Conceptual-Model Programming: A
Manifesto

David W. Embley, Stephen W. Liddle, and Oscar Pastor

1 Preamble

In order to promote Conceptual-Model Programming (CMP), we set forth
these CMP Articles. We hold these articles to be the defining principles for
model-complete software development.

In essence, this CMP manifesto asserts that programming activities are
to be carried out via conceptual modeling. For applications amenable to
conceptual-model designs, software developers should never need to write
a line of traditional code. Thus, programming is actually “Conceptual-Model
Programming” (“CMP”).

To accommodate CMP, conceptual-modeling languages must be executable.
They must also be capable of completely deploying both databases and user
interfaces and conceptually expressing database access and user interaction.
To enable CMP, a conceptual-model compiler must exist to generate underly-
ing code (which could be, but is not necessarily, high-level-language code that
itself needs further compilation). Important, however, is that model-compiled
code is beyond the purview of CMP programmers—both for initially creat-
ing the application system being developed and for enhancing or evolving the
application system. Thus, application-system development becomes entirely
model-driven, and CMP constitutes model-complete software development.

David W. Embley
Brigham Young University, Provo, Utah 84602, USA e-mail: embley@cs.byu.edu

Stephen W. Liddle
Brigham Young University, Provo, Utah 84602, USA e-mail: liddle@byu.edu

Oscar Pastor
Valencia University of Technology, 46022 Valencia, Spain e-mail: opastor@dsic.upv.es

2 David W. Embley, Stephen W. Liddle, and Oscar Pastor

2 CMP Articles

Conceptual modeling is programming. The conceptual-model instance
is the code (instead of: “the code is the model”—*“the model is the code”).
A conceptual-model compiler assures that program execution corresponds
to the conceptual specification, thus making the conceptual-model instance
directly executable.

The conceptual model, with which modelers program, must be:

e complete and holistic. The conceptual model must provide a holistic
view of all application components. It must include all necessary aspects
of data (structure), behavior (function), and interaction (both component
interaction and user interaction).

e conceptual but precise. The conceptual modeling elements must be pre-
cisely defined and must be based on an ontological agreement that fixes
the concepts and their associated notation. Parsimony should guide, but
not rule, both the modeling elements and the notation.

Application evolution occurs at the level of the model. Conceptual-
model programmers should evolve an application through the model instance,
not through generated, lower level code.

3 Exposition

The principles of the CMP Articles are tenable only if: (1) a conceptual-
model instance is executable (Section 3.1) and (2) programmers can do all
their development work by specifying a conceptual-model instance for their
application (Section 3.2).

3.1 Executable Conceptual Models

Conceptual-Model-Programming (CMP) is about precisely capturing an ap-
plication in the language of an executable conceptual model that is suffi-
cient for all storage, functional, and interaction requirements of an applica-
tion. Precisely capturing an application as a conceptual-model instance is
programming—i.e., is conceptual-model programming, CM programming, or
CMP.

To illustrate CMP, Figures 1-8 show some sample conceptual-model spec-
ifications. These sample specifications are about a free-lance photography
agency. Free-lance photographers register with the agency. They then submit
annotated pictures. An evaluator for the agency determines which pictures

CMP Manifesto 3

Free-Lance Photographer register Receptionist establishAccount Paymaster
(Name, Address, Email) (P-ID, Name, Address, Email)

confirmRegistration (P-ID) monthEndAlert

printCheck cutCheck
(P-ID, Name, Address, Amount)

printEnvelope

photoUse

submitPhotos (PhotolD, payment)

(P-ID, (Photo, Annotation)*) | Eyaluator

syndicatePhoto
(PhotolD, annotatedPhoto) | Customer

Fig. 1 Sample CMP Component Interaction Diagram.

Receptionist

@register

establishAccount;
confirmRegistration

I »(Ready

@cutCheck

printCheck(Name, Amount);
printEnvelope(Name, Address);
mail the check

Fig. 2 Sample CMP Behavior Diagram.

to syndicate. Customers use syndicated pictures and pay royalties. The com-
pany pays free-lance photographers a percentage of the royalties and keeps
the rest.

