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Scalable Recognition, Extraction, and Structuring of Data from Lists
in OCRed Text using Unsupervised Active Wrapper Induction
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A process for accurately and automatically extracting asserted facts from lists in OCRed documents and in-
serting them into an ontology would contribute to making a variety of historical documents machine search-
able, queryable, and linkable. To work well, such a process should be adaptable to variations in document
and list format, tolerant of OCR errors, and careful in its selection of human guidance. We propose an unsu-
pervised active wrapper induction solution for finding and extracting information from lists in OCRed text.
ListReader discovers lists in the text of an OCRed document and induces a grammar for the internal struc-
ture of list records without document-specific feature engineering or supervision. ListReader then applies
the knowledge in this grammar to actively request a limited and targeted set of labels from a user to com-
plete its list wrapper. Lastly, ListReader applies the completed wrapper, encoded as a regular expression,
to extract information with high precision from the entire document and automatically maps the labeled
text it produces to a rich variety of ontologically structured predicates. We evaluate our implementation
on a family history book in terms of F-measure and annotation cost, showing with statistical significance
that ListReader learns to extract high-quality data with less cost than a state-of-the-art statistical sequence
labeler.
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1. INTRODUCTION
The ability to cheaply and accurately extract information from semi-structured OCRed
documents could help a number of seemingly unrelated types of organizations and
processes including the following: the electronic filing of paper legal documents, the
retrospective conversion of paper books and card catalogs into digital bibliographic
databases, the organizing of paper sales receipts in commerce and personal finance
smart-phone applications, and the automatic extraction of genealogical data from his-
torical documents in family history research projects. Also, the ability to perform learn-
ing and extraction with low time and space complexity is essential when scalability is
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Fig. 1. Example Text from The Ely Ancestry, Page 154

important—and it is becoming more and more important as “Big Data” projects moti-
vate many to adopt a more scalable approach to their text and data analysis.

To be most useful to downstream search, query, and data-linking applications, the
knowledge extracted from text should be expressive, detailed, and structured accord-
ing to well-established formal conventions. An ontology is an explicit specification of
a conceptualization [Gruber 1993]. It is expressive enough to provide a framework
for storing more of the kinds of assertions found in lists than the typical output of
named entity recognition and most other information extraction work. If we could
populate user-specified ontologies with predicates representing the facts asserted in
OCRed text, this more expressive and versatile information can better contribute to a
number of applications in historical research, database querying, record linkage, auto-
matic construction of family trees, and question answering.

One of the most important text formats is the list. Lists, loosely defined, include any
semi-regular repeating pattern of records. Records can be long or short; they can lie in
a contiguous block of text or be distributed throughout a document or even a collection
of separate but related documents. There has been little work toward establishing a
general approach to extracting information from lists despite how commonly this type
of structure appears in text. Some types of books consist almost entirely of lists, such
as family history books, city directories, and school yearbooks. The 100,000+ family
history books scanned, OCRed, and placed on-line by FamilySearch.org are full of lists
containing hundreds of millions of fact assertions about people, places, and events.
Figure 1 shows a small part of one family history book, a piece of page 154 of The Ely
Ancestry [Beach et al. 1902]. It shows two different types of records, members of two
lists: parent records and child records.
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In this research, we focus on lists in family history books because they contain
more rich information and more structural complexity than most other kinds of lists.
Records in these lists make many assertions about family relationships and life events
that are valuable to family history research but which are not consistent enough in
their format for a simple hand-coded script or regular expression to extract. Though
each record arranges its information as a sequence of fields and delimiters, the details
of this arrangement may differ from one record to another, even within the same list
or record type. For example, the fourth child record in Figure 1 contains a death date
while the preceding child records do not. Considering this type of variation alone—the
optionality of fields—the number of record variations we must account for is exponen-
tial in the number of fields. In this example, that means the number of variations of
the parent records in Figure 1, which contain about 18 fields, is at least 262,144 (the
cardinality of the power-set of 18 fields is 218). Furthermore, the different field contents
and the OCR errors of otherwise-invariant field delimiters increases the base of that
exponential formula, making the total number of possible variations over 387,420,489
even if we assume only two possible variations per field in addition to its optionality.

In addition to record, field, and delimiter variations, we must also account for lack
of document structure and metadata. Unlike HTML and other modern text formats,
there is a dearth of formatting cues preserved in the output of most OCR engines—
cues that humans find invaluable in parsing and understanding lists. OCRed text will
generally contain no page layout formatting, no tab-stops, and no font styles. Horizon-
tal spaces of all sizes are collapsed into a single space character. Newline characters
and all-caps text are practically the only kinds of formatting preserved. Compared to
natural language, semi-structured text often has significant style and structural dif-
ferences between lists even within the same book, and certainly across books, even
in the same genre such as family history. See Appendix A for examples. Even on the
same page, we see variations in the structure of the records (especially between the
long parent records and the short child records in Figure 1).

Despite this complexity, we desire to develop an accurate, low-cost process to ex-
tract the rich and diverse kinds of fact assertions from lists in OCRed documents—a
process that is robust to OCR errors and variations in list structure. Not only should
the process be able to identify corresponding fields among a set of related records, but
it should also find all the records in a document without human assistance. Detect-
ing lists automatically could save a lot of work for a user, especially in large books or
corpora containing mixed content (prose and lists).

We know of three main sources of cost for an information extraction system over a
lifetime of use: (1) domain-specific knowledge engineering, (2) input text-specific fea-
ture engineering, and (3) labeled text as training examples. To minimize the cost of a
specialized information extraction application, we hypothesize that the only truly nec-
essary costs associated with a new topic and text are (1) a minimal specification of the
kinds of fact assertions to be extracted and (2) a small amount of machine-specified,
hand-labeled text. Our approach, called ListReader, relies on minimal domain-specific
knowledge engineering, no feature engineering, no hand-labeled training data but a
small amount of hand-labeled data to complete the semantic mapping, and no human
construction—or even inspection—of extraction rules. ListReader reduces the cost of
the knowledge engineering required to specify fact-assertion templates by allowing the
user to specify them in an easy-to-use web-form-building user interface. The idea is
that a user specifies the information to be extracted by designing a form—just like we
do in practice when we want to “extract” (request) desired information from a person
filling out a form. ListReader eliminates other sources of domain-specific knowledge
engineering such as the construction of domain lexica, dictionaries, gazetteers, name
authorities, or part-of-speech patterns that could be used by machine learning fea-
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ture extractors or within hand-coded rules. ListReader minimizes the costs associated
with text variations and the mapping between text and web form by eliminating the
process of feature engineering for our unsupervised machine-learning-based approach
and of manually specifying or inspecting regular expressions or other rules which is
a common cost in rule-writing approaches. We simplify the process providing system-
requested semantic-mapping labels by allowing the user to fill in the user-built web
form by simply clicking on the field strings that ListReader automatically finds and
highlights. The most apparent and measurable source of cost remaining in our de-
sign, and the one that affects scalability the most, is the amount of hand-labeled text
for these semantic mappings. Our evaluation of ListReader focuses on reducing the
amount of hand-labeled text without sacrificing extraction accuracy.

The primary contribution in this research is a low-cost, scalable, unsupervised active
wrapper-induction solution that will discover much of the information recorded in even
noisy lists and extract it with high precision as richly-structured data. The wrapper
induction algorithm is linear in time and space. The active user interaction is scalable
in label-complexity by actively requesting labels that will have the greatest impact on
completing the wrapper based on being sensitive to record sub-structure frequencies.
ListReader relies on no initial labels from the user before becoming effective at query-
ing the user, and it achieves a statistically significant improvement in F-measure as a
function of labeling cost compared to two appropriate baselines. The entire grammar
induction process is adaptive and robust to record structure variations such as random
internal newlines despite needing to be sensitive to the existence of newlines as record
delimiters. We believe that this wrapper-induction approach is appropriate for settings
in which many input document formats exist, where a separate wrapper should be pro-
duced for each format to ensure high-precision, and where the hand-annotation cost
budget is low per list or document format.

As a further contribution, we also present a formal correspondence among list wrap-
pers, knowledge schemas, data-entry forms, and in-line annotated text. This correspon-
dence provides the data flow for a process in which a user can easily label plain text
for wrapper induction and create a new knowledge schema from the data-entry form
itself. It also enables even simple extraction models that produce in-line text labels to
extract rich facts from lists and insert them into an expressive knowledge schema. This
effectively reduces the knowledge-structure population problem to a sequence labeling
problem.

We present our contributions as follows. In Section 2, we survey the previous work
most closely related to ListReader. In Section 3, we give an overview of ListReader
wrapper induction and execution from a user’s perspective. In Section 4, we formalize
the correspondence among the four kinds of information: list grammars, knowledge
schemas, data-entry forms, and in-line annotated text. In Section 5, we introduce a
novel linear-time, linear-space unsupervised active wrapper induction algorithm that
begins with an unsupervised process of discovering, clustering, and analyzing the in-
ternal structure of records, and ends with an interactive labeling process that relies
on no initial labels from the user to become effective at querying for additional labels.
In Section 6, we evaluate the performance of ListReader in terms of precision, recall,
F-measure, and field-label cost with respect to a state-of-the-art statistical sequence
labeler and a baseline version of ListReader itself. Finally, in Section 8, we give cur-
rent limitations of ListReader, future work, and conclusions.

2. RELATED WORK
We identify three categories of work related to ListReader: grammar induction, web-
based wrapper induction, and OCRed list reading.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.



Unsupervised Active Wrapper Induction for OCRed Lists 00:5

2.1. Traditional Grammar Induction
Grammar induction, also known as grammatical inference, in its broadest sense is a
large field of research considering the many types of grammars in the Chomsky hier-
archy, the probabilistic and non-probabilistic versions of each, the phrase-structure
and state machine versions of each, and the number of induction principles, tech-
niques, and input assumptions that are possible (e.g. supervised vs. unsupervised,
pre-segmented vs. unstructured input text). Here we focus on the approaches most
closely related to ListReader in terms of training criteria and data structures. Most
rely on input that is more costly than our approach, including fully supervised label-
ing of training examples or feature engineering such as part-of-speech tagging.

Wolff [Wolff 2003], [Wolff 1977] applies a combination of the minimum length en-
coding (MLE) criterion from information theory, multiple string alignment, and search
to perform unsupervised grammar induction. Kit [Kit 1998] also uses an information
compression criterion (minimum description length or MDL) to induce a grammar from
a Virtual Corpus (VC) compressed into a suffix array. The suffix array improves the
time complexity of training from n-gram statistics, but since this data structure re-
lies on a bucket-radix sort, the final time complexity of their grammar induction is
O(n log n). Despite the celebrated properties of MDL as a global optimization criterion,
researchers have more recently shown that grammar induction using it as a local opti-
mization criterion are sensitive to the correct calculation of code length [Adriaans and
Vitanyi 2007], [Adriaans and Jacobs 2006]. We therefore use a simplified form of MDL
and rely on it sparingly in ListReader which requires only O(n) time and space.

Grammars induced for information extraction and wrapper applications are often
finite state machines. These state machines often begin as a prefix tree acceptor (PTA)
or other ungeneralized structure and are incrementally generalized by merging pairs
of states that are selected by a learning criterion (e.g. a Bayesian criterion). This tech-
nique has been used to learn both deterministic finite-state automaton (DFA) [Goan
et al. 1996] and hidden Markov model (HMM) grammars [Stolcke and Omohundro
1993]. A PTA is a tree-shaped finite state machine built from, and exactly represent-
ing, the strings in the input training set. It cannot be used as a starting point when
records or strings have not already been segmented. Therefore, this approach will not
work for our input text because an OCRed document is not pre-segmented into records.
We have found that the suffix tree data structure is a good natural progression from
PTAs. Despite the additional work we perform, ListReader’s grammar induction has a
lower time complexity than the O(n4) reported by Goan [Goan et al. 1996].

2.2. Web Wrapper Induction
Wrapper induction [Kushmerick 1997] is the automated process of constructing a
model (i.e. a grammar) that can extract and map data from a source document (often
tables in HTML web pages) to a uniform, structured data format suitable for querying.
The essential difference between the above grammar induction research and wrapper
induction is the latter’s focus on the final mapping to a queryable database. Another
incidental but common difference is that each induced wrapper is specifically designed
for one document structure or data source among many, making it potentially more
accurate than applying a single, general model to all data sources, but also making it
potentially more costly to induce. Our approach has a number of similarities with web
wrapper induction research and some key differences.

Tao and Embley [Tao and Embley 2007] describe an efficient means of identifying
data fields and delimiters in tables within related “sibling web pages” (pages generated
from the same underlying database and HTML template). They look for variability as
a sign of data fields and invariability as a sign of delimiters. We apply a similar tech-
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nique in ListReader to OCRed records, which is in some ways a harder setting because
we must also discover and segment the records before aligning them and because the
field-and-delimiter sequences will not align as consistently within an OCRed list as
they do within a born-digital, machine-generated set of HTML tables. Embley, Jiang,
and Ng [Embley et al. 1999] automatically determine which HTML tags are record
separators using a set of heuristics combined using Stanford Certainty Theory. The
ListReader approach described below can find record boundaries without supervision
but does assume that all record boundaries contain a newline which is always the case
in our chosen document genre.

A few wrapper induction projects target semi-structured text (including lists) in
HTML documents. Choices in wrapper formalism include sets of left and right field
context expressions [Kushmerick 1997], [Ashish and Knoblock 1997], xpaths [Dalvi
et al. 2010], finite state automata [Lerman et al. 2001], and conditional random fields
[Elmeleegy et al. 2009], [Gupta and Sarawagi 2009]. These formalisms generally rely
on consistent landmarks that are not available in OCRed lists for three reasons:
OCRed list text is less consistently structured than machine-generated HTML pages,
OCRed text does not contain HTML tags, and field delimiters and content in OCRed
documents often contain OCR and typographical errors. None of these projects address
all of the steps necessary to complete the process of the current research such as list
finding, record segmentation, and field extraction.

The wrapper induction work most closely related to ListReader is IEPAD [Chang
et al. 2003]. IEPAD consists of a pipeline of four steps: token encoding, PAT tree con-
struction, pattern filtering, and rule composing. Like ListReader, IEPAD must deal
with a trade-off between coarsely encoding the text to reduce the noise enough to find
patterns and finely encoding the text to maintain all the distinctions specified by the
output schema. Also, PAT trees are related to suffix trees and share similar time and
space properties. However, we note some important differences. ListReader must use a
very different means of encoding (conflating) text than IEPAD so it can preserve more
fine grained structure. This is because, given OCRed text, ListReader cannot rely on
HTML tags to delimit fields and newlines to delimit records, and nearly any type of
string can be a field delimiter. There appears to be more variability in the field con-
tent of OCRed lists than in the tabular data of HTML pages, and yet fewer consistent
cues are available in performing alignment. IEPAD apparently cannot extract fields
that are not explicitly delimited by some kind of HTML tag. Also, it appears that the
IEPAD user must identify pages containing target information. A ListReader user does
not need to do so. The IEPAD user is required to select patterns because the system
may produce more than one pattern for a given type of record. ListReader automat-
ically selects patterns among a set of alternatives using a simplified MDL criterion.
IEPAD users must also provide labels for each pattern, which is similar to the work
ListReader users must do, but is likely more difficult than to label the actual text of
a record because it forces the user to interpret the induced patterns instead of the
original text. ListReader also minimizes the amount of supervision needed to extract
a large volume of data by integrating an interactive labeling process into grammar
induction, something IEPAD does not do. Lastly, neither IEPAD nor any of the above
research has been applied to recognizing or extracting information from lists in OCRed
text.

