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Abstract The growth of multilingual web content and increasing internationaliza-
tion portends the need for cross-language query processing. We offer ML-OntoES
(a MultiLingual Ontology-based Extraction System) as a solution for narrow-
domain/data-rich applications. Based on language-independent extraction ontolo-
gies (Embley, Liddle, & Lonsdale, 2011), ML-OntoES enables semantic search over
domain-specific, semi-structured information. Key ideas of ML-OntoES include: (1)
monolingual semantic indexing and query interpretation with extraction ontologies
and (2) conceptual-level cross-language translation. A prototype implementation,
along with experimental work showing good extraction accuracy in multiple lan-
guages, demonstrates the viability of the ML-OntoES approach of using multilin-
gual extraction ontologies for cross-language query processing.
Key words: Cross-language query processing, extraction ontologies, monolingual
semantic indexing, monolingual query interpretation, conceptual-level cross-lan-
guage information transfer.

1 Introduction

An ideal cross-language query system would allow users to pose queries and receive
answers in their own language when executing queries against foreign-language
source documents. A user U , for example, who speaks only English, may wish to
enquire about nearby restaurants while visiting Japan. Using an iPhone, U may wish
to pose a query to find a “BBQ restaurant with typical prices < $40.” Figure 1 shows
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an interface with the query in a type-in text field, the English version of the answers
retrieved, and a “see further information button” to tap on to obtain more details such
as hours of operation, payment method, and rating. Figure 2 gives actual answers
retrieved from the Web for this sample query (all in Japanese, of course), and this is
the challenge—to query the Japanese in Figure 2 with the English in Figure 1.

Fig. 1 English Query over Japanese Data
with Results in English.

店店店名名名 住住住所所所 ジジジャャャンンンルルル 予予予算算算

新肉屋 梅田1-10-19 肉 2000
肉屋 梅田1-11-29 肉 3000
美味肉 梅田2-30-22 肉 1500
肉屋 梅田3-19-28 肉 3000
きき 梅田2-18-26 肉 1000

Fig. 2 Results Extracted from Japanese Web
Pages.

Queries like the English-Japanese BBQ restaurant query call for CLIR (Cross-
Language Information Retrieval) (Olive, Christianson, & McCary, 2011; Peters,
Braschler, & Clough, 2012). Interest in CLIR and related technologies is grow-
ing, and international initiatives are helping mature the field.1 A typical approach to
CLIR consists of query translation followed by monolingual retrieval and retrans-
lation of results. Our approach to CLIR, which we describe in detail in Section 2,
differs substantially: rather than translate a query at the language level, we first in-
terpret it with respect to a conceptualization with both query and conceptualization
in the same language; we then translate the query to an identical conceptualization
in the target language and, having previously semantically annotated target docu-
ments with respect to the target-language conceptualization, we then retrieve results
and reverse the conceptual translation to return final results in the language of the
query.

The approach we take is not entirely unprecedented; several other types of sys-
tems use an “interlingua” to mediate processing of content between two or more
languages. Since the days of symbolic pivot-based machine translation (Mahesh,

1 See, for example, http://www.clef-initiative.eu.
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1996), ontologies of various sorts have served in crosslinguistic applications includ-
ing information extraction (Declerck et al., 2010; Aggarwal, Polajnar, & Buitelaar,
2013). Recently ontology localization (Tijerino, 2010) has become viable in boost-
ing lexical content for translation. Some support translation via mappings between
language-specific ontologies (Fu, Brennan, & O’Sullivan, 2012). Others, with the
advent of statistical methods in natural language processing, use hybrid approaches
in translating extraction ontology content (Montiel-Ponsoda, de Cea, Gómez-Pérez,
& Peters, 2011).

Because our approach is symbolic, ontology-based, and implements first-order
(but not higher-order) logic for inference, the concerns raised by Hirst [this vol-
ume] could be relevant. We note, however, that the technologies for our system at
present originate from the conceptual-modeling and data-extraction communities
rather than from natural language processing and computational linguistics, though
we foresee being able to orient our work more toward the nexus of all of these areas.
In particular, our ontologies do not model the lexicon; they model conceptual rela-
tions, with relevant grounding in lexical entries, and the assertions they represent
are more “data”-like than “information”-like and thus do not suffer as severely from
the issues Hirst raises [this volume]. In addition, since creating a domain ontology
is within the purview of end-users, they can either develop a writer-centered view
of the data (i.e., more directly modeling the document type) or a reader-centered
view (i.e., more oriented to which concepts are of most use to them). To avoid the
grand pitfalls in Hirst’s warning [this volume], we concentrate on data-rich, narrow
domain applications known a priori, and consider our knowledge sources useful,
if imperfect, artifacts. Furthermore, we adopt a multifaceted engineering approach
for cross-language mappings; and, while recognizing the equivalency problem, we
allow for various types of correspondence beyond one-to-one mappings (Embley,
Liddle, Lonsdale, & Tijerino, 2011).