The particular notation of the conceptual-modeling language is not impor-
tant, except that it is conceptual. What is important is that a collection of
conceptual-model specifications provides all the information needed to gen-
erate a fully executable application.

Figures 1-4 show some generic samples covering the full range of develop-
ment activities from specifying database storage structures, through stipu-
lating behavior and component interaction, to describing user-interface data
exchange. They represent a coherent collection in which cross-diagram objects

4 David W. Embley, Stephen W. Liddle, and Oscar Pastor

1 1 H
i Name | | Address
']

P-ID

o
=
<]
S
[}
Q
=
o
©
>
@
X
m
3
o

Royalty Record i Photo: image — Annotation

PN

i H i :' i
Date | ! Amount | ! PhotolD !
1 ! i L 1

Fig. 3 Sample CMP Database Structure Diagram.

submitPhotos

P-ID |

Photo Annotation

Fig. 4 Sample CMP Conceptual User Interface Specification.

and components have the same name. Together, they, along with additional
diagrams needed to complete the full specification, constitute a CM program
for the free-lance photography agency.

Figures 5-8 illustrate alternative graphical notation and also serve to in-
dicate that the collection of conceptual-model diagrams constituting a CM
program need not all be of the same genre. Figure 5 is a UML communication
diagram that corresponds to the interaction diagram in Figure 1. Figure 6
is a Statechart that corresponds to the behavior diagram in Figure 2. Fig-
ure 7 is an Entity-Relationship (ER) diagram that is semantically equivalent
to the structure diagram in Figure 3. And, Figure 8 is an Olivanova user-
interface specification that not only establishes the data to be exchanged, as
expressed in Figure 4, but also establishes the appearance of the interface a

CMP Manifesto 5

1: register 2: establishAccount
(Name, Address, Email) (P-ID, Name, Email)

:Free-Lance > ’ — > .
Photoarapher :Receptionist :Paymaster
Fholographer < <

4: confirmRegistration(P-ID) 3: cutCheck(P-ID, Name,

Address, Amount)

5b: printEnvelope()\L \LSa: printCheck()

8: photoUse
monthEndAlert|
> 0 T(PhotoID, Payment)
:System
6: submitPhotos 7: syndicatePhoto
(P-ID, AnnotatedPhotoList) (PhotolD, AnnotatedPhoto)
— —
:Evaluator :Customer

Fig. 5 UML Communication Diagram Equivalent to the Component Interaction Diagram
in Figure 1.

Ready

register / establishAccount; cutCheck / printCheck(Name, Amount);
confirmRegistration printEnvelope(Name, Address);
mail the check

Fig. 6 Statechart Diagram Equivalent to the Behavior Diagram in Figure 2.

user of the free-lance photography sees when submitting photos for potential
syndication.

Observe that in all diagrams fundamental constructs have two-dimensional,
graphical representations. Behavior diagrams express control flow graphi-
cally; interaction diagrams express sending and receiving actions graphically;
database structure diagrams express entities, relationships, and constraints
graphically; and user interaction diagrams express data exchange and the
look-and-feel of a user interface graphically. Text associated with graphical
constructs provides names for objects and components, expressions that nat-
urally appear as text, and connecting syntax.

Although the ability to render fundamental conceptualizations graphically
is a requirement, actually rendering them graphically is not. CM program-
mers may express conceptualizations in purely textual languages, so long as
the languages are “model-equivalent.” In a model-equivalent language each
fundamental construct has an isomorphic correspondence to a graphical rep-
resentation. Figure 9 shows some examples. Photographer [1] Name [1:*] in
Figure 9 corresponds to the functional edge between the nodes Photographer

6 David W. Embley, Stephen W. Liddle, and Oscar Pastor

i Name } { Address
{ P-ID Photographer “Email ;
5 C 2} (':Annotatioﬁ;‘-
Royalty / e
Record Photo _Photo: image’;

e SyndicatedPhoto

Fig. 7 Entity-Relationship Diagram Equivalent to the Database Structure Diagram in
Figure 3.