2.3. Lists in OCRed Documents
Most systems that extract information from OCRed lists limit their input to specific
kinds of lists or records, assume pre-segmented records, or do not apply induction
techniques that are adaptable and scalable. Belaı̈d [Belaı̈d 1998], [Belaı̈d 2001] and
Besagni, et al. [Besagni and Belaı̈d 2004], [Besagni et al. 2003] extract records and
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fields from lists of citations, but rely heavily on hand-crafted knowledge that is specific
to bibliographies. Adelberg [Adelberg 1998] and Heidorn and Wei [Heidorn and Wei
2008] target lists in OCRed documents in a general sense. They, however, use super-
vised wrapper induction that we believe is less adaptive or scalable than our proposal
when encountering the “long tail” of list formats. They do not evaluate cost in combi-
nation with accuracy as we do and the extracted information is limited in ontological
expressiveness (which is true of all existing work in grammar and wrapper induction
of which we are aware).

We conclude this section by comparing the ListReader approach described here with
our own previous work in this area. In [Packer and Embley 2013] we present both
Regex- and HMM-based wrapper induction techniques. While both work well at ex-
tracting information from some lists, they have limitations. Both approaches assume
that the user will find the lists of interest and label the first record of each list before
wrapper induction or active learning begins. Since these approaches assume that a list
is a contiguous block of records, each wrapper induction process can induce a wrapper
for only one—possibly very small—contiguous block of records at a time, potentially re-
quiring the user to label the same types of fields and records again whenever they ap-
pear in another block of records. Also, these approaches rely on the user labeling every
field in a record so that ListReader can know which parts of the record (the fields) are
variable across records and which parts (the delimiter) should remain more or less con-
stant. Finally, in the case of the regex wrapper induction, its approach to handling the
combinatoric problem mentioned above is to explicitly search over this exponentially-
sized hypothesis space using an A∗ search over record variations. Despite a custom
admissible search heuristic that we designed for this problem, this regex induction ap-
proach is unable to scale up to the search space of the longest records (e.g. the parent
records in Figure 1. The wrapper induction approach described in the remainder of
this paper overcomes all of the above limitations.

3. LISTREADER OVERVIEW
ListReader populates a schema structure (an ontology) with data it takes from lists in a
text document. A user U begins by selecting an OCRed document (e.g. a family history
book) and places the pages in a directory. Figure 1 shows some of the text of The Ely
Ancestry. Other pages from this 830-page family history book are in Appendix A. In
our implementation the pages are PDF images with an accompanying OCRed layer of
text.

Using our form-builder interface, U next creates a form, which specifies the infor-
mation of interest to be extracted from the text. Figure 2 shows an example in which
the information found in the child records in The Ely Ancestry is specified. Typically,
a record names a Child, who is-a Person and who may have some or all of the follow-
ing properties: a ChildNr, a Name consisting of one or more GivenNames and possibly
a Surname, a BirthDate and DeathDate both consisting of a Day, Month, and Year,
and one or more spouses with a SpouseName and a MarriageDate. U may also specify
other forms for gathering information. Although it is common to specify the forms in
advance, U can instead build them along the way as information of interest is encoun-
tered. In our current implementation, we have both modes of form building, and indeed
their combination so that U can specify a form in advance but then add to it along the
way. We do, however, only allow field additions—dynamic form reorganization and the
disposition of captured information when users delete form fields are beyond the scope
of the project.

The metaphor of form fill-in for obtaining information is familiar to most users, as is
form creation from the basic set of primitives we provide. Our form primitives include
the following: a single-entry form field to accept single values (e.g. the ChildNr “1” in
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Fig. 2. Filled-in Form for Samuel Holden Parsons Record

Figure 2), a multiple-entry form field to accept multiple entries (e.g. the GivenName
field in Figure 2 with three entries “Samuel”, “Holden”, and “Parsons”), a two-or-more
column multiple-entry form field to accept n-ary relationships (e.g. the ternary rela-
tionship among a person, spouse, and marriage date in Figure 2), and radio buttons
and check boxes to respectively accept one role or several role designations (e.g. the
radio button to designate the Child role or subclass of Person in Figure 2). The nesting
of form fields provide for relationships among the form elements whose leaf elements
are for text objects. The title of the form, Person in our example, designates the main
object—the object the record describes.

Once U loads a document into a directory, ListReader can begin its work. We present
the details of the grammar induction pipeline in Section 5. Here we sketch the basic
idea. The process starts by conflating or abstracting strings in the text. With the text
conflated, ListReader finds, clusters, and aligns the most common types of records—
records whose sequence of conflated text are identical. Since our goal is to align multi-
ple field strings in text with corresponding ontology concepts, ListReader must also—
explicitly or implicitly—align the fields in one record with the equivalent fields in other
records. Variations in the text—both intentional and unintentional with regard to the
author—make the alignment more difficult. The difficulty can always be resolved with
higher cost by asking U to label more examples, but we wish to minimize this. Label
efficiency is therefore a matter of making confident alignments among field strings
where the alignments are robust to variations in the text. When ListReader is con-
fident that two or more strings have the same label, it can request a label from U
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for one of the strings in the cluster and then automatically and confidently apply it
to the others. In a large book such as The Ely Ancestry, ListReader creates hundreds
of aligned clusters containing as many as a thousand or more records in the largest
aligned clusters.

ListReader performs all of this work automatically—without user involvement—
relying on the text itself to provide insight into list structure before starting the su-
pervised part of wrapper induction. Indeed, ListReader at this point in the process
can produce full extraction rules. For example, for the cluster containing the record
“1. Andrew, b. 1772.” in Figure 1, which also would include the 2nd, 3rd, 5th, and
6th children of Elias Mather and the 5th child of Deborah Mather, and hundreds,
if not thousands, of other records in The Ely Ancestry, ListReader would produce a
regular-expression rule like:

([\n])([\d]{1})(\.)([ \n])(([A-Z]+[a-z]+|[A-Z]+[a-z]+[A-Z]+[a-z]+))
(,)([ \n])(b)(\.)([ \n])([\d]{4})(\.)([\n])

ListReader does not know, however, which capture groups contain the information
to be extracted or to which form fields the captured text applies. To make this determi-
nation, ListReader begins the interactive part of wrapper induction to obtain labels for
capture groups. It selects one of the strings in a cluster and displays the page contain-
ing the selected record and identifies the part of the text U should label. ListReader
also displays an empty form like the one in Figure 2 along side the page. If U is working
with only one form, ListReader displays it; otherwise, U must select, augment, or build
a form for the data. Supposing, for example, that ListReader asks U to label the first
record in the second child list in Figure 1 with the form in Figure 2, then in our imple-
mentation, ListReader would display the empty form beside the page, and U would fill
it in by clicking on the words in the text for each field in the form, yielding the filled-in
form in Figure 2.1 Given the filled in form, ListReader knows how to label the capture
groups in the regular expression for the cluster in which the Samuel Holden Parsons
record appears.

From an empty form, ListReader creates the schema of an ontology which we
represent as a conceptual-model diagram. From the form in Figure 2, for example,
ListReader creates the diagram in Figure 3. From the form primitives, ListReader
can construct and fill in ontology schemas with the following five points of expressive-
ness: (1) textual vs. abstract entities (e.g. GivenName(“Samuel”) vs. Person(Person1));
(2) 1-many relationships in addition to many-1 relationships so that a single object can
relate to many associated entities instead of just one (e.g. a Name object in Figure 3 can
relate to several GivenNames but only one Surname—the arrowhead in the diagram
on Surname designating functional, only one, and the absence of an arrowhead on
GivenName designating non-functional, allowing many); (3) n-ary relationships among
two or more entities instead of strictly binary relationships (e.g. in Figure 3 we can
have Person-SpouseName-MarriageDate(Person2, “Edward Hill”, ”1801”) for the sec-
ond child, Elizabeth, in Deborah Mather’s family in Figure 1); (4) ontology graphs with
arbitrary path lengths from the root instead of strictly unit-length as in named entity
recognition or data slot filling (e.g. Person.BirthDate.Year in Figure 3); and (5) concept
categorization hierarchies, including, in particular, role designations (e.g. Child is-a
Person). This expressiveness provides for the rich kinds of fact assertions we wish to
extract in our application.

ListReader can also use the information obtained from the filled-in form to label the
fields within the text as Figure 4 shows. Label names correspond to fields in the form.

1Note that the highlighted MarriageDate field in Figure 2 is the field of focus awaiting a click on a marriage
date, but none is given, so U leaves the field blank.
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Fig. 3. Ontology Specifying Information of Interest

<rkblue</Child.ChildNr>
. <Person.Name.GivenName>Samuel</Person.Name.GivenName>
<Person.Name.GivenName[2]>Holden</Person.Name.GivenName[2]>
<Person.Name.GivenName[3]>Parsons</Person.Name.GivenName[3]>
, b. <Person.BirthDate.Year>1772</Person.BirthDate.Year>
, d. <Person.DeathDate.Year>1870</Person.DeathDate.Year>
, m. <Person.(MarriageDate,SpouseName)>Elizabeth
Sullivan</Person.(MarriageDate,SpouseName)>.

Fig. 4. Labeled Samuel Holden Parsons Record

Table I. Predicates Extracted from the Samuel Holden Parsons Record

Person(Person1) MarriageDate(⊥1)
Child(Person1) Child-ChildNr(Person1, “1”)
ChildNr(“1”) Person-Name(Person1, Name1)
Name(Name1) Name-GivenName(Name1, “Samuel”)
GivenName(“Samuel”) Name-GivenName(Name1, “Holden”)
GivenName(“Holden”) Name-GivenName(Name1, “Parsons”)
GivenName(“Parsons”) Person-BirthDate(Person1, BirthDate1)
BirthDate(BirthDate1) BirthDate-Year(BirthDate1, “1772”)
Year(“1772”) Person-DeathDate(Person1, DeathDate1)
DeathDate(DeathDate1) DeathDate-Year(DeathDate1, “1780”)
Year(“1780”) Person-SpouseName-MarriageDate(Person1,
SpouseName(“Elizabeth Sullivan”) “Elizabeth Sullivan”, ⊥1)

ListReader assigns these labels to corresponding capture groups of the regex wrapper
so that it can label additional text throughout the input document. These labels also
guide ListReader in mapping the labeled field strings to predicates. Table I shows how
ListReader populates the ontology schema in Figure 3 for the labeled text in Figure 4—
thirteen unary predicates, nine binary predicates, and one ternary predicate. Since
there is no marriage date, the ternary predicate includes a marked null (⊥1) as a
placeholder.

4. REPRESENTATION CORRESPONDENCES
To automate much of ListReader processing, we establish mappings among three types
of knowledge representation: (1) HTML forms (e.g. Figure 2), (2) ontology structure
(e.g. Figure 3), and (3) in-line labeled text (e.g. Figure 4). This effectively reduces the
ontology population problem to a sequence labeling problem. We formalize the corre-
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spondence among the three representations with several definitions, which immedi-
ately yields the mappings among them.

Definition 4.1 (List). A list L is an ordered set of strings, not necessarily contiguous
within an input document, that share a record template—the same sequence of fields
and delimiters.

The list:

1. Andrew, b. 1772.
2. Clarissa, b. 1774.
3. Elias, b. 1776.
5. Sylvester, b. 1782.
7. Charles, b. 1787.
5. PoUy, b. 1782.

taken from Figure 1 is an example. The record template consists of three fields—a
child number, name, and birth year—and four delimiters—“<newline>”, “. ”, “, b. ”,
and “.<newline>”.

For a list L, we seek to establish both an ontology O for the fields of L and their
interrelationships and to populate O with the fact assertions stated in L.

Definition 4.2 (Fact). A fact is an instantiated, first-order, n-ary (n ≥ 1) predicate,
asserted to be true.

Definition 4.3 (Ontology). An ontology is a triple (O,R,C): O is a set of object sets;
each is a one-place predicate; each predicate has a lexical or a non-lexical designation
(instantiated, respectively, only by value constants and only by object identifiers). R
is a set of n-ary relationship sets (n ≥ 2); each is an n-place predicate. C is a set of
constraints: referential integrity, cardinality, and generalization/specialization.

An ontology O can be rendered as a hypergraph (e.g. Figure 3). Lexical object sets
appear as boxes with dashed lines, and non-lexical object sets appear as boxes with
solid lines. The nodes of an ontology hypergraph are of two types: (1) an object set not
in a generalization/specialization hierarchy (e.g. all object sets except Person and Child
in Figure 3), and (2) a generalization/specialization hierarchy in its entirety, denoted
by the object-set name of any one of the object sets in the hierarchy (e.g. the Child is-a
Person generalization/specialization hierarchy in Figure 3). The edges of O are sets of
two or more nodes2 and represent sets of relationships among concepts. The lines con-
necting object sets in Figure 3 are binary relationship sets. For an n-ary relationship
set (n > 2), we add a diamond at the connecting point of the three or more connecting
lines, which distinguishes it visually from crossing lines (e.g. the ternary relationship
set among Person, SpouseName, and MarriageDate in Figure 3). Referential integrity
must always hold so that in a populated ontology, objects related in a relationship
exist in their respective object sets. In Table I, each object in a relationship-set pred-
icate is also in its object-set predicate. Cardinality constraints allow for restrictions
on relationship sets (e.g. functional constraints, designated by an arrowhead on the
range side, restrict the relationship set to be a (partial) function from domain object
set to range object set). In Figure 3 functional constraints restrict, for example, a Child
to have at most one ChildNr and a Person to have at most one BirthDate. Generaliza-
tion/specialization hierarchies constrain specialization object sets to be subsets of their
generalization object sets.

2Because edges may relate more than two nodes, ontology diagrams are hypergraphs rather than graphs for
which all edges connect exactly two nodes.
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Definition 4.4 (Path). A path in an ontology is a sequence of nodes such that con-
secutive nodes reside in the same edge.

In the path <Person, DeathDate, Month> in Figure 3, for example, {Person, Death-
Date} is an edge as is {DeathDate, Month}. For path <Name, Person, MarriageDate>,
the edges are {Person, Name} and {Person, SpouseName, MarriageDate}, and for
path <Name, Child, ChildNr}> (= <Name, Person, ChildNr>) the edges are {Person,
Name} and {Child, ChildNr} where Person and Child name the same node—the gen-
eralization/specialization hierarchy Child is-a Person.

Definition 4.5 (List Ontology). A list ontology for a list L is an ontology that (1) has
a non-lexical object set, called the primary object set or root object set, whose object
identifiers denote the objects represented by the records in L, one for each record and
(2) has the following restrictions: (a) distinct object sets have distinct names, (b) re-
lationship sets may be constrained to be functional but otherwise have no cardinality
constraints, (c) all generalization/specialization hierarchies have a single root and con-
sist of all non-lexical object sets, and (d) for each lexical object set s there exists at least
one non-cyclic path p from the root object set r to s such that all object sets in p are
non-lexical (except for s, itself).

The ontology in Figure 3 is a list ontology. The primary object set is Person. A non-
cyclic path exists from Person to every lexical object set. Some paths are immediate
(e.g. <Person, SpouseName>, <Person, MarriageDate> and <Person, ChildNr>), and
all the rest have intermediate non-lexical nodes (e.g., <Person, Name, GivenName>).
Day, Month, and Year all have two paths (e.g., for Year the two paths are <Person,
BirthDate, Year> and <Person, DeathDate, Year>.

Definition 4.6 (List Form). A list form corresponds precisely to a list ontology o: the
primary object set is the form title, and each path of o and each specialization within
a generalization/specialization hierarchy of o is represented by a nesting of fields—
single-entry form fields for functional parent-child edges, single-column multiple-entry
form fields for non-functional binary parent-child edges, n − 1-column multiple-entry
form fields for n-ary parent-child edges; and radio-button or check-box fields for spe-
cializations.