What distinguishes our approach is the narrow, domain-specific, user-definable
nature of our ontologies and their construction, as well as the role of these ontologies
at the center of a larger infrastructure (Embley, Liddle, Lonsdale, & Tijerino, 2011).
Our ontologies tend to be less elaborate than others’, and hence less rich in the types
of context required for successful treatment by statistical translation methods. Our
work is situated in the space of linguistically-grouncross-language query ded, end-
user-developed ontologies that incorporate various lexical resources and mappings
at various levels of concepualization.

These semantic conceptualization requirements limit our approach to applica-
tions that are easily conceptualizable—those that are data-rich and narrow in scope.
Although limited, the applications are significant and practically important cover-
ing areas such as service finding like the restaurant example illustrated in Figures 1
and 2, retail-purchasing while shopping abroad, information-seeking while travel-
ing and sightseeing, and multi-cultural topical research such as family history where
ancestors have immigrated to a country with a different language.

We call our cross-language query engine ML-OntoES (MultiLingual Ontology
Extraction System) and describe its architecture in Section 2. Like search engines,
ML-OntoES assumes the existence of an indexed document collection. Indexes for
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ML-OntoES, however, are not just for keywords, but are also for recognized seman-
tic concepts. Extraction ontologies (Embley, Liddle, & Lonsdale, 2011), which we
describe in Section 2.1, allow ML-OntoES to semantically index a document col-
lection with respect to an ontological conceptualization. Extraction ontologies also
allow ML-OntoES to interpret queries with respect to an ontological conceptual-
ization, as we describe in Section 2.2. ML-OntoES matches conceptualized queries
with the conceptualized semantic index to retrieve results. When the query language
differs from the document-collection language, ML-OntoES invokes a conceptual-
level translation as we explain in Section 2.3. In order for ML-OntoES to work well,
semantic recognition accuracy must be high and extraction-ontology construction
costs must be low; we address these issues in Section 3. In Section 4 we conclude
by summarizing the principles and practicalities required to make ML-OntoES work
successfully.

2 ML-OntoES Architecture

Figure 3 sketches the architecture of ML-OntoES by giving a retail-sales exam-
ple in which ML-OntoES processes a French query against a collection of Korean
car advertisements. Before query processing begins, ML-OntoES applies its Korean
extraction ontology to Korean source pages to create a semantic index. Once se-
mantic indexes have been built, query processing can begin: as Figure 3 illustrates,
ML-OntoES (1) applies a French car-ad extraction ontology to the query to recog-
nize and conceptualize the query’s semantic constraints and to remove semantic-
constraint words from query, leaving, and thus identifying the keywords, (2) maps
the French conceptualization and keywords to the Korean conceptualization and
keywords (note that the conceptualizations are structurally one-to-one, allowing for
identical select-project-join processing), (3) matches the Korean conceptualization
and keywords with the previously constructed semantic and keyword indexes, (4)
maps the resulting Korean conceptualizations and keywords back into French, and
(5) displays the results. As Figure 3 shows, query processing of a Korean query
Q한국어 over the French repository, français, is symmetrical.

2.1 ML-OntoES Extraction Ontologies

An extraction ontology (see Figures 4 and 5) is a 5-tuple (O, R, C, I, L):

O : Object sets—one-place predicates whose instance values are either all lexical,
denoted by named dashed-border rectangles in Figure 4, or all non-lexical, de-
noted by solid-border rectangles (e.g., BirthDate is lexical with values such as
“June 7, 1949” and Person is non-lexical with object-identifier values)

R : Relationship sets—n-place predicates, n≥ 2, represented by lines connecting
object-set rectangles (e.g., Person–Name in Figure 4) and also by black-triangle
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Fig. 3 Cross-Language Query Processing.

aggregation symbols connecting holonyms (e.g., modèleFinition in Figure 3) to
meronyms (e.g., modèle and finition)