@Submit Pictures Q@E|
Photographer ID Number 1
Picture Picture_Descrption e
Picture ahout blue hills
- C-A\pictureFiles\bl ‘
! Picture about winter with a blue ler application
] | C:\pictureFiles\bl
| Sunset inthe sea
C:\pictureFiles\bl
| [insert new picture] v
s

Fig. 8 Olivanova User Interface Specification Equivalent to the User Interface Specifi-
cation in Figure 4. (Note: An additional conceptual specification exists that associates
the external names “Submit Pictures”, “Photographer ID Number”, “Picture”, and “Pic-
ture_Description” respectively with the internal names “submitPhotos”, “P-ID”, “Photo”,
and “Annotation”. Also, an additional top-level conceptual specification exists to allow a
photographer to navigate to this “Submit Pictures” interface.)

and Name in the database-structure graph in Figure 3. The [1] and the [1:%]
are participation constraints; thus, each Photographer object associates with
exactly one Name object, making the relationship functional. In Figure 2, the
circled Ready denotes the potential for an object to be in the ready state—
when Ready in Figure 9 denotes the same; both the arrows whose tails are

CMP Manifesto 7

Photographer [1] P-ID [1];
Photographer [1] Name [1:*];

@initialize Receptionist
enter Ready
end;

when Ready new thread
@register(Name, Address, Email) then

end;

Fig. 9 Model-Equivalent Textual Representation.

disconnected from the Ready state in Figure 2 and new thread in Figure 9
denote spawning new threads of control; and the Event-Condition-Action
(ECA) box with the event @register in Figure 2 matches through its name
with the interaction register(Name, Address, Email) in Figure 1. Allowing ex-
perienced CM programmers to express conceptual-model instances textually
provides for economy of expression without loss of conceptualization. Ideally,
CM programmers and analysts can be at either extreme (no graphics / all
graphics) or at a comfortable place in between.

To see that conceptual-model instances can be fully executable, consider
the diagrams in Figures 1-3. In interaction diagrams such as the diagram in
Figure 1, message passing is executable if in the code the point of initiation of
the message is known, the information to be passed is known, and the point of
reception of the message is known. An interaction such as establishAccount(P-
ID, Name, Address, Email) in Figure 1 specifies the information to be passed
and provides a name for reference within specified origin and destination ac-
tive objects. The tail side of the interaction arrow specifies the origin (Re-
ceptionist for establishAccount), and the head side specifies the destination
(Paymaster for establishAccount). Within the behavior diagram of active ob-
jects, an appropriate reference to the name specifies the point of initiation in
the originating behavior diagram and the point of reception in the receiving
behavior diagram. In the behavior diagram in Figure 2, for example, estab-
lishAccount in the ECA box initiates the interaction establishAccount(P-ID,
Name, Address, Fmail) in Figure 1, and @register is the point of reception
for the interaction register(Name, Address, Email), also in Figure 1.

Behavior diagrams require a full specification of the control flow. The be-
havior diagram in Figure 2, for example, consists fundamentally of a collection
of ECA rules: when events (marked by @) occur, if an object’s thread is in a
prior state and specified conditions (if any) hold, the ECA rule fires. Thus,
for example, when a thread of control is in the Ready state in Figure 2 and
a Receptionist receives an @register message, the ECA rule fires, spawning a
thread of control to establish an account and confirm the registration. The

8 David W. Embley, Stephen W. Liddle, and Oscar Pastor

new thread of control then dies, but the original thread of control remains
active in the Ready state. In addition to full specification of control flow, the
events, conditions, and sequence of statements in ECA rules must be formal
enough to be compilable into code. In Figure 2, the @register ECA rule is
fully formal: both the event and the actions reference fully specified messages
in the interaction diagram in Figure 1. The @cutCheck ECA rule is also fully
formal if the actions are all primitive or provided in a library. Alternatively,
if the Receptionist is actually a human user of the system, all the ECA rules
are sufficient as instructions. Further, each fully specified message implic-
itly has a corresponding interface form (e.g., Figure 4 for the submitPhotos
message in Figure 2), which can be directly implemented (as-is) or visually
enhanced to be more pleasing with an improved user-interface specification
(e.g., Figure 8).