Observe that the form in Figure 2 corresponds precisely to the list ontology in Fig-
ure 3. The path <Person, Name, Surname>, for example, has the single-entry form
field Surname nested under the single-entry form field Name, which is nested un-
der the form title, Person. The paths <Person, SpouseName> and <Person, Marriage-
Date>, which are both part of a 3-ary relationship set, are nested as a 2-column
multiple-entry form field under Person. Child is a specialization nested under Person.

Based on the correspondence of a list form and a list ontology, the data instances in
the fields of a list form immediately map to object and relationship sets in a list ontol-
ogy. Table I gives the mapping for the data instances in the filled-in form in Figure 2.

In addition to providing a mapping of data in a form field to an ontology, list forms
also provide a way to label instance data in a list record. Given the form in Figure 2, we
can label the first child record of Deborah Mather in Figure 1 by copying the strings in
the document into the form. In our ListReader implementation, we copy by clicking on
a string when the focus is on the form field into which we wish to copy the string. Thus,
ListReader knows exactly where in the document the strings are located and can also
generate and place an in-line label in the document itself as Figure 4 shows. Observe
that the labels in Figure 4 are paths from the primary object set to the lexical object
set into which the text string is to be mapped. Whenever a multiple-entry form field
appears in the path, an instance repetition number is appended to designate to which
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repetition the instance belongs for all instances beyond the first. Thus, for example, in
Figure 4, Person.Name.GivenName is the label for “Samuel”, the first given name, and
Person.Name.GivenName[2] is the label for “Holden”, the second given name.

Definition 4.7 (Field Instance Label). Let s be a string in a document to be labeled
as belonging to field f in a list form with corresponding list ontology o. Let p be a path
from the root object set r of o to the lexical object set corresponding to f . Let p′ be p
augmented with repetition numbers for multiple-entry form fields on the path p—no
augmentation for the first field in a multiple-entry form field, “[2]“ for the second field,
“[3]” for the third field, etc. Then, p′ is a field instance label for a string s.

Observe that a field instance label specifies exactly which form field is to be filled
in with the labeled string. Hence, given the mapping of form fields of a list form cor-
responding to a list ontology, the label specifies a mapping of a labeled string to the
ontology. We thus see that ListReader’s task is to find records for a list ontology o and
label the strings in the records with respect to o. ListReader does so by inducing a
wrapper—in ListReader’s case, a labeler of strings in list records.

5. UNSUPERVISED ACTIVE WRAPPER INDUCTION
Our approach to wrapper induction is a novel combination of the fundamental ideas
of both unsupervised learning and active learning. ListReader is unsupervised in that
it induces a grammar without labeled training data and does not alter this grammar
after it makes active requests of the user for labels which it receives and assigns to ex-
isting elements of the grammar. ListReader follows the principles of the active learn-
ing paradigm [Hu et al. 2009] in that it uses this structural model to request labels for
those parts of the known and unlabeled structure that will have the greatest impact
on the final wrapper.

ListReader’s unsupervised grammar induction must answer a number of questions
from the unlabeled text such as: “Where are the lists and records in the input text?”,
“What are the record and field delimiters?”, and “How are records composed of fields
and field delimiters?”. The grammar induction answers these questions from unla-
beled text in a pipeline of steps, with later questions building upon previous answers.
It resorts to labeled text only when necessary—at the end. This is an adaptive strat-
egy because it asks questions of the input text instead of making unjustified assump-
tions about the text. This is a cost-effective strategy because it first looks for answers
in unlabeled text. The questions ListReader asks of the unlabeled text improve its
understanding of the structure of the document before the user provides any labels.
ListReader then interprets those labels with respect to the structure it has identified.
This is a scalable strategy both because its execution time and space bounds are linear
and because of the limited number of requests it makes of a user.

ListReader’s full unsupervised active grammar induction pipeline includes the fol-
lowing 13 steps. (Steps marked with an asterisk are optional. In a run, ListReader
either executes all or none of these steps.)

(1) Input requirements
(2) Conflation parsing
(3) Suffix tree construction (1)
(4) Record selection
(5) Record cluster adjustment
(6) * Field group delimiter selection
(7) * Field group template construction
(8) * Field group parsing
(9) * Suffix tree construction (2)
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(10) * Revised record selection
(11) Regex construction
(12) Active sampling
(13) Wrapper output

In the following subsections we give the details of each step, illustrate with a short
example, and analyze time and space complexity.

5.1. Input Requirements
ListReader requires three inputs: (1) a book, (2) an array of conflation rules in order of
application, and (3) a set of record pattern properties. Although not a required input,
ListReader users may predefine one or more forms; alternatively, users may define
and augment forms during active sampling. All required inputs except the book have
default values which we have set empirically using development data (The Ely Ances-
try) and held fixed through the blind evaluation with the Shaver-Dougherty Genealogy
[Shaffer 1997]. ListReader currently takes a book in either Adobe PDF format contain-
ing a layer for OCR text and a layer for the original scanned image or a sequence of
one or more plain text files.3 ListReader reads in the unlabeled OCR text of the whole
book as a single sequence of characters and later displays individual page text and
images (if available) for each query of active sampling. Conflation rules define how to
abstract text to help align patterns. The record pattern properties come into play in
record selection and include the following: a set of possible record delimiter characters,
delimiter frequency, minimum pattern count, minimum pattern length, and numeral
and capitalized word count. We explain the default set of conflation rules and record
pattern properties in more detail, below, in the context of the processes that use them.

This step in the pipeline contributes O(t) in both space and time as it reads in the
text of the book. The other inputs contribute only small constants to time and space
complexity.

5.2. Conflation Parsing
ListReader converts the input text into an abstract representation using a small
pipeline of “conflation rules”. In addition to tokenizing the input text, these rules have
a purpose similar to both the pyramid processing method in computer vision [Adelson
et al. 1984] and phonetic algorithms like Soundex in searching for historical variants
of names [Herzog et al. 2007]. In these cases, we wish to “blur out” superfluous and
problematic distinctions within equivalence classes, such as field content variations
and OCR errors. Furthermore, we extend these conflation rules to larger phrasal varia-
tions, e.g. person names of varying length. A single application of a single rule replaces
a small string with a small parse tree. The sequence resulting from all applications of
one rule is the input for the application of the next rule in the conflation pipeline. The
final sequence of the roots of these parse trees and any remaining non-conflated char-
acters form a new sequence that is easier to cluster and align in downstream steps and
is therefore the input of subsequent steps in the main ListReader pipeline.

Each conflation rule must describe (1) the pattern of input text that it matches,
including content and pre- and post-context (if needed) and (2) the resulting output
symbol to replace the matching content. Currently, we have established the following
conflation rules, given in their order of application.

(1) Split Word: Concatenates two alphabetic word tokens that are separated by a hy-
phen and a newline. The resulting symbol omits the hyphen and newline, concate-
nates the two words, and produces the same output symbol that the Word rule

3Any document containing text could be used as input.
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[UpLo+]

[UpLo] [Sp] [UpLo] [Sp]

D e b o r a h  E l y  

[Lo]

a n d

[Sp]

 

[UpLo+]

[UpLo] [Sp] [UpLo]

;

R i c h - \n a r d  M a t h e r

[Sp]

; 

Fig. 5. Conflation Tree of Text “Deborah Ely and Rich-\nard Mather ;”

(below) would have produced on the concatenated text by conflating the upper and
lower characters of the word.

(2) Numeral: Finds any contiguous sequence of one or more digits and replaces each
digit with “Dg” and formulates a symbol for the contiguous sequence. For example,
the input text “1776” becomes the complete symbol “[DgDgDgDg]”. (Square brackets
mark the beginning and end of a symbol.)

(3) Word: Replaces any contiguous sequence of alphabetic characters with a symbol
that retains the order in which uppercase and lowercase characters appear within
the word. We replace all contiguous sequences of uppercase letters in the original
text with one symbol (“Up”) and all contiguous subsequences of lowercase letters
with a different symbol (“Lo”). Additionally, we conflate the pattern “[UpLoUpLo]”
with the pattern “[UpLo]”, because the former is almost always either a surname
(like “McLean”) or a capitalized word containing an internal OCR error, e.g. “PhUip”
instead of “Phillip”.

(4) Space: Replaces common horizontal space characters (“ ”) and newlines (“\n”) with
a generic space symbol “[Sp]”.

(5) Incorrect Space: Removes spaces that occur on the “wrong side” of certain punctu-
ation characters because of an OCR error. Incorrect spaces include spaces imme-
diately before phrase-ending punctuations like period (“ .”), comma (“ ,”), semi-
colon (“ ;”), and colon (“ :”); and spaces just inside grouping symbols (“( ” or “ )”).

(6) Word Repetition: Replaces sequences of capitalized words delimited by “[Sp]” with
a new symbol “[UpLo+]”.

Conflation rules have two functions. First, they determine frequently occurring con-
stituency patterns of characters, words, and phrases. Some of these constituency struc-
tures are preserved in the final grammar (regex) as nested capture groups because
the lower-level constituents often require distinct labels. For example, the individ-
ual words in a Word Repetition may require separate labels such as GivenName and
Surname. Second, they remove superfluous distinctions in the input text (like OCR
errors and field variations) that prevent pattern-matching and alignment such as the
space in Incorrect Space or the individual characters in Numeral and Word. ListReader
does not need to preserve these lower-level constituents as regex capture groups.

Figures 5 and 6 respectively contain the parse tree sequences for

Deborah Ely and Rich-\nard Mather ;
and

\n5. PoUy , b. 1782.\n6. Phebe, b. 1783

from Figure 1. Notice that before conflation, the strings “\n5. PoUy , b. 1782”
and “\n6. Phebe, b. 1783” are not equal and do not align, but after con-
flation they align easily because of their equal sequence of parse-tree roots:
“[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg]”. We can observe the shared pat-
tern in the sequence of root nodes in the parse in Figure 6, connected by dashed, right-
pointing arrows.
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[Sp]

\n

[Dg]

5 .

[Sp]

 

[UpLo+]

[UpLo]

,

P o U y

[Sp]

,

[Sp]

  

[Lo]

b .

[Sp]

 

[DgDgDgDg]

1 7 8 2 .

[Sp]

\n

[Dg]

6 .

[Sp]

 

[UpLo+]

[UpLo]

,P h e b e

[Sp]

 

[Lo]

b .

[Sp]

 

[DgDgDgDg]

1 7 8 3

Fig. 6. Conflation Tree of Text “\n5. PoUy , b. 1782.\n6. Phebe, b. 1783”

This step adds O(t) space and time because it iterates over the length of the text
once for each of a small, fixed number of conflation rules; each conflation rule can add
no more than one new symbol per input character.

5.3. Suffix Tree Construction (1)
Once simplified, ListReader can find record-like patterns in the input text by searching
for subsequences that repeat. To find these text patterns efficiently, ListReader first
constructs a suffix tree from the conflated text sequence.

Definition 5.1 (Suffix Tree). Given an input text that is t symbols long (plus a spe-
cial end symbol not in the input text, e.g. $), a suffix tree is a compact data structure
representing all t + 1 suffixes of the text by paths to the tree’s t + 1 leaf nodes. Each
edge in the suffix tree is labeled by the substring of symbols it represents, the number
of times that string occurs in the input text, and the beginning offsets of each string
occurrence (starting at text offset 0). Each concatenation of the substring labels along
a path from root to leaf is one of the t+ 1 suffixes.

To illustrate, Figure 7 is an example suffix tree built from a small, non-conflated
part of our running example text: “\nElias.\nElizabeth.”. In our example, the sec-
ond branch from the root represents the two occurrences of the string “Eli” found at
offsets 1 and 8 in the input text. Branches descending from a node represent all the
different suffixes of those substrings. For example, the branches descending from “Eli”
include the rest of the names “Elias” and “Elizabeth” as well as the rest of the input
string following each. The number of leaf node descendants of an interior node equals
the number of occurrences of the shared prefix represented by that node. There are,
therefore, two leaf nodes beneath the “Eli” edge. The root of the suffix tree represents
strings that share the empty string as a prefix; therefore its descendants include every
possible suffix of the input text.

A suffix tree has a number of useful properties that make finding repeated patterns
and collecting statistics about text efficient. For example, all occurrences of any sub-
string of the text (or simply the count of those substrings) can be retrieved in time
linear only in the length of the queried substring, not the length of the input text. To
find the substring s and its number of occurrences in the text, one need only traverse
the suffix tree from the root along the path containing the substring.

ListReader uses Ukkonen’s algorithm [Ukkonen 1995] to construct suffix trees.
Therefore this step of the pipeline adds only O(t) to both time and space complex-
ity. This is true because of the following aspects of Ukkonen’s algorithm: As it builds
a suffix tree, it scans the text once from start to finish. As it scans, it does not store
the actual suffixes in the tree; just the beginning and ending offsets as pointers into
the original input string. While inserting each suffix branch into the tree, it does not
increment the ending offset of any substring until it hits a mismatch and must fork.
Instead, it uses a single variable that represents the current end of the text and which
indicates the ending offset for all active branches in the tree simultaneously. When
the algorithm encounters a new suffix that matches one already in the tree, it does
no additional work except to traverse the existing branch to find how far the new suf-
fix matches. It finds the first character in the new suffix that does not match the old
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count = 2 (1, 8)
 Eli 

count = 1 (14)
 eth.$ 

count = 1 (13)
 beth.$ 

count = 2 (4, 12)
 a 

count = 2 (0, 7)
 \nEli 

count = 2 (2, 9)
 li 

count = 2 (6, 17)
 . 

count = 1 (16)
 h.$ 

count = 2 (3, 10)
 i 

count = 1 (15)
 th.$ 

count = 1 (5)
 s.\nElizabeth.$ 

count = 1 (18)
 $ 

count = 1 (11)
 zabeth.$ 

count = 1 (4)
 as.\nElizabeth.$ 

count = 1 (11)
 zabeth.$ 

count = 1 (5)
 s.\nElizabeth.$ 

count = 1 (13)
 beth.$ 

count = 1 (4)
 as.\nElizabeth.$ 

count = 1 (11)
 zabeth.$ 

count = 1 (4)
 as.\nElizabeth.$ 

count = 1 (11)
 zabeth.$ 

count = 1 (7)
 \nElizabeth.$ 

count = 1 (18)
 $ 

count = 1 (4)
 as.\nElizabeth.$ 

count = 1 (11)
 zabeth.$ 

Fig. 7. Suffix Tree of Text “\nElias.\nElizabeth.” (plus dashed-arrow back pointers)

branch. At that time and in that place in the tree, it creates a new fork. Since all of the
suffixes of the matching branch are also somewhere in the tree and were created in
a specific order, it creates back pointers (the dashed, backward-pointing edges in Fig-
ure 7) which are links among matching subtrees. It follows these back pointers only
when it needs to update related subtrees. In this way, it can traverse and update a very
limited number of subtrees that share a common prefix and a common set of suffixes.

Since ListReader conflates text before it constructs a suffix tree, all symbols in
ListReader’s suffix trees are conflation symbols. To illustrate a suffix tree made from
conflated text, Figure 8 shows the suffix tree constructed from
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[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].
[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].
[Sp]

which is the conflation text of the first two child records in Figure 1. Observe that
each record has the pattern “[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]”.
In Figure 8 this pattern is embedded in (and in this case is exactly) a con-
catenation of the edges’ strings that label the first edge from the root to a
node and the third edge emanating from that node. From the offsets, it is
clear which of the nine appearances of “[Sp]” go with the two appearances of
“[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]”—offset 0 in the first edge
goes with offset 1 in the second edge and offset 12 goes with offset 13. It is also clear
how many repetitions of the pattern appear—the two that continue into the second
edge.

