the timing values obtained,
it was estimated that the average query
submitted to Mnemos in the initial experi-
ment would take about 10 CPU seconds to
interpret. Further reductions would be
likely in an efficiency-conscious imple-
mentation, and it js expected that
respectable response times for interactive
operation can be achieved.

4. Concluding Remarks

Experience to date is encouraging.
Mnemos performs somewhat satisfactorily
even in its current, rudimentary state.
More significantly, it has been shown that
a natural language translation system
driven mainly by the semantics of a data-
base scheme augmented by domain specific
data frames is worthy of serious con-
sideration and can serve as the basic
framework for interpreting natural
language queries. Although much remains
to be done, there are positive indications
that the Mnemos approach to natural
language query understanding may prove to
be acceptable.

References

Anderson, J.R. and Bower, G-H., Human
Winston & Sons,

Washington D.C., 1973.

Artificial Intelligence Corporation,
INTELLECT Query System : user's Guide,
Wal th am, Massachusetts, January 1982.

Ballard, B.W., Lusth, J.C., and Tinkham,
N.L., LDC-1: a transportable, knowledge-
based natural lanouaqe processor for
office environments, -ACM!
affice Inf.ormation Svw, Vol. 2, NO.
1, January 1984, l-25.

Blanning, R. W., Conversing with management
information systems in natural language,

ns of them, Vol. 27, No. 3,
March 1984, 201-207.

296

Proceedings of the 1985 ACM Computer Science Conference-Agenda for Compurmg Research: The Challenge for Creativity, 1985 March 12-14

Borkin, S.A., Data Mows. . A Geman i
ystemS, MIT Pretssr ch for Database S

Cambridge, Massachusetts, 1980.

Chamberlin, D.D., Astrahan, M.M., Eswaran,
K.P. , Griffiths, P.P., Lorie, R.A.$ Mehl,
J.W., Reisner, P., and Wade, B.W., SEQUEL
2: a unified approach to data definition,
manipulation, and control,

- ch and Development, Vol. , . ,
November 1979, 560-575.

Chen, P.P., The entity-relationship model:
toward a unified view of data, ACM Tran=
bans on D&&&se SW, Vol. 1, No.
1, March 1976, 9-36.

Codd, E.F., Extending the data base rela-
tional model to capture more meaning, ACM

n Q&abase Svstems, Vol. 4,
NO. 4, Decembzr 1979, 397-434.

Codd, E.F., How about recently?, in Dara- . . no Usabllltv and Rem
e B. Shneiderman (ed.), Academic
Press, lb78, 3-28.

Embley, D-W., A natural forms query
language - an introduction to basic
retrieval and update operations, in . . na atabase UsahLSlty and Resm
SiveneSS, P? Scheuermann (ea.), Academic
Press, Inc., 1982, 121-145.

Embley, D.W., Programming with data frames
for everyday data items, Proceedinas NCC
&Q, Vol. 49, Anaheim, California, May
1980, 301-305.

Harris, L.R., User oriented data base
query with the ROBOT natural language
query system, lnte Journal of
Elan-Machine Vol. , 9, 1977, 697-
713.

Hendrix, G., Sacerdoti, ED., Sagalowicz,
D and Slocum, J., Developing a natural
lakguage interface to complex data, m

on Data SvStemS, Vol. 3,
No. 2, June 1978, 105-147.

Johnson; S.C., Yacc : yet another
compiler-compiler, UNIX(tm) Time-Sharing
System: U&L.X Prower's Manual, Vol. 2B,
Bell Laboratories, Murray Hill, New Jer-
sey, July 1978.

Kaplan, S.J., Designing a portable natural
language database query system, ACM Tray
B&ions on Q&abase Sym, Vol. 9, No.
1, March 1984, l-19.

Kelly, J.F., An iterative design methodol-
0% for user-friendly natural language
office information applications, v

ion SW *
, March 1984, 26-41.

Khan, S.A., Paige, M.R., and Embley, D.W.,
Reading data items without constraints on
form, format or completeness, Proceedi

and Apvli ations 19a Gaithers-
varyland, May" 1982, 74-82: burg,

Kimbrell, R.E., A database schema driven
natural language query translator,
Master's Thesis, University of Nebraska,
Lincoln, 240 pages, December 1982.

Lesk, M.E., LEX - a lexical analyzer gen-
erator, Bell Laboratories Technical Report
#39, October 1975.

smith, J.M. and Smith, D.C.P., Database
abstractions: aggregation and generaliza-
tion, -Transactions on Da-se Svs-
&ma, Vol. 2, No. 2, June 1977, 105-133.

Tennant, H. -al w Processing ae
PBI-Petrocelli Books, Inc., Princeton, Ne;
Jersey, 1981.

Waltz, D.L., An English language question
answering system for a large relational
database, rations of the ACM Vol.
1, No. 3, September 1976, 526-539. '

woods, W.A., Kaplan, R.M., and Nash-
Webber, B., The lunar sciences natural
language information system, BBN Report
#2373, Bolt, Beranek, and Newman, Inc.,
Cambridge, Massachusetts, June 1972.

297