Structure diagrams must fully specify the database schema. From the
conceptual-model instance either in Figure 3 or in Figure 7 the CM com-
piler can infer the SQL schema in Figure 10. From Figure 7, for example,
the mapping algorithm generates each entity as a table with its associated
attributes and foreign-key references. Then, since the attribute Photo:image
for the entity Photo is an image, which is to be implemented with the type
BLOB, the mapping algorithm generates the attribute Photo:image as a weak
entity and thus as the table PhotoFile, which is dependent on the table Photo.
Additional constraints, such as check constraints and alternative-type con-
straints, can be added to the conceptual database structure diagram and
propagated into a formal schema specification. The type specification image
in Figure 3 is an example; specifying Amount:smallmoney in place of Amount
in Figure 3 would be another example.

3.2 Conceptual Modeling and CMP

CMP development work includes analysis, specification, design, implemen-
tation, deployment, enhancement, and evolution. CM programmers work
through every stage conceptually, writing all descriptions in a conceptual-
modeling language. Typically, initial stages are informal—progressing through
the stages is a process of formalizing the CM descriptions until in the im-
plementation stage they are fully formal and ready for deployment. Subse-
quent enhancement and evolution makes direct use of CM descriptions, which
are kept for this purpose. CM programmers should never discard deployed
conceptual-model instances (the executable conceptual-model instances are
the code), and CM programmers should neither enhance nor evolve deployed
applications by altering compiled code, but rather always by altering and
recompiling conceptual-model instances.

The notion of “tunable formalism” plays an interesting role in CMP.
The idea is that formalism in conceptual-model descriptions can be “tuned”

CMP Manifesto 9

CREATE TABLE Photographer (
P-ID VARCHAR(30) PRIMARY KEY,
Email VARCHAR(30) NOT NULL UNIQUE,
Name VARCHAR(30) NOT NULL,
Address VARCHAR(30) NOT NULL
)s

CREATE TABLE Photo (
PhotoID VARCHAR(30) PRIMARY KEY,
Annotation VARCHAR(30) NOT NULL,
P-ID VARCHAR(30) NOT NULL REFERENCES Photographer
)s

CREATE TABLE PhotoFile (
PhotoID VARCHAR(30) PRIMARY KEY REFERENCES Photo,
Photo BLOB
);

CREATE TABLE RoyaltyRecord (
RoyaltyRecordID INT PRIMARY KEY,
Date DATE NOT NULL,
Amount VARCHAR(30) NOT NULL,
PhotoID VARCHAR(30) NOT NULL REFERENCES Photo,
P-ID VARCHAR(30) NOT NULL REFERENCES Photographer
)5

Fig. 10 Generated Database Schema.

“

“down” or “up” depending on the needs of the development team. When
tuned down, clients, who contract with software-development teams to pro-
duce application software and who are typically untrained in CMP, can usu-
ally read and understand informal conceptual-model descriptions. Thus, CM
analysts can directly use conceptual-model descriptions, whose formalism is
tuned down, to enhance communication between clients and CM program-
mers. When tuned up all the way, the application is fully implemented. In
between, CM programmers can read and understand the developing applica-
tion abstractly and can begin to see various parts of the system execute as
they become formal enough for emulation or compilation.

CMP accommodates various development strategies. CM developers need
not complete one stage of the process before moving on to the next, and
various parts of the application can be at different development stages at the
same time. CM developers can forge ahead with the development of a kernal
for the application and then treat the remaining development as enhancement
and evolution.

At each stage of development CMP offers abundant opportunities for man-
aging software development and for enhancing communication among devel-
opment team members and between team members and clients. We offer a
few insights:

10

David W. Embley, Stephen W. Liddle, and Oscar Pastor

Analysis is about understanding an application and documenting that un-
derstanding. A strength of conceptual modeling is its ability to promote a
common understanding within a heterogeneous development team. Con-
ceptual modeling serves analysts well in their role of a “go-between”—it
facilitates precise and concise communication with both clients and pro-
grammers. Clients can understand abstract conceptual models with the
formalism tuned down; programmers tune up the formalism to make the
application executable. Clients, analysts, and programmers all use the
same CM notation, which results in better communication.