5.4. Record Selection
In this step, ListReader searches for record patterns in the compact suffix tree con-
structed previously. It will do so again in a later step if it is running in the two-phase
mode, which uses Steps (6) through (10). Therefore, the purpose of this step is different
for one-phase and two-phase execution. In one-phase execution, the record patterns
it finds here are used to construct the final regex wrapper. In two-phase execution,
ListReader uses the record patterns it finds in this step to identify field groups, as
explained below. Those field groups, in turn, help construct a more detailed represen-
tation of records. ListReader then uses that second set of record patterns to construct
the final regex wrapper at the end of the second phase.

It is necessary to filter candidate record patterns by requiring them to be
“complete”—ending in acceptable record delimiters and containing reasonable content.
This is not unusual. In other grammar induction work, researchers have predefined
part-of-speech patterns to constrain and filter discovered patterns to reduce errors
[Kit 1998]. In both one-phase and two-phase execution, ListReader selects record pat-
terns from the conflated text in the suffix tree by searching for strings of symbols with
the properties specified in ListReader’s input, whose purpose is the identification of
actual records. The same kinds of constraints guide the search for candidate record
patterns for both one-phase and two-phase record selection, so we now enumerate and
provide intuition for the default values for these parameters. Pairs of numeric values
(in parentheses, below) indicate that different parameter values are used during the
first and second phases while single values indicate the same value is used in both. In
general, we chose parameter values that ensured high precision on the development
data while not reducing recall significantly. We expect that the default values of these
numeric parameters will work well on most lists.
— Record patterns should begin and end with some kind of record delimiter. For phase

one, the set of allowable record delimiters includes only newlines (“\n”) by default.
Future work will explore expanding the set of possible record delimiters to account
for other text genres. For phase two, ListReader constructs its own symbols to rep-
resent the beginning and ending of records, “[\n-Delim]” and “[\n-End-Delim]” re-
spectively. These symbols are used in the second phase regardless of which delimiter
characters are used in the first phase.

— At least (10%) of the instances of the candidate pattern must end with the appropri-
ate record delimiter—“\n” for phase-one patterns and “[\n-End-Delim]” for phase-
two patterns. (Since the suffix tree is built from conflated space symbols instead
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count = 9 (0, 3, 6, 9, 12, 15, 18, 21, 24)
 [Sp] 

count = 2 (4, 16)
 [UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp] 

count = 2 (7, 19)
 [Lo].[Sp][DgDgDgDg].[Sp] 

count = 2 (1, 13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp] 

count = 6 (2, 8, 11, 14, 20, 23)
 .[Sp] 

count = 2 (10, 22)
 [DgDgDgDg].[Sp] 

count = 2 (5, 17)
 ,[Sp][Lo].[Sp][DgDgDgDg].[Sp] 

count = 1 (25)
 $ 

count = 2 (4, 16)
 [UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp] 

count = 2 (7, 19)
 [Lo].[Sp][DgDgDgDg].[Sp] 

count = 2 (1, 13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp] 

count = 2 (10, 22)
 [DgDgDgDg].[Sp] 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 2 (4, 16)
 [UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp] 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 2 (10, 22)
 [DgDgDgDg].[Sp] 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

count = 1 (13)
 [Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]$ 

count = 1 (25)
 $ 

Fig. 8. Suffix Tree of Conflated Text of the First Two Child Records in Figure 1:
“[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]”
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of newline characters, aligned instances of a space symbol within the suffix tree
may contain a mixture of simple spaces and newlines. So it is necessary to check to
see that some percentage of instances actually do contain a newline. Ideally, every
record would end with the appropriate delimiter, but noise in margins in historical
documents causes many records not to end cleanly. At least some should end appro-
priately, for if not, the pattern likely does not constitute a list record. We could have
imposed a 10% constraint on the beginning delimiter instead of the ending delimiter
with the same effect, except that symbols at the end of a pattern are more easily ac-
cessible within the suffix tree. To keep time complexity low—and linear with respect
to t—ListReader computes the percentage from a random subset of the instances of
the space symbols, which sample can be held below a maximum size that does not
grow with the length of the text.)

— At least (40%) of the instances of the pattern must contain both a beginning and an
ending record delimiter. (As with the previous heuristic, noise can cause problems,
but less so when nearly half of the instances of a pattern have both a beginning and
an ending delimiter. Otherwise, ListReader sometimes finds non-record patterns in
which some of the instances happen to begin with a delimiter while other instances
happen to end with a delimiter. If none of the instances contain both beginning and
ending delimiters simultaneously, the pattern is almost certainly not a true record.
ListReader does not appear to be sensitive to the exact setting of either this or the
preceding parameter. Varying this parameter by 10% or so does not change the final
evaluation metrics much.)

— The pattern must occur at least (3) times in the input text. (Record repetition consti-
tutes a list—the more the better—but there should be some minimum. In Figure 1
the single-name, birth-date-only record of focus in Figure 8 repeats six times in Fig-
ure 1 and likely hundreds of times in the book, but a record with three names and
a spouse or two, like the Samuel Holden Parsons record in Figure 1, repeats much
less—possibly not at all. We thus set this repetition parameter low to increase re-
call. Setting this parameter to at least 2 also allows ListReader to prune over half
of the nodes in the suffix tree before looking for record patterns.)

— The pattern must be at least (4, 2) conflated symbols long including the symbols at
the beginning and ending of a record. (A record should have some content. Longer
patterns are more likely to be true records especially after conflation which gen-
erally makes the text less unique and patterns more ambiguous. In phase one, a
symbol or two between the two record delimiters may be enough to provide suffi-
cient content. In phase two, we encapsulate the starting record delimiter with a
field group segment that includes all of the fields and delimiters between the start-
ing record delimiter and the next field group marked with its own delimiter such as
“, b. ”. Thus two symbols—the beginning and ending record segments—will con-
tain enough meaningful content to constitute a record in phase two.)

— The pattern must contain at least (1, 0) numerals or capitalized words—field-like
content. (In our application, and many others, field content typically contains num-
bers or proper nouns, which in English are capitalized, whereas common nouns and
other parts of speech are not. The requirement of at least one field-like string helps
increase the precision of discovered record-like patterns because it eliminates prose
text that tends to contain mostly lower-case words. Using dictionaries, this heuristic
could be extended to other languages, e.g. German in which common nouns are also
capitalized.)

— The pattern must contain no sequence of lower-case words longer than (3) words.
(This heuristic improves precision just as the previous one does. Lower-case words
in English list records tend to be delimiters, which are usually a sequence of just
one or two words.)
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Record selection proceeds by finding pattern sequences that satisfy these criteria
and that therefore have the expected characteristics of list records. Individual occur-
rences of each record pattern are already clustered and aligned within the suffix tree
making it straightforward for ListReader to find candidate record patterns and iden-
tify the members of each cluster of records that share the same sequence or pattern
of conflated text. To find all candidate record clusters, ListReader iterates over all the
non-root internal nodes of the suffix tree whose incoming edge has the required repeti-
tion count (3 or more, as specified in the criteria above). For each node, ListReader de-
fines a candidate record pattern as the conflated text contained in the branch between
the root and the current node. From among these candidates, ListReader selects those
record patterns that satisfy the remaining criteria. Because all patterns that end in
the same edge also have the same number of (overlapping) instances, ListReader need
only consider patterns that end in a record delimiter that is the last delimiter in its
edge. This reduces the work per edge to a constant value independent of the length of
the input text.

For example, letting the required repetition count be 2 (so that the example can be
small enough to show), ListReader can find one candidate record pattern in Figure 8,
namely, “[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]” which it finds when
considering the third child node of the node whose incoming edge has the label “[Sp]”.
This record satisfies the string-length requirement since it has 13 symbols (≥ 4). The
pattern contains two numeral symbols (“[Dg]” and “[DgDgDgDg]”) and one capitalized
word symbol (“[UpLo+]”), and only one lower-case symbol (“[Lo]”), and thus no se-
quence of three or more lower-case symbols. To check record delimiters, ListReader
retrieves the actual symbols at the beginnings and ends of each instance of the pat-
tern, which for our example are at offsets 0, 12, and 24 and are all “\n”—a member
of the set of record delimiters. No other patterns in Figure 8 satisfy the criteria. Ei-
ther the count is less than 2 or the pattern does not begin with a record delimiter. The
first child node of the node whose incoming edge has the label “[Sp]”, for example, has
count 2, which satisfies the repetition requirement, but both occurrences of the initial
“[Sp]” at positions 3 and 15 are space characters (“ ”) not newline characters (“\n”).

The first record cluster in Figure 9 is the actual cluster of records ListReader would
produce from processing the text in Figure 1. Observe that the record pattern is the
discovered record pattern in Figure 8. If ListReader creates a suffix tree for the entire
text in Figure 1, instead of just the first two child records, it would also produce the
second record cluster in Figure 9. With a larger input text, ListReader could potentially
identify all six record types present in Figure 1.

Given an identified record in a suffix tree, ListReader completes its induction of
the grammar for the induced wrapper by adding the root non-terminal “[Record]” to
the partially created parse tree in the conflation step as Figure 10 shows for the first
record in Figure 6. Note that the dashed arrows, which are not part of the parse tree,
give the sequence of symbols of the identified pattern that defines the record cluster in
Figure 8.

Since a suffix tree for text of length t has at most t internal nodes, this step adds
O(t) time and space because it iterates over all non-root internal nodes of the suffix
tree whose incoming edge has the appropriate occurrence count. As it iterates, it does
a constant amount of work to check conformance with the record selection criteria and
form the record clusters. The number of record clusters does not grow with the length
of the input text but is constant with a fixed maximum pattern length (about the length
of a page).
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— [Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]
— “\n1. Andrew, b. 1772.\n”
— “\n2. Clarissa, b. 1774.\n”
— “\n3. Elias, b. 1776.\n”
— “\n5. PoUy , b. 1782.\n”
— “\n5. Sylvester, b. 1782.\n”
— “\n7. Charles, b. 1787.\n”
— “\n8. Margaret Stoutenburgh, b. 1794.\n”

— [Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg],[Sp][Lo].[Sp][DgDgDgDg].[Sp]
— “\n4. William Lee, b. 1779, d. 1802.\n”
— “\n6. Nathaniel Griswold, b. 1784, d. 1785.\n”
— “\n3. Lucia, b. 1777, d. 1778.\n”
— “\n6. Phebe, b. 1783, d. 1805.\n”
— “\n7. William Richard Henry, b. 1787, d. 1796.\n”

Fig. 9. Record Clusters from Figure 1

[Sp]

\n

[Dg]

5 .

[Sp]

 

[UpLo+]

[UpLo]

,

P o U y

[Sp]

,

[Sp]

  

[Lo]

b .

[Sp]

 

[DgDgDgDg]

1 7 8 2 .

[Sp]

\n

[Record]

Fig. 10. Phase-one Parse Tree of the Text “\n5. PoUy , b. 1782.\n”

5.5. Record Cluster Adjustment
The purpose of creating record clusters is to facilitate the labeling of fields so that
ListReader can extract the field values and map them to an ontology. The labeling of
one record in a cluster is sufficient to label them all because they all satisfy the same
record pattern. Unfortunately, it is possible for a substring of the document text to be
in more than one cluster and thus be labeled more than once. The substring may even
be labeled in different (and therefore in incorrect) ways. ListReader can, and does,
avoid multiple labelings of a string in the active sampling step below by marking text
that has been labeled and rejecting a subsequent attempt to label the text. However,
ListReader can better avoid this issue and improve the quality of the record clusters
by making adjustments to clusters as soon as they are formed.

To motivate the adjustments, consider the pattern

"[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]
[Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]"

which subsumes the pattern

"[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]".

These two patterns and their record clusters would have been created from a suffix tree
for the full text in Figure 1. Observe in Figure 8 that these two patterns are in the path
from the [Sp] edge to the two edges beginning with [Dg]. The edge counts in this figure
are not high enough to select the longer pattern, but they would be in a suffix tree built
from the entire text because the third child record in Figure 1 would also have been
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1. Andrew, b. 1772. 2.Clarissa, b. 1774.
2. Clarissa, b. 1774. 3. Elias, b. 1776.

Fig. 11. Record Cluster for Two-Child Records

included. The record cluster selected from the longer pattern is in Figure 11, whereas
the record cluster selected from the shorter pattern is the first cluster in Figure 9.
Now, observe that the substring “2. Clarissa, b. 1774.” appears in both clusters and
also twice in the cluster in Figure 11 and that the substrings “1. Andrew, b. 1772.” and
“3. Elias, b. 1776.” appear in both clusters. Ideally, the user should be asked to label
only one member of the shorter child record pattern.

When one record pattern subsumes another, ListReader assigns record strings to
only one of the two patterns. It scores and ranks each candidate by the product of
the pattern’s length and frequency (occurrence count) and assigns it to the highest-
ranking pattern.4 For our example, since the pattern length for the first record cluster
in Figure 9 is 13 and it initially has 7 records, its score is 91 which ranks higher than 50
(= 25×2), the score for the longer pattern in Figure 11. Thus, in this case, ListReader
assigns all three candidate child-record substrings in Figure 11 to the first cluster in
Figure 9 and discards the two-record cluster. This is good for two reasons. The records
end up in the intuitively best cluster and there is no need to process the discarded
cluster. ListReader always removes full record strings from a list, including when only
a proper substring of a record overlaps with a higher-scoring pattern.

This step adds O(t) time because it iterates over the instances of each record cluster
produced in the previous step. While the number of instances of each cluster is O(t),
the size of the set of accepted and stored record clusters is a constant that does not
depend on the length of the input text, as it is the length of each record instance. This
step does not add to the space complexity as it removes records from clusters.

5.6. Field Group Delimiter Selection
Phase two execution, Steps (6)–(10), makes additional adjustments to the structure of
records to further reduce the cost of labeling. Observe in Figure 9 that the three fields
(ChildNr, GivenName, and BirthDate.Year) in the first record cluster are also the first
three fields in the second record cluster. If ListReader can confidently determine that
these fields should be labeled the same, labeling these three fields in a member of
either cluster is sufficient to allow ListReader to automatically label these fields in
both clusters and thus reduces the amount of required human labeling. Therefore,
ListReader identifies what we call field group delimiters such as “, b. ” or “, d. ”
which respectively precede birth years and death years in Ely child records and allow
ListReader to confidently align field groups across record clusters.

ListReader creates a set of generic delimiters from the record clusters it produces in
the previous step. Each generic delimiter contains, and is identified by, the string of
lower-case words that appear as identical substrings at a fixed position within four or
more record clusters. In Figure 9, for example, “b” appears at a fixed position in both
clusters, and “d” appears at a fixed position in the second cluster. ListReader expands
each generic delimiter into a set of longer, more specific delimiters that differ from each
other by surrounding space and punctuation characters. For example, a generic “b” de-
limiter might have two specific types: “, b. ” and “; b. ”. Each specific delimiter must
appear in at least two record clusters to be selected. ListReader also treats record de-
limiters as field group delimiters. For the clusters in Figure 9, therefore, the identified

4Work on information compression justifies our choice of scoring and ranking [Solomonov 1964]. See Ap-
pendix B for a full explanation.
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field group delimiters would be “\n” (beginning record delimiter), “, b. ” (birth event
delimiter), “, d. ” (death event delimiter), and “.\n” (ending record delimiter).

This step adds O(t) time and space because it iterates over all members of the record
clusters. It records a constant number of generic record delimiters containing pointers
to the delimiter instances. If ListReader cannot identify any field group delimiters in
the text beyond the record delimiters, the two-phase ListReader pipeline reduces to a
one-phase pipeline, and Steps (6)–(10) are skipped.