C : Constraints—closed formulas, as implied by the notation (e.g., ∀x(Person(x)
⇒ ∃!y(Person-BirthDate(x,y)))—one of the many functional constraints de-
noted by the arrowhead on the range side of the Person-BirthDate relationship
set; ∀x(Child(x)⇒Person(x))—a hypernym/hyponym constraint denoted by the
triangle, which may optionally also specify mutual exclusion among its hyponym
sets by a “+” symbol (e.g., mutual exclusion of Son and Daughter in Figure 4), or
specify that the hypernym set is a union of its hyponym sets (“∪”) or both (“]”)
to form a partition among its hyponyms)

I : Inference rules—logic rules specified over predicates (e.g., Person–Gender(x,
‘Female’) :- Daughter(x))

L : Linguistic groundings—text recognizers for populating object and relation-
ship sets and collections of interrelated object and relationship sets (e.g., recog-
nizers for Name and BirthDate in Figure 5)

The conceptual foundation for an extraction ontology is a restricted fragment
of first-order logic, but its most distinguishing feature is its linguistic grounding,2

2 Similar to the linguistic grounding discussed in (Buitelaar, Cimiano, Haase, & Sintek, 2009), but
different in its details
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ChildNrChild

DaughterSon

Spouse

MarriageDate

Residence

DeathDate

BirthDate

Name Person

Fig. 4 Ontological Conceptualization for Assertion Extraction.

Name
external representation: \b{FirstName}\s{LastName}\b
external representation: \b{FirstName}\s[A-Z]\w+\b
...

BirthDate
external representation: \b1[6-9]\d\d\b

left context: b\.\s
right context: [.,]
context keywords: \bborn\b(\sin\b)?|...

...
input method: DateStringToJulianDate
output method: JulianDateToDateString
operator methods:

LessThan(p1: BirthDate, p2:BirthDate) returns (Boolean)
external representation: (before|earlier than|<)\s{p2} ...

...

Fig. 5 Sample Recognizers for Linguistically Grounding the Ontology in Figure 4.

which turns an ontological specification into an extraction ontology. Each object set
has a data frame (Embley, 1980), which is an abstract data type augmented with
linguistic recognizers that specify textual patterns for recognizing instance values,
context keywords, applicable operators, and operator parameters. The data frame
for BirthDate in Figure 5 illustrates recognizers for both instance values and oper-
ator applicability. Although any kind of textual pattern recognizer is possible, our
current implementation supports only regular expressions or combinations of regu-
lar expressions and dictionaries. Relationship sets may also have data-frame recog-
nizers. Recognizers for larger ontological components are also possible—Ontology
Snippets, as we call them.

We explain how the linguistic recognizers work by showing how they apply to
an OCRed excerpt from the The Ely Ancestry (Beach, Ely, & Vanderpoel, 1902) in
Figure 6.
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Fig. 6 An Excerpt from Page 419 of The Ely Ancestry.

• Lexical object-set recognizers identify lexical instances in terms of external rep-
resentations, context, exclusions, and dictionaries. One of the possibly many
external representations for BirthDate in Figure 5 is “\b1[6-9]\d\d\b”, rep-
resenting years between 1600 and 1999, with an immediate left context of
“b\.\s”, an immediate right context of “[.,]”, and context keywords that in-
clude “\bborn\b(\sin)?”, which may appear close to but not necessarily imme-
diately adjacent to the birth year. Note that these regular-expression patterns
match all the birth years in Figure 6. The external representations for Name
in Figure 5 illustrates the use of dictionaries and mixed dictionaries and regu-
lar expressions. A name in curly braces within a regular expression references a
named regular expression (e.g., “{FirstName}” references a dictionary of given
names: “Aaron|Abdul|Abbey|...”). An input method converts a recognized string
into an appropriate internal representation—e.g., a Julian-date representation in
Figure 5; and an output method converts an internal representation to a standard
format for display to a user. Applicable operator methods are particularly useful
for constraints in queries like “List Mary Ely’s children born before 1840” where
parameter p1 comes from an extracted value and p2 follows “before”.

• Non-lexical object-set recognizers identify non-lexical objects through object-
existence rules, which identify text such as proper nouns, that designate the ex-
istence of objects. The object existence rule “{Name}” for the non-lexical object
set Person, for example, references the regular expressions in the Name object
set; and when a name is recognized, ML-OntoES generates a Person object and
associates it with the recognized name.

• Relationship-set recognizers identify phrases that relate objects. For example, the
regular expression “^\d{1,2}\.\s{Person},\sb\.\s{BirthDate}[.,]” for the Person–
BirthDate relationship set relates Maria Jennings to 1838 and William Gerard to
1840—two of the Person–BirthDate relationships that appear in Figure 6.