Specification is about producing a detailed and precise proposal for a sys-
tem. A difficulty with specification is that clients often do not really know
what they want until they see it. Prototyping helps alleviate this concern,
and CMP facilitates prototyping. Conceptual models with tuned up for-
malism can execute fully, but even with the formalism tuned down, they
are still executable. Every CM diagram is executable as a prototype. When
an emulator encounters an informal statement, it can explain its state and
display the informal statement it is “executing,” and it can accept user
input to allow it to continue to operate and show in mock-up style how
the application works. Mock-ups of end-user interfaces can be real since
their specification automatically allows them to execute as part of the CM
application. One view of CM programming is that it is about quickly de-
veloping a prototype and then enhancing the prototype until it becomes
the deployed application.

Design is about organizing a software system to achieve its goals—e.g.,
efficiency, maintainability, extensibility, and similar properties. An exam-
ple of design is database normalization; a CM designer can use standard
conceptual-modeling techniques to canonicalize a structure-model diagram
to guarantee that a CM compiler’s database-schema generator produces a
normalized schema. A CM compiler should, as a matter of course, optimize
the code it generates, but when optimization depends on “proper” concep-
tualization, as it does for database normalization, the CM designer should
organize conceptual-model instances so that the CM compiler generates
optimal code. CMP naturally promotes maintainability and extensibility.
Conceptual-model diagrams are the high-level code. Because CMP com-
piles models into executable systems, the models cannot, as so often is the
case with conceptual diagrams, be either summarily discarded or left in a
disheveled state not synchronized with nor updated to match the deployed
application.

Implementation is about faithfully translating a design into code. For
CMP, this translation is automatic. Thus, implementation requires zero
effort. This does not mean, however, that application development is ef-
fortless. Rather, it means that the effort is shifted upstream. The empha-
sis is on analysis and specification, rather than on translating designs to
programming-language syntax. Significantly, software created via CMP is
“defect free” with respect to the implementation layer. If the model com-

CMP Manifesto 11

piler faithfully translates higher level specifications into lower level code,
then the only defects that can occur in a CMP-generated system are ei-
ther design, specification, or analysis issues or problems with standard
libraries. Thus, by avoiding implementation-layer defects, CMP promotes
early detection of design-level defects.

Deployment is about delivering the application system for client use. Be-
cause CM programs are immediately executable, at least in prototype
fashion, pre-alpha, alpha, and beta releases follow naturally as CM pro-
grammers proceed through analysis and specification. Eventual deploy-
ment is a natural consequence of fully formalizing and properly organizing
conceptual-model instances in accordance with client requirements.
Enhancement and evolution are about making deployed applications bet-
ter serve end users. In one sense, enhancing and evolving a deployed CMP
application is no different from enhancing and evolving an application
coded in a high-level language, except that CM programmers continue to
work at a conceptual level rather than at the syntax level of the high-level
language. Often, however, when evolving code written in a high-level lan-
guage, enhancement and evolution require re-conceptualizing some parts
of the application to serve as a starting place for improvements—either
through reverse engineering or by updating and synchronizing conceptual-
model instances. Although this step is often both necessary and costly
when programming in a high-level language, it is never necessary and
never costs anything in CMP application development because the code is
already the model, which renders re-conceptualization unnecessary.

Appendage

1. Principles similar to CMP expounded by others:

Others have set forth principles similar to CMP. In 2004, Brown, Iyengar, Rum-
baugh, and Selic published The MDA Manifesto expounding the principles of Model-
Driven Architecture [BBIT04]. The MDA Manifesto has three tenets:

1. Direct representation: reduce distance between problem domain and software
representation;

2. Automation: mechanization of facets of software development that do not de-
pend on human ingenuity and, especially, mechanization of bridging the gap
between problem-domain representation and software representation; and

3. Open standards: open-source development and accepted industry standards.

The CMP Manifesto harmonizes well with the MDA Manifesto. The CMP Mani-
festo, however, takes automation a step further. It insists that conceptualizations
are to be fully executable so that there is no gap between a conceptualization and
a software representation. A CMP conceptualization is a software representation.
Although not opposed to domain-specific modeling languages, generic, all-purpose

12 David W. Embley, Stephen W. Liddle, and Oscar Pastor

conceptual-modeling languages must be among the languages available for appli-
cation development. Ideally, CM programmers should have a variety of notational
choices. Domain-specific notation is acceptable, and perhaps even preferable, but
to be a CMP conceptualization, a domain-specific conceptualization must be exe-
cutable.