5.7. Field Group Template Construction
ListReader creates a field group template for each discovered field group delimiter, in-
cluding the starting but not ending record delimiters. It creates a field group template
of type T (e.g. type “b” containing birth event information) from: (1) the union of the
specific delimiters of type T followed by (2) the union of the conflated text between
each instance of the field group delimiter of type T and the following occurrence of any
other field group delimiter in the same record. These field group templates represent a
more general set of text than the text from which ListReader generated them because
they represent any combination of delimiter text and field group text of the same type,
including combinations not found within clustered records.

For example, suppose the pipeline thus far had discovered two record clusters
containing marriage information in the format of “, m. 1801 Edward Hill” and
“; m. John Marvin”. In this case, ListReader would have produced an “m” field tem-
plate like the following which contains two delimiter variations and two content varia-
tions: “[[; m. ] | [, m. ]] [[[UpLo+]] | [[DgDgDgDg][Sp][UpLo+]]]”. Then, even
though the text string “; m. 1771, Lucinda Lee” may not appear in the clustered
records, the generated field group template for marriage data would be able to rec-
ognize it since it is a combination of field groups and their delimiters it has seen.

The identification of field group templates allows ListReader to align and cluster
these field group segments—segments of text that include a field group delimiter and
its associated field group(s). This is the main distinction between the one-phase and
two-phase variations of the grammar induction pipeline. The significance is that field
group clusters are generally larger (contain more members or occurrences) than clus-
ters of whole records because field group segments are smaller constituents of records
and have less opportunity for variations in fields that divide the clusters. Aligning the
more numerous and smaller field groups within records reduces labeling cost. For ex-
ample, for the record clusters in Figure 9, ListReader would produce three field group
templates: a starting record template “[\n] [[Dg].[Sp][UpLo+]]”, a birth-year tem-
plate “[, b. ] [[DgDgDgDg]]”, and a death-year template “[, d. ] [[DgDgDgDg]]”.
Then, the labeling of these templates only needs to be done once, rather than once
for each record cluster in which they appear.

This step adds O(t) time and O(1) space because it iterates over all the occurrences
of field group delimiters and contents and stores only a limited number of templates.

5.8. Field Group Parsing
This step extends the conflation parsing that began in Step 2 (Subsection 5.2).
Unlike that step, the patterns being matched are the field group templates created in
Step 7 (Subsection 5.7). The conflation symbols, appropriately, are “[\n-Segment]” and
“[\n-End-Segment]” for the beginning and ending record delimiters and “[T-Segment]”
for field groups of type T . For example, ListReader, having already replaced the text
“\n7. Charles, b. 1787.\n8. Margaret Stoutenburgh, b. 1794.\n” with
“[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp][Dg].[Sp][UpLo+],[Sp][Lo].[Sp][DgDgDgDg].[Sp]”,
would now replace it again with a new sequence:

“[\n-Segment][b-Segment][\n-End-Segment][\n-Segment][b-Segment][\n-End-Segment]”.
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Note that the newline character between these two records becomes a constituent of
two adjacent symbols: [\n-End-Segment] and [\n-Segment].

The parsing algorithm consists mainly of a linear scan over the input text testing
for occurrences of a fixed number of field group templates. It first searches for the first
lowercase word of each delimiter. For each limited match, it checks for the rest of the
delimiter and then the field group content. For complete segment matches, it replaces
the matching strings with appropriate Segment symbols and their two constituents
(delimiter and field group). This step therefore contributes O(t) time and space to the
pipeline.

5.9. Suffix Tree Construction (2)
ListReader constructs a new suffix tree from text conflated in the previous step using
field group templates. As a small example, consider the text:

Children;
1. John
2. Mary

and the corresponding conflated text sequence

"[UpLo+];[Sp][Dg].[Sp][UpLo+][Sp][Dg].[Sp][UpLo+][Sp]".

Step 8 (Section 5.8) would transform that text into

"[UpLo+];[\n-Segment][\n-End-Segment][\n-Segment][\n-End-Segment]"

where “[\n-Segment]” has as one of its alternatives the pattern “[\n]
[[Dg].[Sp][UpLo+]]”. From this conflation sequence, the current step (Step 9)
would produce the suffix tree in Figure 12. The two target records appear in the
first branch descending from the root. This time, the whole record pattern with two
occurrences appears in a single edge of this smaller suffix tree, where it can be found
in the next step.

This step contributes O(t) time and space to the pipeline just as the first suffix tree
construction step did.

5.10. Revised Record Selection
ListReader selects a new set of record candidates and forms new record clusters from
the suffix tree as explained in the first record-selection step (Subsection 5.4). For ex-
ample, if the occurrence count constraint were set to two, ListReader would select the
pattern “[\n-Segment][\n-End-Segment]” from the suffix tree in Figure 12 because it
is two symbols long, contains no long sequences of lower-case words, and 100% of the
occurrences of the pattern contain both a beginning and ending record delimiter.

This step is made more robust to errors in earlier stages of the pipeline by al-
lowing additional record patterns to be found without losing the patterns found
in the first record-selection step. For example, if ListReader had failed to find
any field group delimiters in previous steps and therefore was unable to produce
the pattern “[\n-Segment][\n-End-Segment]”, it would still discover the pattern
“[Sp][Dg].[Sp][UpLo+][Sp]” in the first parse tree.

As is the case for phase-one record selection, ListReader induces a parse tree for
each record. Figure 13 shows the parse tree constructed in phase-two from the text of
the first record in Figure 6, “\n5. PoUy , b. 1782.\n”. For each field group segment
(except the end-record delimiter), ListReader adds “[T-Delim]” for the delimiter con-
stituent of the segment and “[T-FieldGroup]” for the field group constituent, where
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count = 2 (2, 4)
 [\n-Segment][\n-End-Segment] 

count = 1 (0)
 [UpLo+];[\n-Segment][\n-End-Segment][\n-Segment][\n-End-Segment]$ 

count = 1 (1)
 ;[\n-Segment][\n-End-Segment][\n-Segment][\n-End-Segment]$ 

count = 2 (3, 5)
 [\n-End-Segment] 

count = 1 (6)
 $ 

count = 1 (4)
 [\n-Segment][\n-End-Segment]$ 

count = 1 (6)
 $ 

count = 1 (4)
 [\n-Segment][\n-End-Segment]$ 

count = 1 (6)
 $ 

Fig. 12. Suffix Tree of “[UpLo+];[\n-Segment][\n-End-Segment][\n-Segment][\n-End-Segment]”
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Fig. 13. Phase-two Parse Tree of the Text “\n5. PoUy , b. 1782.\n”

T is the field group type. For the end delimiter, ListReader adds “[\n-End-Segment]”.
Finally, ListReader adds “[Record]” as the root of the parse tree.

Like the phase-one record selection step, ListReader iterates over all non-root inter-
nal nodes of the suffix tree whose incoming edge has the appropriate occurrence count
and does a constant amount of work at each node. There are usually much fewer nodes
to consider in this step than in phase one. Still, this step also contributes O(t) time
and space to the pipeline.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.



Unsupervised Active Wrapper Induction for OCRed Lists 00:27

([\n])([\d]{1})(\.)([ \n])([A-Z]+[a-z]+|[A-Z]+[a-z]+[A-Z]+[a-z]+)
(( )?,)([ \n])([a-z]+)(\.)([ \n])([\d]{4})(\.)([\n])

(a)

(([\n])([\d]{1})(\.[ \n])(([A-Z]+[a-z]+|[A-Z]+[a-z]+[A-Z]+[a-z]+)))
((( )?,)([ \n])([a-z]+)(\.)([ \n])([\d]{4}))((\.)([\n]))

(b)

Fig. 14. Regular Expressions for the Parse Trees in (a) Figure 10 and (b) Figure 13

5.11. Regex Construction
ListReader creates a regular expression from the set of induced parse trees for each
record cluster (e.g. Figures 10 and 13). The resulting regex is an alternation of all the
regular expressions, one for each record cluster. For a parse tree, ListReader creates a
regular expression by surrounding sub-expressions with parentheses to either group
alternatives for a given node in the parse tree or to mark capture groups—any node
in the parse tree that should receive a unique label during active sampling. Figure 14
gives two regular expressions, which we use as examples as we describe regex con-
struction: (a) for the phase-one parse tree in Figure 10 and (b) for the phase-two parse
tree in Figure 13.

The smallest parenthesis-enclosed expressions are for the word-level conflation sym-
bols (e.g. “[Sp]”, “[Lo]”, “[UpLo]”, “[Dg]”, and “[DgDgDgDg]”). Notice in Figure 14 that
the [Sp] symbols beginning and ending the record pattern are constrained to be record
delimiters, “\n”, while the internal spaces can be either “\n” or “ ”, which greatly
improves the precision of the regex while still allowing for multiline records to be
matched. Digit sequence symbols of length n become “[\d]{n}”. Since the [UpLo+]
symbol conflates a variable-length sequence of capitalized words, ListReader gener-
ates an alternation of one or two or ... n, parenthesized, space-separated sequences of
“([A-Z]+[a-z]+|[A-Z]+[a-z]+[A-Z]+[a-z]+)”, which accommodates up to an n-word
sequence, where n is the longest word sequence expected or observed. (In Figure 14,
we have given only the first element of the sequence, because it both fits the example
text and avoids unnecessary clutter.) For the special case of a space preceding punctu-
ation, “( )?” precedes the punctuation mark, allowing for one extra space. Sequences
of one or more lower-case letters, [Lo], become “[a-z]+”. For phase-two parse trees,
ListReader also adds parentheses for any alternation group, e.g. for the name alterna-
tion in Figure 14b, and for each segment variation.

In this step, ListReader also initializes an array of capture group labels. Each la-
bel corresponds to a capture group (matching pair of parentheses) in the regex and
is either “do not label”, “record delimiter”, or an integer. ListReader associates “do
not label” with all of the larger capture groups that contain smaller capture groups.
ListReader assigns “record delimiter” to the “([\n])” capture groups that begin and
end each record template expression to group fields that belong to the same primary
object during final extraction. ListReader cleverly initializes the rest of the capture
group labels to integer values so as to minimize active sampling cost as explained
next.

To minimize labeling effort during active sampling, ListReader recognizes equiva-
lent fields across record clusters, which are then labeled only once independent of the
number of different record clusters in which they appear. Fields are equivalent if they
have the same content and context. In particular, two fields’ capture groups are equiv-
alent if they (1) are of the same conflation type (as determined in the first conflation
step), (2) appear in the same type of field group (e.g. “b” vs. “\n”), and (3) are sur-
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rounded by text within their field groups that all have identical conflation types (also
as determined in the first conflation step). These constraints define a set of equiv-
alence classes which ListReader then distinguishes, labeling all fields across record
clusters with the same identifying integer that belong to the same equivalence class.
Using these identifying integer labels (these IDs), ListReader can later assign labels
to all capture groups that should be the same after the user labels any one of them.
For example, ListReader would assign the same IDs to the child number, name, and
birth-year capture groups in the record templates of “\n5. PoUy, b. 1782.\n” and
“\n6. Phebe, b. 1783, d. 1805.\n” despite being in different record clusters.

In forming these equivalence classes for labeling, ListReader must be care-
ful not to be overly aggressive. Because the equivalence-class-creation rules are
conservative, sometimes fields that eventually do have the same label have to
be labeled separately by the user. For example, in the record templates for
the two records “\n2. Elizabeth, b. 1774, d. 1851, m. 1801 Edward Hill” and
“\n4. Lucia Mather, b. 1779, d. 1870, m. John Marvin” all four names would ini-
tially have different IDs even though in the end they may all be labeled the same.
The names “Edward Hill” and “John Marvin” in the marriage segments are assigned
different IDs because their field group templates differ: one contains a marriage year
and the other does not.5 The names “Elizabeth” and “Lucia Mather” are assigned dif-
ferent IDs because they have different conflation-symbol lengths (one symbol versus
two symbols), and ListReader has no justification to assign the same label to these
two names without input from the user. One user may assign “Full Name” to both
whole names (including the space between “Lucia” and “Mather”) while another user
may assign finer-grained labels such as “Given Name” and “Middle Name” to the in-
dividual parts. Even two-word names may be labeled differently: “Lucia Mather” may
be labeled “First Given Name”/“Second Given Name” while both “Edward Hill” and
“John Marvin” may be labeled “Spouse Name”. Note, however, that the rest of the cor-
responding fields in this example (i.e. the child numbers, birth years, and death years)
will share IDs and will require only one of the templates to be labeled to label both.

Regex creation consists in iterating over all the record templates. For each record
template, ListReader recursively traverses the finite, constant-depth syntax tree to
generate each piece of the regex. There are at most O(t) alternatives for each field
group segment. Duplicate field group templates may be generated as part of differ-
ent record templates but are then immediately discarded when ListReader discovers
that they are duplicates (and should contain the same capture group IDs). This step
therefore adds O(t) time and O(1) space to the pipeline.

5.12. Active Sampling
The active sampling step consists of a cycle of repeated interaction with the user who
labels the fields in the text of a record from some template that ListReader selects.
Actual labeling consists of copying substrings of the ListReader-selected text into the
entry fields of a form. The structure of the form and the names of the form fields
constitute the label as explained in Sections 3 and 4. On each iteration of the loop, the
user updates the form, if necessary, and labels the ListReader-chosen and ListReader-
highlighted text. ListReader then accepts the labeled text via the Web form interface
and assigns labels to the corresponding capture groups of the regex wrapper.

In most approaches to active learning, there are two key steps: active sampling and
model update, with the active sampling step being the hallmark of active learning

5Here, ListReader is likely being too conservative. Loosening equivalence requirements is possible under
specific assumptions and would likely improve recall significantly. We intend to investigate this in future
work.
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[Settles 2012]. This ListReader step is an active sampling process and not a full ac-
tive learning process because it does not update the already-learned model (the regex
in our case). It does, however, re-label some of the ListReader-generated labels to en-
able the mapping of extracted information to the ontology. In each cycle, ListReader
actively selects the text for labeling that maximizes the return for the labeling effort
expended. Our approach is thus like other unsupervised active learning approaches
([Hu et al. 2009]) that do not update the already-learned model. Indeed, the regex
learning ListReader does is fully unsupervised—no regex learning takes place under
the supervision of a user either interactively or in advance. On the other hand, we
cannot say that the whole ListReader process is unsupervised because to do so would
ignore the value of the labels the user does provide. Producing a mapping from capture
group numbers to ontology predicates without supervision is not trivial.

Hu et al. ([Hu et al. 2009]) propose that there are three benefits of unsupervised
active learning compared to supervised active learning. First, looking for natural clus-
ters within a feature space in an unsupervised manner before any labels are provided
prevents the system from incorrectly conflating samples in that space that may share
the same label but are distinct in features. Second, supervised active learning may
sometimes fail to select new samples that belong to new categories (i.e. have an un-
known label) because those samples usually lie far from decision boundaries. Third,
it is much easier to adapt a model learned through unsupervised active learning than
one learned through supervised active learning to a new target schema because only
the labels need to change, not the rest of the model. These benefits are also true of our
approach.

To initialize the active sampling cycle, ListReader applies the regex to the text of
each page in the book. It labels the strings that match each capture group with the
capture group’s label, which is initially just a number as explained in Subsection 5.11.
ListReader then saves the count of matching strings for each capture group integer.
It also records the page and character offsets of the matching strings throughout the
book and associated integers. ListReader then initializes the first active sampling cycle
by querying the user for the labels of the “best” string by displaying the appropriate
page and highlighting the string.