• Ontology-snippet recognizers identify text patterns that provide instances for
groups of object and relationship sets. Recognizers for ontology snippets con-
sist of regular expressions with capture groups and predicate mappings.
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MarriagePlace

Gender

MarriageDate

DeathPlaceBirthPlace DeathDateBirthDate

Name Person

SpouseGivenName Surname Child

Fig. 7 Target Ontology of Desired Biographical Assertions.

To effectively recognize semantic object and relationship instances in text, we
must often tune extraction ontologies to the view of the text provided by its author
(e.g., tune Figures 4 and 5 to the author’s view in Figure 6). An author view, how-
ever, may differ in its organization and content from the view we wish to have as we
query the extracted information. We can obtain the view we want (e.g., Figure 7) by
using the inference-rule component of ML-OntoES.

In our prototype implementation, we use the Jena reasoner (http://jena
.apache.org) over RDF triples to specify inference rules. Since ML-OntoES
is fundamentally specified as a set of n-ary predicates (n ≥ 1), the Jena reasoner
immediately applies. Moreover, its results are also n-ary predicates, which lets us
conveniently augment an ML-OntoES ontology. We can, for example, have the rules

target:Person(x) :- source:Person(x)
target:Person–Gender(x,‘Male’) :- source:Son(x)
target:Father(x) :- target:Person–Child(x,y),target:Person–Gender(x,‘Male’)

which respectively specify that persons in a source ontology (e.g., Figure 4) become
persons in the target ontology (e.g., Figure 7), that sons are male, and that persons
who have a child and are male are fathers. Furthermore, the Jena reasoner defines a
set of built-in predicates that is extensible, and we can create extensions to specify
predicates that, for example, can split a name such as “William Gerard Lathrop”
into two given names and a surname, and that can infer the surname of the children
for the culture in which The Ely Ancestry was written as the surname of the father.
Inferred object and relationship sets may have data-frame recognizers, thus making
inferred assertions directly queryable.

In addition to inferring assertions, ML-OntoES also has the ability to reason over
the stated and implied assertions to do entity-resolution. In our prototype implemen-
tation, we use the Duke entity resolver (http://code.google.com/p/duke)
and generate OWL same-as relationships when, for example, Duke discovers that
of the three “Mary Ely”’s in Figure 6, only the first and third are the same.
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2.2 ML-OntoES Monolingual Query Processing

Before query processing begins, ML-OntoES preprocesses a document collection
and creates a keyword index and a semantic index. In our prototype implementation
ML-OntoES creates its keyword index with Lucene (http://lucene.apache
.org) and its semantic index with extraction ontologies. ML-OntoES applies ex-
traction ontologies to text documents to find instance values in the documents with
respect to the object and relationship sets in the ontology as explained in Section 2.1
and illustrated for Korean in Figure 3. ML-OntoES returns its semantic index as
RDF triples.

Assuming a known context—an identified extraction ontology—ML-OntoES
first distinguishes between semantic and keyword text in the query and processes
semantics through the semantic index and keywords through the keyword index.
ML-OntoES then combines the results and subsequently ranks and displays re-
trieved documents, e.g. as suggested by Fig. 1, allowing users to click on results
to view original documents from which information was extracted and, in the case
of inferred results, to also see the reasoning chains.

For the French query in Figure 3, the data-frame recognizers in the French car-
ad extraction ontology recognize “Honda” and “moins de 8000” and convert them
to the constraints marque = “Honda” and prix < 8000e. For monolingual query
processing, ML-OntoES generates a SPARQL query from these constraints that not
only finds cars that satisfy the constraints in its semantic index but also retrieves
information about references to its cached copies of the web pages from which ML-
OntoES extracted the information—thus making the semantic index an actual index
into its known web pages.

Assuming that users wish to have as many of the semantic constraints sat-
isfied as possible and knowing that users may query for constraints not speci-
fied in source documents, ML-OntoES generates conjunctive queries and allows
SPARQL constraint satisfaction to be OPTIONAL. Then, for acyclic conceptu-
alizations (e.g., the application ontologies in Figure 3), ML-OntoES generates
queries in a straightforward way: join over edges in the ontologies that con-
nect identified nodes, and filter conjunctively on identified conditions. For the
query in Figure 3, for example, ML-OntoES produces the SPARQL equivalent
of πmarque,prixσmarque=′Honda′∧prix<8000(auto–marqueon auto–prix).3 For cycles, ML-
OntoES identifies all possible paths in the conceptual-model graph that cover iden-
tified object and relationship sets and then either acknowledges the ambiguity and
returns answers for all paths or discovers that the query explicitly identifies one or
more of the paths and returns answers only for these paths.