2. Cautions about CMP:

In 2008, Selic wrote MDA Manifestations [Sel08], a commentary on the MDA
Manifesto. Selic’s commentary includes cautions about Model-Driven Development
(MDD). He asserts that MDD likely requires:

1. education (shift in view to understanding clients and users and especially an
increase in the introduction of MDD methods in software-engineering education);

2. a comprehensive and systematic theory of MDD (modeling language semantics
and design, model transformations, model analysis of safety and liveness proper-
ties, model-based verification, model management, MDD methods and processes,
and tools); and

3. standards (the key to success of any widely used technology).

Selic believes that the shift to MDD is likely to be gradual. He also believes that it
will be tough to see the MDA Manifesto—and by implication the CMP Manifesto—
through to adoption. This does not mean, however, that we should not hold CMP as
a goal and work toward its realization and general acceptance. The benefits appear
to be worth the costs.

3. Extreme non-programming:

We sometimes refer to CMP as XNP (eXtreme Non-Programming). Like XP (eX-
treme Programming), programmers begin to code early in the development process,
and the code is the model. Unlike XP, CM programmers do no programming at
all—at least, they do not program in the traditional sense. Instead, the model is the
code. XNP retains the advantages of XP and overcomes its disadvantages. A primary
advantage of XP is that it allows clients, analysts, and programmers begin to see the
application run immediately. XNP has this same advantage. XNP also retains other
advantages typically attributed to XP, including responsiveness to changing client
requirements, short development cycles resulting in improved productivity, and fre-
quent client checkpoints and continuous client involvement. Primary disadvantages
of XP are that it lacks overall analysis and has no overall design specification. XNP
overcomes these disadvantages because the process focuses directly on analysis and
specification, and the result of XNP is a design specification.

4. CMP in current practice:

Model-Driven Engineering (MDE), which is also referred to as Model-Driven De-
velopment (MDD) or Model-Driven Architecture (MDA), advocates the creation of
software systems by model specification. As is the case for CMP, the models are
abstract conceptualizations of particular domain concepts, rather than algorithmic
specifications written in a high-level language, and conceptual modeling is the pri-
mary means of software production. In MDE, CASE tools generate code skeletons
or, when enough detail is provided, they generate complete, deployable systems.
Usually, however, only parts of the deployed system are fully generated. CMP re-
quires full automation, including the full automation of enhancements and system
evolution. Full automation avoids the prevalent pitfall of having conceptual diagrams

CMP Manifesto

that are not synchronized with deployed systems. To the extent that MDE supports
full automation, MDE and CMP are the same.

5. CMP status and outlook:

CMP is not just an academic dream. There are numerous commercially available
model compilers, such as IBM Rational Rhapsody, the Olivanova tool suite from
CARE Technologies, Netfective Technology Group’s Blu Age, Obeo’s Acceleo, the
UWE UML Web Engineering platform, and WebRatio from Web Models to name
just a few. As a specific example, consider the Olivanova technology, developed
by CARE Technologies [CAR], S.A. Olivanova implements the OASIS approach to
CMP [PHB92, PM07]. OASIS has a conceptual model with a precisely defined se-
mantics that allows for a formal specification of all functionality needed for a final
application. The conceptual model has four views that together completely spec-
ify an application for a management information systems: a static view, a dynamic
view, a functional view, and a presentation view. A conceptual-model compiler trans-
lates modeling primitives into their corresponding software representations. The Oli-
vanova technology automatically generates the final application from the specifica-
tion of an OASIS model. The technology has two main components: a modeling tool
called Olivanova Modeler and a model compiler called Olivanova Transformation
Engine. The Modeler is a support tool that allows its users to specify an OASIS con-
ceptual model and to verify that the conceptual model functions as expected. Then,
when ready, the developer sends an XML representation generated by the Mod-
eler to the Olivanova Transformation Engine, indicating the target implementation
platform and some configuration parameters according to the selected platform. The
Transformation Engine’s compiler automatically generates the source code of final
applications, which is implemented for the selected platforms in a three-tier software
architecture.