The string ListReader selects as “best” is a string that matches the sub-regex of the
ListReader-generated regex with the highest predicted return on investment (ROI),
where the selected sub-regex corresponds to a single record cluster and is either one
of, or part of one of, the top-level alternations of the generated regex. When there is
more than one such string in the document, ListReader selects the first one on the
page containing the most matches of the sub-regex. One can think of ROI as the slope
of the learning curve: higher accuracy and lower cost produce higher ROI. ListReader
computes predicted ROI as the sum of the counts of the strings matching each cap-
ture group in the candidate sub-regex divided by the number of capture groups in
the sub-regex. It limits the set of candidate sub-regexes to those that are contiguous
and complete, meaning sub-regexes that contain no record delimiters or previously-
labeled capture groups and that are not contained by any longer candidate sub-regex.
Querying the user to maximizing the immediate ROI tends to maximize the slope of
the learning curve and has proven effective in other active learning situations such
as [Haertel et al. 2008]. In preliminary experiments, we found this query policy to
improve our final evaluation metrics more than a policy based only on highest match
counts (without normalizing by sub-regex length). From our example page (Figure 1),
the string ListReader would select for manual labeling is “\n1. Andrew, b. 1772.\n”.
The single digit child number and associated delimiter text (“[Dg].[Sp]”) occur 15
times in the context of “\n[Dg].[Sp][UpLo+]” (its field group template). The single
given name (“[UpLo]”) occurs 9 times in the same context. The second field group
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pattern (“, b. [DgDgDgDg]”) occurs 17 times among all the records of the page, and
whose ending period occurs 15 times next to a newline. Since the pattern has 11 un-
labeled capture groups and therefore a predicted cost of 11, the predicted ROI is 15.5
= (15 × 3 + 9 × 1 + 17 × 6 + 15 × 1)/11. This is higher for the example page than the
predicted ROI of any other sub-regex. To label this text, the user would copy “1” into
the ChildNr field of the form in Figure 2, copy “Andrew” into the first entry blank in
the GivenName field, and copy “1772” into the BirthDate.Year field, making an actual
cost of three user-specified labels. (The rest of the fields in the form would be empty).

Once labeling of the selected text is complete, ListReader removes the counts for all
strings that match the corresponding capture groups, recomputes the ROI scores of
remaining capture groups, and issues a query to the user. For the page in Figure 1, in
the second active-sampling cycle, ListReader would highlight “, d. 1802” in the record
“4. William Lee, b. 1779, d. 1802”, clear the form, and add the already-labeled ”4”
and ”1779” in the ChildNr and BirthDate.Year fields. The user would then place “1802”
in the DeathDate.Year field.

The number of iterations of active sampling depends on the budget determined by
the user—how many field labels the user is willing to label. ListReader can give the
user help in deciding how long to work by displaying the number of times the current
pattern matches text and therefore how many additional fields would be labeled. The
user must decide how long to provide labels. The longer the user works, the less text
is extracted by each additional label. However, it should be noted that even if the user
continues to the end when manual labeling applies to only the text the user is labeling,
ListReader is still saving the user time by automatically finding the text to label.

Because of the way ListReader produces the initial grammar, including the gather-
ing of statistics about records and fields, active sampling is impactful from the very
first query. Compared with typical active learning [Settles 2012], it is not necessary
for ListReader to induce an intermediate model from labeled data before it can become
effective at issuing queries. Furthermore, ListReader need not know all the labels at
the time of a query. Indeed, it starts active sampling without knowing any labels. The
query policy is similar to processes of novelty detection [Marsland 2002] in that it
identifies new structures for which a label is most likely unknown. Furthermore, the
grammar can be induced for complete records regardless of how much the user an-
notates or wants extracted, and ListReader is not dependent on the user to identify
record- or field-delimiters nor to label any field the user does not want to be extracted.

Active sampling initialization adds O(t) to both time and space complexity because
ListReader must apply the regex to each page of text and record the location of
each string that matches each capture group. Regular expressions can be executed
in O(t) time. Each iteration of the active sampling cycle adds nothing in terms of space
complexity—it merely changes the labels of capture groups. Each loop does add O(t)
to the time complexity because it must find and update a number of occurrences of the
labeled pattern that is proportional to the size of the document in the worst case. The
number of iterations of active sampling is also a function of the size of the label alpha-
bet, therefore, unlike previous steps, this step is also linear in the number of output
labels.

5.13. Wrapper Output
Having constructed the regex wrapper, ListReader applies the regex with its final ar-
ray of capture group labels, translates the labeled text into predicates as explained in
Section 4, and inserts them into the ontology. Any remaining unlabeled text produces
no output. Given the two record clusters of Figure 9 and the ontology of Figure 3, if
the user provides the 9 field labels that would be requested for these clusters after
phase-two processing, ListReader would extract predicates for all 12 records includ-
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ing 75 binary predicates (relationships) and 87 unary predicates (objects connected in
relationships, including the 12 Person objects). Because of cross template labeling for
field groups, providing these same 9 labels is sufficient to capture from the information
in Figure 1: 17 of the 19 birth years (b-fields) including 2 in the family-header records,6
10 of the 11 death years (d-fields) including the 2 in the family-header records,7 all 15
child numbers, and all 23 names in the child records (but not names in the family-
header records, for those would need to be labeled separately)—assuming, of course,
that the record templates for the rest of the parent and child records are discovered
when processing the whole book. From the entire Ely Ancestry book, providing these
same 9 labels is sufficient to capture over 3,800 birth years, 900 death years, 4,400
child numbers, and 7,500 names and produce over 40,000 predicate assertions.

This step adds O(t) to both time and space complexity in terms of the input text
length and O(f) to both time and space in terms of the size of the field label alphabet
because it adds O(1) number of predicates to the ontology for each additional field
label.

To conclude the discussion of time and space complexity for the entire pipeline, we
note that since all steps are sequenced within a pipeline architecture, we take the
largest single step to determine the overall time complexity, which is O(t), or linear
in the size of the input text. The overall space complexity is the sum of the individual
steps’ space complexity in the worst case, and is therefore also O(t). Similarly, the
entire pipeline is also linear in terms of label alphabet size.

6. EVALUATION
In this section we describe the data (books) we used to evaluate ListReader. We explain
the experimental procedure in which we compared ListReader’s performance with the
performance of an implementation of the conditional random field (CRF) as a com-
parison system. We give the metrics we used and the results of the evaluation, which
includes a statistically significant improvement in F-measure as a function of labeling
cost.

6.1. Data
General wrapper induction for lists in noisy OCR text is a novel application with no
standard evaluation data available and no directly comparable approaches other than
our own previous work. Therefore, we produced development and final evaluation data
for the current research from two separate family history books.8

We developed the ListReader system using the text of The Ely Ancestry [Beach et al.
1902]. The Ely Ancestry contains 830 pages and 572,645 word tokens.9 We completed
all design, implementation, and parameter tuning for ListReader using The Ely An-
cestry before looking for, selecting, or hand labeling the book on which we would per-
form final evaluations to avoid biasing the implementation with knowledge of the test
data. We selected Shaver-Dougherty Genealogy [Shaffer 1997] as our final evaluation
text. Shaver-Dougherty Genealogy contains 498 pages and 468,919 words.10 We se-
lected this book randomly from a subset of the 100,000+ family history books being
collected at FamilySearch.org. We produced the initial subset of family history books
in three steps: First, we automatically removed books with low genealogy-data content
based on a third-party tool that looks for genealogy-related words, names, dates, etc.

6The two birth years not included are in “who-was-b” fields rather than “b” fields.
7The one death year not included is in an “and-d” field rather than a “d” field.
8We will make all text and annotations available to others upon request.
9Appendix A contains three sample pages.
10Appendix A contains three sample pages.
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Table II. Field Type Labels

Ancestor[1].BirthOrder Marriage[1].Date.Day
Ancestor[2].BirthOrder Marriage[1].Date.Month
Ancestor[3].BirthOrder Marriage[1].Date.Year
Ancestor[4].BirthOrder Marriage[1].Place.County
Ancestor[5].BirthOrder Marriage[2].Date.Day
Ancestor[6].BirthOrder Marriage[2].Date.Month
Ancestor[7].BirthOrder Marriage[2].Date.Year
Ancestor[8].BirthOrder Marriage[2].Place.County
Ancestor[9].BirthOrder Name.GenSuffix
Birth.Date.Day Name.GivenName[1]
Birth.Date.Month Name.GivenName[2]
Birth.Date.Year Name.GivenName[3]
Birth.Place.City Name.Surname
Birth.Place.County PageNumber[1]
Birth.Place.State PageNumber[2]
BirthOrder PageNumber[3]
ChildCount PageNumber[4]
Death.Date.Day Spouse[1].Name.GivenName[1]
Death.Date.Month Spouse[1].Name.GivenName[2]
Death.Date.Year Spouse[1].Name.Surname
Death.Place.City Spouse[2].Name.GivenName[1]
Death.Place.County Spouse[2].Name.GivenName[2]
Death.OtherInfo Spouse[2].Name.Surname

Second, we manually inspected several pages from each book and removed those books
whose OCR contained obvious problems, primarily zoning errors where the page text
was not rendered in true reading-order (e.g. interleaving two columns of text). Third,
we kept only books that contained at least two kinds of list, e.g. an index list at the
back of the book and the typical family lists in the body of the book.

To label training, development, and test data, we built a form in the ListReader
web interface that contained all the information about a person visible in the lists
of selected pages. Using the tool, we selected and labeled complete pages from the
Shaver-Dougherty Genealogy book. The web form tool generated and populated the
corresponding ontology which we used as test data for ListReader and training and
test data for the comparison CRF. For final evaluation data, we hand labeled enough
pages from Shaver-Dougherty Genealogy for ListReader’s active sampling to reach the
cost of 90 hand-labeled fields for both one-phase and two-phase execution, plus 25
randomly-selected pages to ensure we had representatives from all parts of the book,
especially prose pages. Prose pages provide non-list text (negatives training examples)
which is necessary to train the CRF to discriminate between list-text and non-list-
text. Furthermore, the 25 random pages also allow a more complete evaluation of both
systems in terms of checking for false positives that might occur if certain instances
of prose text happened to appear similar to the patterns learned from lists. In all, we
annotated 68 pages of Shaver-Dougherty Genealogy. The annotated text from the 68
pages have the following statistics: 14,314 labeled word tokens, 13,748 labeled field
instances, 2,516 record instances, and 46 field types. Table II shows the 46 field labels.

6.2. CRF Comparison System
Since general wrapper induction for lists in noisy OCR text is a novel application with
no standard baseline, we wish to give the reader a sense of the difficulty of this appli-
cation in familiar terms. The Conditional Random Field (CRF) is a general approach to
sequence labeling, achieving state-of-the-art performance in a number of applications.
Being a highly developed statistical approach, it should do well at weighing evidence
from a variety of features to robustly extract fielded information in the face of random
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Table III. CRF Word Token Features

Case-sensitive text of the word
Dictionary/regex Boolean flags:

Given name dictionary (8,428 instances)
Surname dictionary (142,030 instances)
Names of months (25 variations)
Numeral regular expression
Roman numeral regular expression
Name initial regular expression (a capital letter followed by a period)

OCR errors, ambiguous delimiters, and other challenges in this kind of text. We believe
the performance of the supervised CRF serves as a good baseline or reference point for
interpreting the performance of ListReader. The CRF implementation we applied is
from the Mallet library [McCallum 2002].

Despite our goal of eliminating knowledge engineering from the cost of wrapper in-
duction, we went through a process of feature engineering and hyper-parameter tun-
ing for the CRF to further ensure a strong baseline. The feature engineering included
selecting an appropriate set of word token features that allowed the CRF to perform
well on the development test set. The features we applied to each word are listed in
Table III. The dictionaries are large and have good coverage. We also distributed the
full set of word features to the immediate left and right neighbors of each word token
(after appending a “left neighbor” or “right neighbor” designation to the feature value)
to provide the CRF with contextual clues. (Using a larger neighbor window than just
right and left neighbor did not improve its performance.) These features constitute a
much greater amount of knowledge engineering than we allow for ListReader.

We simulated active learning of a CRF using a random sampling strategy. Random
sampling is still considered a hard baseline to beat in active learning research, espe-
cially early in the learning process when learner exploration is a more valuable sample
strategy than exploitation of the trained model [Cawley 2011]. Our aim of low cost mo-
tivates us to focus on the early end of the learning curve.

Each time we executed the CRF, we trained it on a random sample of n lines of
text sampled throughout the hand-labeled portion of the corpus. Then we executed the
trained CRF on all remaining hand-labeled text. We varied the value of n from 1 to 20
to fill in a complete learning curve. We ran the CRF a total of 7,300 times and then
computed the average y value (precision, recall, or F-measure) for each x value (cost)
along the learning curve.

6.3. Experimental Procedure and Metrics
To test the extractors, ListReader and the CRF, we wrote an evaluation system that au-
tomatically executes active sampling by each extractor, simulates manual labeling, and
completes the active sampling cycle by altering labels for ListReader and by retrain-
ing and re-executing the CRF. The extractors incur costs during the labeling phase of
each evaluation run which includes all active sampling cycles up to a predetermined
budget. To simulate active sampling, the evaluation system takes a query from the
extractor and the manually annotated portion of the corpus and then returns just the
labels for the text specified by the query in the same way the ListReader user interface
would have. In this way, we were able to easily simulate many active sampling cycles
within many evaluation runs for each extractor.

For purposes of comparison, we computed the accuracy and cost for each evalua-
tion run. We measured cost as the number of field labels provided during the labeling
phase. We believe this count correlates well with the amount of time it would take
a human user to provide the labels requested by active sampling. Because the CRF
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Table IV.
Metrics

Precision = p = tp
tp+fp F-measure = F1 = 2pr

p+r

Recall = r = tp
tp+fn ALC =

∫max

min
f(c)dc

tp = true positives, fp = false positives, fn = false negatives
c = Number of user-labeled fields (cost)
f(c) = Precision, recall, or F-measure as a function of cost
min and max: smallest and largest number of hand-labeled fields

sometimes asks the user to label prose text but ListReader never does, we decided not
to count these labelings against the cost for the CRF. This means that the CRF has a
slight advantage as it received training data for negative examples (prose text) with-
out affecting its measured cost. During the test phase, the evaluation system measures
the accuracy of the extractor only on text for which the systems did not query the user
for labels during training or active sampling.

Since our aim is to develop a system that accurately extracts information at a low
cost to the user, our evaluation centers on a standard metric in active learning re-
search that combines both accuracy and cost into a single measurement: Area under
the Learning Curve (ALC) [Cawley 2011]. The rationale is that there does not exist a
single, fixed level of cost that everyone will agree is the right budget for all informa-
tion extraction projects. Therefore, the ALC metric gives an average learning accuracy
over many possible budgets. We primarily use F1-measure as our measure of extrac-
tion accuracy, which is the harmonic mean of precision and recall, although we also
report ALC for precision and recall curves. The curve of interest for an extractor is
the set of that extractor’s accuracies plotted as a function of their respective costs. The
ALC is the percentage of the area between 0% and 100% accuracy that is covered by
the extractor’s accuracy curve. ALC is equivalent to taking the mean of the accuracy
metric at all points along the curve over the cost domain—an integral that is generally
computed for discrete values using the Trapezoidal Rule,11 which is how we compute
it. To generate a smooth learning curve for the CRF, we first trained and executed
it 7,300 times as explained above, varying the amount of training data supplied to it
during its training phase to evenly spread the resulting costs within the chosen cost do-
main (0 to 90 labeled fields). Next, we applied local polynomial regression to the 7,300
points using “lowess” (locally weighted scatterplot smoother), a function built into the
R software environment for statistical computing and graphics. Finally, we computed
area under the regression curve, again using the Trapezoidal Rule. We summarize our
metrics in Table IV.