ML-OntoES processes free-form queries conjunctively. However, like standard
search engines, it also provides for advanced search capabilities for queries that in-
volve disjunctions and negations. When a user requests the advanced-search option
for an application, ML-OntoES dynamically generates a form from the application’s
extraction ontology. The form provides for negations with a checkbox, disjunctions

3 By π and σ we mean projection and selection, respectively.
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with click-extended OR buttons, and comparators for all declared comparison oper-
ations in the application’s data frames.

For keyword query processing to work well, it is necessary to remove stopwords
plus words and phrases intended to convey semantic constraints or result types.
Thus, ML-OntoES removes stopwords such as “de” and “en” and a phrase like
“moins de 8000”, which it recognizes as generating a semantic constraint. Semantic-
phrase removal prevents terms such as “moins” from matching irrelevant tokens in
documents. ML-OntoES also removes semantic phrases expressing equality con-
straints such as “Marque égale Honda”, but for recognized equality constraints, it
leaves the value word or phrase as a keyword. Thus, in our example, “Honda” be-
comes a keyword. ML-OntoES also passes quoted phrases, such as «excellent état»,
to Lucene to process as single-phrase keywords.

2.3 ML-OntoES Cross-Language Query Processing

Given a query Q in language L1 and an interpretation of Q with respect to a
conceptualization also in language L1, ML-OntoES maps Q from the concep-
tualization in language L1 to a corresponding conceptualization in language L2.
Cross-language conceptualizations are structurally identical; and therefore since
the semantic concepts and constraints have a one-to-one correspondence, the im-
plied select-project-join operations for query Q will be the same in both con-
ceptualizations. Thus, for example the SPARQL equivalent of the French query
πmarque,prixσmarque=′Honda′∧prix<8000(auto–marqueon auto–prix) becomes a SPARQL
equivalent of the Korean query π제조사,가격σ제조사=′혼다′∧가격<11700800 (자동차–
제조사on자동차–가격).

For narrow-domain, data-rich applications, we expect native-language extraction
ontologies for different languages/locales to be similar, but not necessarily identical.
Thus, when adding a new extraction ontology to ML-OntoES for a new language or
new localization of an existing language, we check structural consistency and make
adjustments as necessary to retain the structural one-to-one correspondence across
all ontologies. In Korean car ads, for example, mention of accidents is common.
Assuming the accident concept is not yet part of the existing conceptualizations, we
can either drop the concept from the Korean ontology (deeming it not essential) or
add it to all other ontologies for the application.

For keywords and instance values in semantic constraints, ML-OntoES uses ex-
isting services for currency conversions, keyword translation, unit conversions, and
transliterations and uses existing language resources and pay-as-you-go construc-
tion for lexicon and commentary translations:4

• Lexicons. Lexicon mappings substitute one word by another, or one word by
a small number of others. For common concepts such as colors, corresponding

4 Our mapping typology here resonates with that of León-Araúz and Faber (this volume), though
our lexical type inventory is not as finely articulated.
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translations are available in cross-language dictionaries. Interestingly, these map-
pings are not always one-to-one (e.g., “blue” in Korean is 파랑색 and 파란색
and청색).

• Units and Measures. ISO standard conversion formulas for units and measures
are commonly available and coding them is straightforward. In our implementa-
tion we use, for example, kilometers for mileage, integers for car years, Julian-
calendar specifications for dates, and a 24-hour clock for time.

• Currency. Because services exist that directly convert amounts in one currency to
amounts any other currency, mappings for currency conversions are direct from
one language/localization to another.

• Transliteration. Like direct conversion among currencies, transliteration map-
pings are direct from one language to another.

• Keywords. Since keywords can be any word or quoted phrase, we use a general
translation service.

• Commentary. Ontologies may contain free-form commentary to explain unfamil-
iar concepts, such as localized tipping protocols.

For answer values returned, we use the mappings to transform values and key-
words back into the original language. In Figure 3, for example, ML-OntoES maps
the Korean car make혼다 first into its language-agnostic equivalent and then into
the French “Honda”, the currency converter converts the Korean Won price 1,100만
원 into 7826e, and the twice-appearing keyword혼다 via a general translation ser-
vice into “Honda (2)”.