6. Additional readings:

Books by Dori [Dor09], by Embley [Emb98], by Embley and Thalheim [ET11], by
Mellor and Balcer [MBO02], by Morgan [Mor02], by Pastor and Molina [PMO07], by
Raistrick et al. [RFW104], and by Rossi, Pastor, Schwabe, and Olsina [RPSO08]
directly advocate CMP and explain how it works. Articles by Liddle, Embley, and
Woodfield [LEW95, LEWO00] describe model-equivalent languages and their role in
CMP.

Books by Olive [Oli07], by Papazoglou, Spaccapietra, and Tari [PST00], and by Thal-
heim [Tha00] focus more on conceptual modeling itself, but have a strong component
that leads to CMP. A book by Harel and Politi [HP98] describes a CMP-styled ap-
proach to creating executable systems via statecharts. Another book by Ceri et al.
[CFB103] describes WebML, a CMP-styled approach to creating data-intensive web
applications.

Many published articles discuss, argue for, and explain various aspects of CMP:
formal specification of active objects along with rapid prototyping and object reifi-
cation [PHB92], tunable formalism [CEW92], seamlessly combining multiple kinds
of conceptual models [EJLW94], prototyping with conceptual models [JEW95], user
interface modeling patterns [MMP02, PVE107], and statecharts, both early work
[HGI7] and from a historical perspective [Har09].

Conceptual modeling itself has a long history. The book edited by Brodie, My-
lopoulos, and Schmidt [BMS84] contains several articles that together provide an
early look at the overall process leading to CMP. Proceedings of the International
Conference on Conceptual Modeling [ERw] contain many articles that describe the

14

David W. Embley, Stephen W. Liddle, and Oscar Pastor

research and development of the field of conceptual modeling. An article by Thal-
heim [Tha09] summarizes and explains the conceptualization process in terms of an
overall theory of conceptual modeling.

References

[BBI+04]

[BMS84]

[CAR]

[CEW92]

[CFB103]

[Dor09]

[EJLW94]

[Emb9s]

[ERw]
[ET11]

[Har09]
[HG97]
[HP9S]

[JEWO5]

[LEW95)

[LEWO00]

[MB02]

G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, and B. Selic. An MDA mani-
festo. The MDA Journal: Model Driven Architecture Straight from the Masters,
pages 133-143, 2004.

M.L. Brodie, J. Mylopoulos, and J.W. Schmidt, editors. On Conceptual Mod-
elling: Perspectives from Artificial Intelligence, Databases, and Programming
Languages. Springer, New York, 1984.

CARE-technologies web site. http://www.care-t.com/.

S.W. Clyde, D.W. Embley, and S.N. Woodfield. Tunable formalism in object-
oriented systems analysis: Meeting the needs of both theoreticians and practi-
tioners. In Proceedings of the 1992 Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’92), pages 452-465,
Vancouver, Canada, October 1992.

S. Ceri, P. Fraternelli, A. Bongio, M. Brambilla, S. Comai, and M. Matera.
Designing Data-Intensive Web Applications. Morgan Kaufmann Publishers,
San Francisco, California, 2003.

D. Dori. Object-Process Methodology: A Holistic Systems Paradigm. Springer,
Berlin, Germany, 2009.

D.W. Embley, R.B. Jackson, S.W. Liddle, and S.N. Woodfield. A formal model-
ing approach to seamless object-oriented systems development. In Proceedings
of the Workshop on Formal Methods for Information System Dynamics at
CAiSE’94, pages 83-94, The Netherlands, June 1994.

D.W. Embley. Object Database Development: Concepts and Principles.
Addison-Wesley, Reading, Massachusetts, 1998.

ER web site. http://conceptualmodeling.org/.