6.4. Results
Figure 15 shows a plot of the F-measure labeling/learning curves verses the number of
hand-labeled fields for ListReader and the CRF. Visually, the comparative area under
the curves (ALC) indicates that ListReader (both one- and two-phase versions) out-
performs the CRF uniformly over the number of field labels, and especially for fewer
labels during earlier labeling cycles. Statistically, Table V tells us that these obser-
vations are significant (p < 0.01, using an unpaired t test). In terms of the ALC of
F-measure, the one-phase ListReader outperforms the CRF by 9.1 percentage points,
while the two-phase ListReader outperforms the one-phase ListReader by 6.5 percent-
age points. Table V also shows that both versions of ListReader perform better than
the CRF in terms of the components of F-measure, precision and recall, except in the
case of recall for one-phase ListReader. The plot of the learning curves for precision

11See http://en.wikipedia.org/wiki/Trapezoidal rule
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Fig. 15. Labeling/Learning Curves of ListReader and CRF

Table V. ALC of Precision, Recall, F-measure (%)

Prec. Rec. F1

CRF 54.1 34.4 39.5
ListReader (One-phase) 95.6 32.7 48.6
ListReader (Two-phase) 94.4 39.0 55.1

All differences are statistically significant at p < 0.01 us-
ing an unpaired t test.

in Figure 16, shows the highly significant ALC differences for precision (p < 0.0001),
which is especially good from the very beginning of labeling and which holds when
comparing the CRF to either one-phase or two-phase ListReader.

In our experimental evaluation, two-phase ListReader produced very few false posi-
tives (precision errors), achieving 94.8% precision after the first query cycle and slowly
rising to 96.4% by the last query. False negatives (recall errors) were more common.
We discuss them, along with future work, below. High precision is a positive result
despite the low recall, especially in the context of our aim of reducing the cost of hu-
man labor associated with the extraction of information. Achieving higher precision
means there will be less human post-processing needed to correct errors. Achieving
higher recall at the expense of lower precision would increase the human time cost,
and could even increase it to the point that the automated extraction process ceases to
provide any time-saving benefits compared to the user manually extracting all the in-
formation. High precision renders ListReader immediately useful in practice for search
applications in which sifting through many incorrect results becomes more of a bother
than the few good results are worth. For family-history applications, for example, it
would be highly bothersome to send email alerts to users reporting finds of informa-
tion about their ancestors if many of the alerts were false positives. Conversely, highly
precise finds would be highly interesting to subscribers of the service.

ListReader generated a regular expression that is 1,473,490 characters long and
contains 71,090 capture groups for the Shaver-Dougherty Genealogy book. The longest
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Fig. 16. Labeling/Learning Curves of ListReader and CRF

working regex we are aware of is only 157,000 characters long,12 13 making our working
regular expression nearly 10 times longer. ListReader derived 43,600 of the 71,090
capture groups from second-phase record templates. In 35 cycles of active sampling,
ListReader collected labels for 218 of those capture groups. All but four of these labeled
capture groups were associated with second-phase record templates. This points out
the necessity of ListReader’s careful strategy of selecting capture groups to label. Using
its predicted ROI selection strategy (described in Section 5.12), ListReader extracted
nearly half of the patterned information in the pages of the Shaver book by requesting
labels for only 0.3% of the capture groups of our generated regex. Of the 218 capture
groups, 90 were actually assigned field labels; the rest of the 218 capture groups were
field delimiters, page header text, or some other kind of text within a pattern that was
not assigned a field label. Many capture groups never need to be labeled by a user for
other reasons. About one in thirty do not need a label because they are larger capture
groups containing smaller nested capture groups. About the same number again do
not need a label because they represent record delimiters.

ListReader’s time and space complexity is linear in terms of the size of the input
text and the label alphabet (as described in Section 5) and appears to be better than
the CRF’s. The typical implementation of the training phase of a linear chain CRF is
quadratic in both the sizes of the input text and the label set [Cohn 2007], [Guo et al.
2008]. In our experiments, the CRF occasionally ran out of memory when running on
just 41 pages of input. When considering whether ListReader will scale to multiple
books, simultaneously, its scalability within a single book is the primary issue. The
ListReader process can be easily parallelized and run on a cluster of machines. Each
instance can process books as large as The Ely Ancestry (which contains well over
800 pages of text) even on a single desktop machine containing only 3.25 GB of RAM.
We can therefore split a corpus of many books into individual books and run each

12http://www.terminally-incoherent.com/blog/2007/08/24/biggest-regex-in-the-word/
13http://stackoverflow.com/questions/2245282/what-is-the-longest-regular-expression-you-have-seen
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instance of ListReader independently of each other. As for wall-clock time, ListReader’s
unsupervised grammar induction steps (Steps 2 to 11) took 109 seconds, and each
active sampling cycle (in Step 12) took 13 seconds, running with JDK 1.7 on a desktop
computer with a 2.39 GHz processor and 3.25 GB of RAM. We have not done any work
yet to optimize performance other than the high-level design of the described pipeline.

7. ERROR ANALYSIS LEADING TO FUTURE WORK
Analyzing ListReader’s precision and recall errors shows us some interesting future re-
search opportunities. Precision is already high, but realizing that the cause of the few
errors has to do with incorrectly identifying the beginnings and ends of some records
leads to opportunities for future improvements in two ways, which we discuss below:
(1) join and label across adjacent record-fragment patterns and (2) split and label pat-
terns spanning multiple adjacent records. Recall is low, leaving considerable room for
improvement. In addition to correcting record boundary mistakes, we have three ways
to improve recall, which we discuss below: (1) generate an HMM wrapper to go along
with the regex wrapper as we did in previous papers [Packer and Embley 2013], (2)
address brittleness in the unsupervised grammar induction steps, and (3) automati-
cally propose labels for some unlabeled patterns by aligning fields shared among two
or more field groups.

Adjacent Record Fragments. The only precision errors appear to happen at record
boundaries where a whole record is split into two patterns. This happens because one
of the lines of many parent records in the Shaver-Dougherty Genealogy book share a
conflated text profile that also satisfies the record selection criteria. For example, in
the following text, ListReader correctly labels the second half of each record without
grouping that pattern with the first half of the records.

16-1-1-3-15-5-2^ Ray, Donald Allen-b. 23 Nov 1939-mar.
Perrow, Susan-d. nr-ch. 5:

16-1-1-3-15-7-1 Shafer, Philip Elvin-b. 14 Jun 1949-mar
Myers, Fay-d. nr-ch. 2:

That causes a precision error, a false positive record boundary between the two lines.
This also produces false negatives when ListReader does not go on to recognizing the
first half of these records. Currently, the structure of the grammar learned before ac-
tive sampling begins is held fixed during active sampling—only the labels of capture
groups change. ListReader could learn to join two patterns based either on a smarter
unsupervised pattern selection strategy during the record selection steps or allowing
the user to manually group adjacent strings in the active sampling step.

Related Adjacent Records. Like record fragments, full records may also be adjacent.
For example, in Figure 1 the parent records are adjacent to the child records. In our
current work we did not expect ListReader to be able to relate elements across record
boundaries, but in future work we would like to do so and thus in Figure 1 be able to
relate parents in family header records with children in child records. As for adjacent
record fragments, ListReader may be able to join or label across full record patterns.

HMM Wrapper. We plan to construct an HMM in the place of, or along with, the
regex described in this paper. Both the regex and HMM can be generated from the
patterns we discover in the suffix tree within the unsupervised pipeline. The proposed
HMM will be similar to the HMM induced in [Packer and Embley 2013] in some ways,
e.g. in explicitly modeling common variations in record structure and in the HMM’s
flexibility in accepting some OCR errors based on the parameter smoothing of the emis-
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sion model. The proposed HMM, however, will be different from the HMM of [Packer
and Embley 2013] in starting out with no user-specified labels, in its parameters being
trained from a much larger set of examples obtained in the unsupervised grammar-
induction steps, and therefore in being more robust to randomness in OCR text. These
aspects of the HMM should improve recall considerably. We expect that precision will
not decrease very much; but if precision becomes a problem, we can continue to rely on
the regex wrapper wherever it applies.

Brittleness. Brittleness in some of the unsupervised grammar-induction steps pre-
vents ListReader from detecting patterns that occur infrequently. This is because
ListReader relies on predetermined values of parameters (cut-off values). For exam-
ple, in the step that selects field group delimiters, not only can we not assume that a
single cut-off value will be optimal for all books, we cannot assume that a single cut-off
value will be optimal for all candidate delimiters within a single book. ListReader dis-
carded a “was born” delimiter candidate that appeared in only one record cluster. On
the other hand, the “un” candidate14 appears in three clusters and is therefore closer to
being accepted as a field group delimiter than “was born”. We believe that a more sta-
tistically well-founded approach, e.g. a collocation or hypothesis testing approach, will
be better able to identify, not only true field group delimiters, but also the patterns in
other steps of the pipeline while remaining completely unsupervised. This could allow
for automatic parameter adaptation for conflation rule selection, field group delimiter
extraction, record type selection, etc. Simply adding more conflation rules could also
decrease brittleness in pattern-finding.

Unlabeled Patterns. ListReader does not receive any labels for certain patterns be-
fore reaching a predetermined label budget (e.g. 90 field labels). Because of this, many
capture groups remain unlabeled. ListReader currently will apply no labels to the text
matching those capture groups. We can overcome this limitation by (1) continuing to
run additional active sampling cycles or (2) allowing ListReader to propose labels for
unlabeled field patterns based on their similarity to known, labeled field patterns. For
example, if the user has already labeled a birth date containing a Day, a Month, and
a Y ear during the course of active sampling, ListReader could propose the Y ear label
for a date containing only a year instead of leaving this pattern unlabeled. Or, for an-
other example, after labeling one sequence of names, one list of page numbers in an
index, or one sequence of ancestor birth-order numbers, label other similar repeating
field groups based on the labeling of the first. Knowing how to do this in general for
any kind of field while maintaining high precision will take additional research and
will likely require ListReader to make more use of the labels it receives during active
sampling.

8. CONCLUSIONS
We see a tendency in research to focus on improving accuracy while ignoring the hid-
den increases in costs associated with those improvements. Well-developed statistical
models such as the CRF can perform well on a number of tasks, but that performance
comes with additional costs in terms of knowledge and feature engineering, manual la-
beling of training data, and other domain-, genre-, and task-specific refinements—not
to mention the increasingly specialized knowledge of mathematics and data science
needed to re-implement, or even to understand how to apply, the new approach.

Our ListReader project addresses these concerns. Through our ListReader approach
to information extraction, we have demonstrated a simple, scalable, and effective way

14“un” appears in phrases like “un-named son” and “un-identified child”.
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of simultaneously improving the accuracy and decreasing the cost of extracting in-
formation from OCRed lists. ListReader effectively combines unsupervised grammar
induction with active sampling to identify, extract, and structure data in lists of noisy
OCRed text. ListReader performs well in terms of accuracy, user labeling cost, time
and space complexity, and required knowledge engineering—outperforming the CRF
in each of these performance measures. Its precision is high enough for immediate
practical use in applications where query results should be precise (but not necessar-
ily complete). Furthermore, and of interest for future research, its precision is high
enough that we can also use the output of ListReader as training data for supervised
extractors—training data that now comes at no additional cost for the human labeler.

APPENDIX A: Example Pages
Family history books generally include three kinds of text: (1) Prose/narrative, (2) fam-
ily lists, and (3) name-index lists (at the back of the book). We have taken examples of
these three main types of pages from both of the books discussed in this paper: The Ely
Ancestry and Shaver-Dougherty Genealogy. The examples appear below in Figures 17,
18, 19, 20, 21, 22.

APPENDIX B: Justification of pattern-length×frequency-of-occurrence for Scoring Clusters
There is a trade-off between looking for highly frequent patterns to improve labeling
efficiency and recall on the one hand, and looking for longer patterns to improve accu-
racy or precision on the other. We balance these requirements using a simplification
of the usual minimum description length (MDL) formula used in types of grammar
induction that are based on information theory and information compression. This
simplified formula (the product of length and frequency) allows ListReader to select
record templates to insert as phrase structure rules into its grammar with good pre-
cision and recall. In Equation 1, we derive the simplified formula ListReader uses to
measure the benefit of adding a production rule Glhs → Grhs to grammar G and re-
placing all occurrences of its right hand side n-gram in text X with its left hand side
symbol. (Glhs represents a whole record and Grhs represents its constituents which are
a sequence of conflated text.)

DL(X,G) = DL(G) +DL(X|G)

=
∑

grhs∈Grhs

DL(grhs) +DL(X)−
∑

grhs∈Grhs

c(grhs)DL(grhs) + c(glhs)DL(glhs)

∝
∑

grhs∈Grhs

DL(grhs)−
∑

grhs∈Grhs

c(grhs)DL(grhs) + c(glhs)DL(glhs)

≈ len(Grhs)− len(Grhs)c(Grhs) + c(Glhs)

≈ −len(Grhs)c(Grhs)
(1)

Note that len(Grhs) is the length of the right hand side of the proposed grammar
rule G and c(g) is the frequency or count of a symbol g within input text X. Note
also that the description length of X, DL(X), is the same for all proposed rules, so
it does not affect the selection of rules. We have two simplifying assumptions. First,
the description length of a symbol g, DL(g) = − log p(g), is fixed for all symbols and
equal to 1. Second, we remove all but the highest-order term as we do in complexity
analysis. Selecting record patterns with this simplified formula is fast, is supported
directly by the suffix tree, and induces a grammar that effectively “compresses” the
text by identifying the natural structure of lists. It in turn reduces annotation cost by
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THE ELY ANCESTRY. 19

THE ELYS OF WONSTON, I54O-1660.

The following are the sources of probable and possible information

upon the point which I have exhausted :

—

(i) I have examined all the printed books (including topographical

and historical works) in the British Museum which bear upon the subject.

(2) I have also examined the MSS. in the British Museum bearing

on the subject, particularly the volumes entitled

:

The Original Accounts, Information, Inventories and Other Papers

concerning the Real and Personal Estates of the Delinquents seized by

the Parliame7it of Etigland from 1642 to 1648 inclusive, As they were

given in at that time to the Treasurer of Sequestrations, at the Guildhall

in London.

(3) The Calendars of State Papers in the British Museum, and also

in the Room for Literary Research at the Record Office, have also been

examined.

In the hope of finding some information on this point I have ap-

proached the Bishop of Winchester and also the Registrar of the Diocese.

From the letters received in reply (which I append) it seems pretty clear

that it is hopeless to look for information in that direction.

In conclusion, I may say that whilst I have not succeeded in find-

ing anything which specifically confirms the theory that Richard Ely,

who emigrated in 1660, was a member of the Ely family of Wonston, I

have not found anything which is in any way opposed to it ; and I cannot

but think that your supposition is correct.

I also append copies of the Domesday Book account of Wonston,

and a translation thereof.

I am, dear Sir, Yours faithfully,

George Clinch.

Farnham Castle, Surrey, 23 July, '95.

My dear Sir :

—

I regret to say that the Bishop of Winchester* is very ill, and unable

to see your letter.

I can only suggest that the Registrar of the Diocese may be able to

give you the information you require.

Mr. C. Wooldridge.

Winchester.

Yours faithfully,

George Clinch, Esq. J. D. Henderson, Chaplain.

* The Bishop died on the 25th July, 1895,

Fig. 17. Prose Page in The Ely Ancestry, Page 19
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REMINISCENCES AND RECOLLECTIONS 43 

his last month's room and board. As a condition of employment, I 
agreed to repay the unpaid bill as I could save some money. We 
agreed that I would start to work on June 1. 1940. 