Development and maintenance of ML-OntoES cross-language mappings agree
in spirit with the principles of Bosca et al. (this volume). Our methods and tools,
however, obviously vary somewhat.

3 Practicalities

How well ML-OntoES works in practice primarily depends on the accuracy of its
linguistic grounding, which, in turn, depends on the quality of its knowledge engi-
neering. For ML-OntoES to be successful, we must sufficiently increase semantic-
recognition accuracy and sufficiently decrease engineering construction costs.

3.1 Recognition Accuracy

Cross-language query-processing accuracy depends on (1) extraction accuracy in
all languages when indexing the semantics in a document collection and (2) cross-
language query transformation so that nothing is lost or spuriously added.

To check extraction accuracy, we built French and Korean extraction ontologies
for car-ad and obituary applications. The combinations represent typological variety
across languages and document diversity in degree of semi-structuredness. From
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Table 1 Car Ad within-language Extraction Results.

Make Model Year Price Color Mileage

French Recall 87% 76% 96% 89% 82% 98%
Precision 65% 67% 90% 95% 47% 92%

Korean Recall 99% 99% 100% 100% 100% 95%
Precision 99% 99% 100% 100% 100% 95%

Table 2 Obituary within-language Extraction Results.

Title Name Death Funeral
Date Date Time Place

French Recall 76% 42% 80% 69% 43% 38%
Precision 99% 63% 88% 70% 30% 83%

Korean Recall N/A 97% 97% 50% 50% 100%
Precision 97% 97% 100% 100% 67%

500 French car ads, 1500 French obituaries, 430 Korean car ads, and 502 obituaries,
gathered from several different online sites, we randomly selected about 100 of each
of the four combinations to constitute validation and blind test sets (respectively 20
and 80 of the 100) and used the rest for training (in the sense that we looked at many
of them as we built our ontologies).

Tables 1 and 2 show the results. The car ads domain is ontologically narrow,
and accordingly, our extraction ontologies perform quite well on this domain (as we
have come to expect (Embley, Liddle, & Lonsdale, 2011)). Precision and recall for
Korean car ads are high because these ads mostly have a regular structure, allowing
our Korean expert to quickly tune the extraction ontology. The French car ads are
more free-form, and so the results are lower. The obituaries domain is much broader
and extraction is more challenging—particularly for names and places. Even so, our
Korean expert was able to quickly tune the extraction ontology, and performance
for most concepts was remarkably high. French extraction was hampered by greater
variability and complex sentence structures. For example, there are only 187 names
in our Korean surname dictionary, compared with 228,429 in our French surname
dictionary, which partially explains the relatively high performance for Korean name
extraction.

To check cross-language query transformation accuracy, we asked students in
two senior-level database classes to generate car-ad queries which they felt an earlier
demo version of a free-form query processor should interpret correctly. The students
generated 137 syntactically unique queries, of which 113 were suitable for testing
ML-OntoES. To obtain Korean and French queries, we faithfully translated 50 of
these 113 into each language.

Table 3 shows the results of interpreting the queries in their respective languages
and transforming the internal representation of each query, as understood, into the
internal representation of the query in English. In the table, σ and π respectively
represent query selection (i.e., conditionals such as “Price < $12,000”) and query
projection (i.e., choice of results to include, e.g., the make and model of a car),
and κ represents keywords. Since σ and π translations are always correct, the less-
than-perfect σ and π results come from inaccurate within-language query interpre-
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Table 3 Cross-Language Query Transformation Results.

Recall Precision
Car Ad Queries σ π κ σ π κ

French-to-English 77% 86% 100% 81% 90% 74%
Korean-to-English 98% 100% 100% 93% 99% 52%

tation. The lower recall and precision for French conditionals (σ ) points to a need
for better recognizers. More complete synonym sets for French ontological concepts
(π) would increase recall, but may decrease precision. Expanded stopword lists in
French would remove spurious keywords (κ) like “list” and “want”. Stopwords in
Korean make little sense because most of the standard English-like stopwords are
prefixes and suffixes and become part of glyphs. An attempt to remove them after
translation often fails because translations themselves are often poor; e.g.,인, which
in our query should translate as “which is”—both English stopwords—instead was
translated as “inn” (or “hotel”).

3.2 Construction Cost

The ML-OntoES architecture requires a substantial amount of information that
must be encoded, either by hand or through some automated means. The difficulty
of eliciting or otherwise acquiring such data from domain experts—Feigenbaum’s
“knowledge engineering bottleneck” (Feigenbaum, 1984)—is a decades-old issue.