D.W. Embley and B. Thalheim, editors. The Handbook of Conceptual Model-
ing: Its Usage and Its Challenges. Springer, Heidelberg, Germany, 2011.

D. Harel. Statecharts in the making: A personal account. Communications of
the ACM, 52(3):67-75, March 2009.

D. Harel and E. Gery. Executable object modeling with statecharts. IEEE
Computer, 30(7):31-42, July 1997.

D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The
Statemate Approach. McGraw-Hill, Inc., New York, New York, 1998.

R.B. Jackson, D.W. Embley, and S.N. Woodfield. Developing formal object-
oriented requirements specifications: A model, tool and technique. Information
Systems, 20(4):273-289, 1995.

S.W. Liddle, D.W. Embley, and S.N. Woodfield. Unifying modeling and pro-
gramming through an active, object-oriented, model-equivalent programming
language. In Proceedings of the Fourteenth International Conference on Object-
Oriented and Entity-Relationship Modeling (OOER’95), pages 55—64, Gold
Coast, Queensland, Australia, December 1995.

S.W. Liddle, D.W. Embley, and S.N. Woodfield. An active, object-oriented,
model-equivalent programming language. In M.P. Papazoglou, S. Spaccapietra,
and Z. Tari, editors, Advances in Object-Oriented Data Modeling, pages 333—
361. MIT Press, Cambridge, Massachusetts, 2000.

S.J. Mellor and M. Balcer. Ezecutable UML: A Foundation for Model-Driven
Architectures. Addison-Wesley-Longman Inc., Boston, Massachussets, 2002.

CMP Manifesto 15

[MMP02]

[Mor02]
[01i07]

[PHBY2]

[PMO7]

[PST00]

[PVE+0T7]

P.J. Molina, S. Melia, and O. Pastor. User interface conceptual patterns. In
Proceedings of the 9th International Workshop on Interactive Systems. Design,
Specification, and Verification (DSV-15’02), Rostock, Germany, June 2002.
T. Morgan. Business Rules and Information Systems: Aligning IT with Busi-
ness Goals. Addison-Wesley, Reading, Massachusetts, 2002.

A. Olive. Conceptual Modeling of Information Systems. Springer, Berlin, Ger-
many, 2007.

O. Pastor, F. Hayes, and S. Bear. OASIS: An object-oriented specification lan-
guage. In Proceedings of the 4th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE’92), pages 348-363, Manchester, United
Kingdom, 1992.

O. Pastor and J.C. Molina. Model-Driven Architecture in Practice: A Software
Production Environment Based on Conceptual Modeling. Springer, New York,
New York, 2007.

M.P. Papazoglou, S. Spaccapietra, and Z. Tari, editors. Advances in Object-
Oriented Data Modeling. The MIT Press, Cambridge, Massachusetts, 2000.

I. Pederiva, J. Vanderdonckt, S. Espana, J.I. Panach, and O. Pastor. The beau-
tification process in model-driven engineering of user interfaces. In Proceedings
of the 11th IFIP TC 13 International Conference on Human-Computer Inter-
action (INTERACT 2007), Rio de Janeiro, Brazil, September 2007.

[REW104] C. Raistrick, P. Francis, J. Wright, C. Carter, and 1. Wilkie. Model Driven

[RPSO08]

[Sel08]
[Tha00]

[Tha09]

Architecture with Ezectuable UML. Cambridge University Press, Cambridge,
United Kingdom, 2004.

G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, editors. Web Engineering: Mod-
elling and Implementing Web Applications. Springer, London, United King-
dom, 2008.

B. Selic. MDA manifestations. The European Journal for the Informatics
Professional, 1X(2):12-16, April 2008. http://www.upgrade-cepis.org.

B. Thalheim. FEntity-Relationship Modeling: Foundations of Database Tech-
nology. Springer, Berlin, 2000.

B. Thalheim. Towards a theory of conceptual modeling. In Advances in Con-
ceptual Modelling - Challenging Perspectives (ETheCoM 2009 - First Interna-
tional Workshop on Evolving Theories of Conceptual Modeling), pages 45-54,
Gramado, Brazil, November 2009.