West Virginia University 

The University Dairy Farm was located dim mile from campus and 
housed about 80-90 mature cows plus the usual number of young 
animals. The cows were predominantly of the Ayrshire breed, 
which was a bit unusual and certainly did not reflect the breed 
distribution tn the State. I learned that a wealthy man named 
Reymann had built the dairy barn and bequeathed his large 
"hobby" herd of Ayrshires to the University with some stipulations 
which resulted in the unusual preponderance of Ayrshires in the 
total herd. 

There was a house on the farm with 6 bed rooms for students. An 
elderly lady and her old-maid daughter also lived there and did the 
cooking and cleaned our rooms once each week. The farm 
provided a rather unusual way for the University to help students 
enrolled in the College of Agriculture who needed financial 
assistance. Of course the cattle were needed for instructional and 
research purposes and the milk was needed to supply dormitory 
dining rooms but lt was operated in an unusually labor-intensive 
manner for the students' benefit. They had not installed milking 
machines because much more labor was required to milk by hand 
which meant that they could help more students. The farm 
employed six full-time men who worked from 8 a.m. to 5 p.m. on 
week-days plus Saturday mornings until noon. This included 
noon miikings Monday through Friday. 

Students were expected to work either the morning (4:00 to 7:00 
a. m.) or evening (6:00 to 9:00 p. m.) milk shift seven days each 
week. In addition, each of us worked either Saturday afternoon or 
all day Sunday on alternate week-ends. Half of us had to stay at 
the farm during school vacations, so we usually divided those 
times off. Each semester, after we had our class schedules worked 
out. we were assigned to one of the milk shifts. Those with classes 
at 8 a.m. were usually assigned the evening milk shift because it 
was difficult to finish milking at 7:00 and get to class in an hour. 
When 1 started working there. 1 was paid $ .25 per hour and 1 had 
to pay $1.00 per day for room and board. A bit of quick arithmetic 
will suggest that, by working just the required shifts, we could just 
about pay our room and board. There were plenty of opportunities 
to work extra hours, either in the barns or in the fields during 
harvest. Also, a few of the students who got more help from home 
would want a substitute occasionally and one from the other shift 
could pick up a few extra hours of work. 

Fig. 18. Prose Page in Shaver-Dougherty Genealogy, Page 43
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THE ELY ANCESTRY. 237
SIXTH GENERATION.

13712. Alfred Ely, EUisburg, N. Y., b. 1788, d. 1870, son of David

Ely and Keziah Mapes ; m. 1812, Patience Beckwith, Great Barrington,

Mass., who was b. 1791, d. 1844, dau. of George Beckwith and Patience

Beckwith. Their children:

1. Harriet Beckwith, b. 1813; d. 1815.

2. George Beckwith, b. 1816; d. 1816.

3. George Beckwith, b. 1817; d. 1877; m. 1843, Gertrude Sophia Harmon.

4. Erastus, b. 1819; m. 1844, Adelia Mapes.

5. Emily, b. 1822; d. 1880; m. 1841, Samuel Sedgwick.

6. Harriet Eliza, b. 1830; d. 1830.

7. Alfred, b. 1832 (Euclid Ave., Cleveland, O.); m. 1856, Caroline F.

Burnham.
8. Caroline Frances, b. 1837.

13714. Keziah Mapes Ely, West Swansey, N. H., b. 1794, dau. of

David Ely and Keziah Mapes; m. 1819, Jotham Eames, West Swansey,

N. H., who was b. 1793, d. 1850, son of Jotham Eames and Eiisebia

Goddard. Their children

:

1. Sarah Ann, b. 1820.

2. David Ely, b. 1822; d. 1868. '

3. Lucy Ann, b. 1823.

4. James Cummings, b. 1825.

5. Nancy, b. 1827; d. 1868.

6. Keziah Mapes, b. 1829.

7. Rhoda Maria, b. 1830.

8. Jotham Goddard, b. 1834.

9. Frederick Page, b. 1838; d. 1841.

13715. Sarah Ann Ely (widow) Alden, Erie Co., N. Y., b. 1797,

dati. of David Ely and Keziah Mapes; m. 1815, John Rundell, Cox-

sackie, N. Y., who was b. 1793, d. 1872, son of Richard Rundell and

Prudence Reynolds. Their children

:

1. Keziah, b. 1816; d. 1821.

2. John Ely, b. 1818; d. 1853.

3. Elizabeth Wilks, b. 1820.

4. Prudence Ann, b. 1822; d. 1857.

5. Lucinda Wicks, b. 1825.

6. Nancy Amelia, b. 1827.

7. Joseph Parshall, b. 1829.

8. Edwin Ruthven, b. 1832.

9. Emily Harriet, b. 1837.

13616. David Ely, Lyme, Conn., b. 1799, d. 1878, son of David Ely

and Keziali Mapes ; m. 1835, Angeline Upson, Camden, N. Y. (present

Fig. 19. Family List Page in The Ely Ancestry, Page 237
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248 SHAFER-DAUGHERTY GENEALOGY 

16 1-1-3 6-9-2 White, Virginia Lucille-b 18 May 1929 at 
Kettle (Roane BRJ-mar. Humphreys, James C.-d. nr-ch. 1: 

1) Kenneth Joel 16-1-1-3-6-9-2-1 

16-1-1-3-6-9-3 White, Jr., Earl "Boone"-b. 5 Feb 1932 in 
Harper Dist. (Roane BR)-mar. Cobb, Norma Lee-d. nr-ch. 3: 

1) Penny Lea 16-1-1-3-6-9-3-1 
2) Darlene Elaine 16-1-1-3-6-9-3-2 
3) Tamara Lynn-b. 9 Oct 1962-mar. Koenig. William Michael-

nr ofd., orch. 

16-1-1-3-6-10-2 White, Jarrett Dale -b. 9 Jul 1929-mar. 1) 
Murdock. Hazel Gertie; 2) Kebby, Gall-d. nr-ch. 3: 

I) Steven Dale(1) 16-1-1-3-6-10-2-1 
2) Debbie Mae (I) 16-1-1-3-6-10-2-2 
3) Randall Janett (2)-b. 2 Jul 1963-nr of mar., d. Or ch. 

16-1-1-3-6-10-3 White, Dorothy Marie (twin)-b. 24 Nov 1930-
-mar. Walker, Allie (dec); 2) Dennis, Harry Joseph (dec) 3) Scarbro, 
Elmer 12 Feb 1994—d. nr-ch. 4. 
_1) Ray Milton (Walker) 16-1-1-3-6-10-3-1 

2) Dusty Dale (Walker) 16-1-1-3-6-10-3-2 
3) David Allen (Walker) 16-1-1 -3-6-10-3-3 
4) Sharon Rose (Walker) 16-1-1 -3-6-10-3-4 

16-1-1-3-6-10-4 White, Orpha Lee (twin) -b. 24 Npv 1930-
fhar. Murdock. John-d. nr-ch. 2: 

I) Jerry Daniel 16-1-1-3-6-10-4-1 
2) John Jeffery 16-1-1-3-6-10-4-2 

16-1-1-3-6-10-5 White, Barbara Lou-b. 19 Jul 1933-mar. 
Foreman, Clyde Ed ward-d. nr-ch. 4: 

1) Roger Ray 16-1-1-3-6-10-5-1 
2) un-named son (twin) b. & d. in 1953 
3) un-named son (twin) b. & d. ln 1953 
4) James Richard 16-1-1 -3-6-10-5-4 

16-1-1-3-6-10-6 White, Carrol Gene (twin)-b. ca 1940-mar. 
Taylor. Mildred 10 Nov 1960 (Roane MR) (div); 2) ???, Virginia-d. 
nr-ch. 4: 
_1) Mark (1) -nr of b.. mar., d. or ch. 

2) Gary (2) -nr of b., mar., d. or ch. 
3) Lisa(2) 16-1-1-3-6-10-6-3 
41 Lots (2) -nr of b., mar., d. or ch. 

16-1-1-3-6-10-7 White, Harold Dean (twin)-b. ca 1940-mar. 
???. Betty May (div)--d. nr-ch. 2: (also one adopted) 

Fig. 20. Family List Page in Shaver-Dougherty Genealogy, Page 248
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INDEX. 615

Margaret 318

Nellie Frances 521

Sayre 521

Susan M 481

William Whittemore 481

Peck
Albert Franklin 487

Anna
d Tabitha Ely 123

Anna Reed 229

Almira 274 359
Charles Dwight 487

Clarissa 230

Clarissa Bates 229

Clarissa Maria 487

David W 123 230

Elias 180

Elijah 123

s Tabitha Ely 123

m Clarissa Bates 229

s Elijah 229

s Peter 230

Elisha 123 229

Elizabeth 46 62 64

Emmeline 123 230

Erastus 129 229

Erastus Franklin 487

Esther 230 360

Esther Kitchell 123

Ezekiel Yarrington 487

Henry 274

Henry Edward 177

Hepsibah

d Tabitha Ely 122 229

Jedediah 122 123

s Tabitha Ely 123 230

John Moore 274

Joseph 41 229

Laura 274

Lucy 367

Martha 91

Mather 157

Mary 124 229 230 360

Mary Campbell 123

Mary Ely

d Sarah Ely 180 201

Mary Helena 177

Nathan 177

Nathaniel 284

Phebe Warren 177

Peter 230

Phebe Rogers 274
Polly

d Tabitha Ely 122 229

Richard 284

Richard Ely 129 229

Ruhama Sill Howell 157

Samuel Sheldon 177

Sarah 230 351

Sarah Ann 230 360

Sarah Elizabeth 274
Sarah Ely 180

Sarah Lewis Colgrove 123

230

Sarah Wells 123

Seth 359
Seth Marvin 274

Tabitha Ely 122 230 361

Tabitha Wells 123

Peckham
Eleazur 174

Jane Nye 433
Nancy 403

Pedrick

Benjamin 408

Sarah Elizabeth 408

Peebles Maria 277
Peffers Rachel 339
Pell Margaret 477
Pendergast Minerva 292

Penston Eliza 506

Percival John 272

Perkins

Allen Grififin 170

Abigail

d Elizabeth Ely 75 78

d Abraham 'J^

Abijah 118

Abraham 51 75 yy

s Elizabeth Ely 75 78 95
m Anne Fanning 133

s John ^(>

s Isaac ^^

s Abraham 169

Abraham, Ely

s Elizabeth Ely 169

m Hannah Chase

(Baker) 169 290

m Mary Baker (Ely)

170 290

m Charlotte Ely 239

s Abraham Ely 170 290

m Hannah Hadley 170

416

Alberta Grace 416

Allen Griffin 171

Augusta

d Charlotte Ely 170

Ann Reed 342

Benjamin

s Elizabeth Ely 75 78

s Benjamin 132

Charles Ely 416

Charlotte Augusta 239
Charlotte Ely 239

Cyrus 132

Daniel

s Elizabeth Ely 75 78

Daniel Lord 78

Eliphaz 115 205

Elisha 132

Eliza Ann 170 416

Elizabeth (i-j 68

d Elizabeth Ely 75 78 128

m Frederick Mather 133

d John 76

d Isaac Ty
d Abraham ']^ 128 170

d Elizabeth Ely 169

m Charles Ely 170

d Charlotte Ely 170 239
Elizabeth Anne 290

Elizabeth Ely 169

Ely 132

Francis

s Elizabeth Ely 75 78

m Lee 132

Francis William 170 290
Gaines 132

George Griffin 171

Hannah 76 146

Hannah Baker 170 290 415

497
Henry 170

Isaac

s John Jr "jd

s John TJ

Fig. 21. Name Index Page in The Ely Ancestry, Page 615
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464 SHAFER-DAUGHERTY GENEALOGY 

Jackson, Darrel 356 
, Earl E. 357 
. Florence May 356 
, George Henry 354 
. Ida B. 356 
. John A. 357 
. Leslie Leon 356* 
. Mary 357 
,Nelia361 
. Ralph 357 
. Robert 356 
. Robert Kennie 35fr 
. Sybil 361 
. Velma Opal 356 
, Willie E. 356 

Janney. Charissa Marie 243 
, Erica 280 
. Karen Lynn 243 
. Pamela Lea 243 
. Stephen Wayne 280 
. Terrie Annette 243 
, Thomas 280 

Jarvts. Donald Edward 246 
Jeffrey. Amy Denise 285 

, James Wyatt 285 
Jenkins Jr.. James Romie 254 

Jr.. Wesley Ray 297 
. Kimberly Laine 295 
. Alta May 216 
, Amy Renee 256 
, Barbara Kay 256 
. Betty Faye 256 
. BUly Joe 256 
. Blayne Elizabeth 255 
. Bobble Sue 297 
. Bobby Ray 256 
. Brandy Leigh 256 
. Carleena Dawn 296 
. Chad Anthony 255 
. Debra Ann 216 
, Diane Lynn 256 
. Earl David 188 

* , Geneva Helen 254 
. Glada EUen 187 
. Glen Thomas 216 
. Icie May 188 
. Irvin Lee 256 

'* , Jack Wayne 255 
.James Romie 216 
. James Willard 256 
. Kathryn Mae 254 
. Kelly Lynn 295 
.. Marilyn Sue 256 

Jenkins. Michael Lee 256 
.Opal Leona 216 
. Patsy Sue 256 
, Paul Jackson 188 
. Pearl Leona 216 
. Ralph Edward 2,16 
, Randy Lene' 297 

* , Thereca Renee 297 
. Tyler James 255 
. Wesley Ray 297 
.Willard Ray 216 
, William Robert 256 
, Melanie Nlchole 256 

Jennings, Mary 164 
Jensen. Ezekial 303 
Jett, Donald Ray 343 
Johnson, Christy Lynn 306 

, Harry G. 405 
. Kenneth V. 405 
. Kevin James 300 
. Kimberly Dawn 300 
. Michael Wayne 256 
, Steven Lee 306 

Jones. Alfred 170 
. Arnett Linden 361 
, Audra Virginia 253. 
424 
, Betty Lou 218 
. Brandon Ray 292 
. Bryan Patrick 292 
, Calvin 170 
. Catherine Lynn 264 
, Conda Jean 294 
. Cory Frank 302 
. David Adam 293 
. Deborah Carol 303 
. Delbert 361 
. Dewanna 294 
, Diane Lynn 407 
. Donna Kay 264 
, Donna Lea 407 
. Emmett Eugene 253, 
424 
. Eujeana Dianne 293 
. Evelyn Louise 264 
. Forrest 424 
. Gary Hansford 253 
. George 170 
. Harold Dean 36 _ 
.Henry 170 
. Jack Allan 264 
, Jackie Lee 264 
, James 293 

Fig. 22. Name Index Page in Shaver-Dougherty Genealogy, Page 464
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allowing ListReader to be selective in requesting labels from the user. Its sensitivity
to pattern frequency enables ListReader to maximize the value of even the first re-
quested label from the user and to eliminate queries that have little applicability. Its
sensitivity to pattern length improves ListReader’s accuracy. Because of work on infor-
mation compression and machine learning since Solomonov [Solomonov 1964], we un-
derstand that it is not coincidental that this compressibility should improve learning
because of the mathematical correspondence between MDL and maximum a posteri-
ori (MAP) model selection. Roughly speaking, high values of a pattern’s length times
its frequency is correlated with high likelihood, while low values of a pattern’s length
alone is correlated with high prior probability. Since length alone and frequency alone
are lower-order terms, we ignore them while noting that low values of either would
be compensated for by high values in the likelihood term as soon as the length or the
frequency is above 2. The record-selection parameter input to ListReader described in
Subsection 5.1 guarantees that this threshold is met.
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