Our approach substantially mitigates, without completely solving, this problem:
our system uses narrow, domain-dependent ontologies that a typical user should
be able to specify. We have developed interactive tools for designing and populating
ontologies with the requisite types of knowledge, and we are investigating the use of
machine learning and linguistic analysis to reduce the cost of developing recognizers
for linguistically grounding ontologies. Furthermore, we advocate and practice re-
using to the degree possible already extant knowledge sources, and we resonate with
similar work being done by other researchers to leverage a wide variety of resources
in the boosting of ontology content for crosslinguistic extraction while minimizing
the cost (Fu et al., 2012), also convincingly advocated by Bond et al. (this volume).

We assume that end-users knowledgeable in a particular domain can create fo-
cused, narrow-in-scope ontologies that involve extraction of relevant content from
data-rich knowledge sources. In the context of crosslinguistic extraction, ontology
creators need to know the languages for which they are designing ontologies. Cre-
ation of the ontologies involves specifying concepts, relationships, constraints, and
lexical items useful for extraction. Three methods are available for ontology creation
and population: (i) programmers can hand-populate them by entering data directly
into the data structure; (ii) experienced users can interact with the data structure
via our custom-designed ontology editor, a tool for specifying ontology content, or
(iii) domain experts with limited experience can interact with a form-driven inter-
face that guides the user through design decisions necessary to provide content. The
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time and effort involved for developing an ontology typically involves one person’s
efforts over several days, perhaps at the most a week or two; less time if the user has
expertise in language, lexicons, and text processing techniques. As with any knowl-
edge engineering task, there is a point of diminishing returns in specifying expert
knowledge: more time and effort can be spent developing content to increase per-
formance, but at the risk of experiencing the knowledge-engineering bottleneck. A
short but representative list of resource types we have used or are considering using
for ontology creation and population follows.

• Lexical databases: Several publicly available lexical resources—monolingual
and multilingual—provide comprehensive information on lexical semantic rela-
tions: synonymy, hypernymy, hyponymy, meronymy, word senses, and crosslin-
guistic mappings. Example resources include WordNet (http://wordnet
.princeton.edu), the GlobalWordNet (http://www.globalwordnet
.org), and the BabelNet (http://lcl.uniroma1.it/babelnet).

• Lexicons: Specialized lists of narrow-domain words of interest are readily found
on the Web: gazetteers for place names, census indices for person names, product
name databases are some examples. For our evaluation work in Section 3.1, we
mined pull-down menus from http://paruvendu.fr which contains all
French automobile make/model combinations and mined tabs from http://
www.encar.com which lists Korean makes and models.

• Term banks: The computerization and subsequent Web deployment of vast ter-
minology banks, such as TermiumPlus (http://www.termiumplus.gc
.ca) and EuroTerm (http://www.euroterm.org/test1/glossary),
has put literally millions concepts and their single-word and multi-word terms
within easy reach of the general public. In prior work we have shown how to
integrate terminological resource content into our ontologies (Lonsdale, Ding,
Embley, & Melby, 2002).

• Transliteration services: When crosslinguistic mappings involve different char-
acter sets, services can perform character conversion. In our current implemen-
tation we use a Hangul/Roman transliterator (http://sori.org/hangul/
conv2kr.cgi) for Korean to/from English. Unfortunately, no general translit-
eration resource appears to be currently available.

• Translation services: LabelTranslator (http://www.neon-toolkit.org),
for example, provides translation (called by others “localization services”) for
ontology labels between three European languages. For general-purpose trans-
lation, services based on statistical machine translation systems can be used;
we currently use Bing (http://api.microsofttranslator.com/V2/
Http.svc/Translate) when more direct methods are not readily available.

The crosslinguistic aspect of our system involves a star-based architecture similar
to notion in Dorr et al. (Dorr, Hovy, & Levin, 2006) that maps between languages at
the conceptual model level (Embley, Liddle, Lonsdale, & Tijerino, 2011). At the
center of the star is a language-agnostic pivot that mediates between language-
specific extraction ontologies. Since conceptual associations are routinely direct,
this removes the necessity to translate between languages, and allows for recover-
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ing the mappings from the isomorphic ontological content. Furthermore, the effort
required to add another language to the system only involves developing the relevant
knowledge sources for the new language. The complexity of adding a new language
to the system is thus reduced from O(n2) to O(n).

As ML-OntoES becomes more reliant on external resources, it also becomes sub-
ject to what Hoekstra calls the “knowledge reengineering bottleneck” in the context
of the Semantic Web, with its four new challenges (Hoekstra, 2010): (1) Our system
is data-dependent since its effectiveness, robustness, and scalability depend on the
appropriateness and quantity of data we incorporate from elsewhere. (2) We have
limited control over the dirtiness of the data we process and over the coverage of the
resources we adopt. (3) MLOntoES becomes subject to increased complexity as dis-
parate resources are integrated into the system. (4) As our system transitions from
small-scale systems to large-scale web applications, it assumes increased impor-
tance. With the star-based architecture of the system and through careful selection
of relevant knowledge resources, we hope to be able to strike a pragmatic balance
among these issues, at least for data-rich, narrow-domain applications.

4 Conclusion

ML-OntoES processes cross-language, hybrid query and keyword-search requests
for narrow-domain, data-rich applications in accord with three principles: (1) mono-
lingual semantic indexing based on extraction ontologies, (2) monolingual extraction-
ontology-based semantic analysis of user queries, and (3) structurally identical ap-
plication ontologies to facilitate conceptual-level cross-language mappings:

1. For query processing to work in reasonable time, semantic indexes must exist.
ML-OntoES creates semantic indexes by crawling web pages and documents on
the web with application-dependent, monolingual extraction ontologies. Then,
for each assertion found (as explained in Section 2.1), we can record the as-
sertion’s objects in their identified ontological object sets and its relationships
among the objects in its identified ontological relationship sets, and associate the
object and the relationship pointers into a cached copy of the page or document.

2. When a user submits a query, it is best if the system already knows the context in
which the query is asked—i.e., already knows which ontology or set of ontolo-
gies, prepopulated with assertions, should be used to return an answer. Other-
wise, the system must search for an application ontology (or a set of application
ontologies) by applying candidate extraction ontologies to the query and check-
ing the coverage. Indexes over words and common conceptualizations such as
dates and currencies, can speed-up the process of locating appropriate ontologies
for the query. Then, as explained in Section 2.2, ML-OntoES can monolingually
construct a query with respect to the structure of the ontology.

3. As noted in Section 2.3, since all language-and-locale versions of extraction on-
tologies for a particular application are structurally identical, generated query
expressions have the same form in all versions and only the instance values, if
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any, need translation. ML-OntoES uses cross-language dictionaries for word sub-
stitutions, standard conversion formulas for units and measures, on-line currency
converters for currency exchange, and transliteration services for name conver-
sions. Keyword and commentary translation are more difficult to translate accu-
rately. But rough approximations, as provided by on-line translators, are often
sufficient. For critical vertical applications where specialized keywords and jar-
gon words matter in hybrid queries, special application-dependent keyword and
keyword-phrase cross-language dictionaries can be developed as a supplement
for on-line translators. Likewise, when commentary is critical, such as for busi-
ness transactions and detailed instructions, careful translations would need to be
written, if they do not already exist.

Our prototype implementation demonstrates feasibility, but as a practical matter,
for ML-OntoES to be successful, extraction-ontology recognition accuracy must be
high (Section 3.1), and extraction-ontology construction costs must be low (Sec-
tion 3.2). Summarizing our discussion of these issues in Section 3, we point out
that the knowledge engineering required for car ads and obituaries returned reason-
ably good precision and recall results for French and particularly good for Korean,
and that the time and effort required to develop the extraction ontologies, given the
lexical resources available to us, are within reason. This “knowledge-engineering
bottleneck” is, however, a drawback of ML-OntoES.

Because of this drawback, our current and expected future efforts for ML-
OntoES are focused on mitigating extraction-ontology construction costs. Focusing
on the vertical domain of historical documents and particularly family-history docu-
ments (Embley, Liddle, Lonsdale, Machado, et al., 2011), we are exploring ways to
automate the construction of extraction ontologies. For lists, which are commonly
found in family-history documents, we have been able to generate both regular-
expression and HMM recognizers that accurately extract genealogical assertions of
interest and insert them into ontological structures (Packer & Embley, 2013). We are
currently working on automating the extraction of more general text patterns found
in semi-structured documents and on combining a dependency parser with a seman-
tic reasoner to generate assertions that can be inserted into a target ontology. The
domain of family history is particularly in need of cross-language query processing,
especially for untrained users because many people have ancestors who have come
from countries with a language foreign to their own.
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