
Lessons Learned in Automatically Detecting
Lists in OCRed Historical Documents

Thomas L. Packer, David W. Embley
Department of Computer Science

Brigham Young University
Provo, Utah, USA
tpacker@byu.net

ABSTRACT
Lists are often the most data-rich parts of a document col-
lection, but are usually not set apart explicitly from the rest
of the text, especially in a corpus of historical OCRed doc-
uments. There are many kinds of lists, differing from each
other in both layout and content. Writing individualized
code to process all possible types of lists is an expensive
challenge. In the present research, we focus on general list
detection, the first step in a larger process of general list
reading. Our system, ListDetector, automatically locates
lists from noisy word labels obtained from cheaply developed
dictionaries and regular expressions. In this paper, we start
by describing a simple baseline system—the first system we
are aware of to address general list detection in plain text or
OCRed documents. From there, we present several of the
challenges and corresponding solutions that we discovered as
we raised the F-measure of ListDetector from 79% to 86.3%.
We compute evaluation metrics against a gold standard cor-
pus of OCRed documents in the family history domain that
we have manually annotated for the tasks of list detection
and structure recogniton. We will continue adding to this
corpus and make it publically available for other researchers
to use.

1. INTRODUCTION
Family history, among other kinds of research, depends on
the discoverability of information recorded in unstructured
and semi-structured text documents. Lists are often the
most data-rich parts of a document collection. Before pro-
cessing a list, e.g. extracting information from the text of the
list, it is helpful to first automatically find and isolate that
list from the surrounding text and infer its structure. How-
ever, lists are usually not set apart explicitly from the rest
of the text, especially in a corpus of OCRed historical doc-
uments. Even if one kind of list is well delimited, there are
often other kinds of lists—even in the same document—that
are not, or at least not in the same way. Lists differ from

To appear in the Family History Technology Workshop; February, 2012;
Salt Lake City, Utah.

each other in both layout and content. One list may be struc-
tured like a“bulleted list”of verbose statements delimited by
hard returns. Another list may consist of a short sequence of
names in a sentence delimited by commas. OCRed lists are
especially inconsistent considering some documents contain
little or no punctuation because of image noise removal.

We define list recognition as the process of finding and in-
terpreting the structure of lists in text. List recognition
provides structural cues to benefit downstream processes—
processes that may target either the text inside or outside
of the lists. It is analogous to the better-known process of
table recognition. Hu et al. [7] decompose the task of table
recognition into (1) table detection and (2) table structure
recognition. We likewise decompose list recognition into (1)
list detection and (2) list structure recognition. In this pa-
per, we focus on general list detection in OCRed documents.

There are existing published efforts in processing specific
types of lists in OCRed documents like bibliographies and
tables of content. In such circumscribed applications, list
detection is a small and straightforward addition to struc-
ture recognition. Writing individualized structure recogni-
tion code to process all possible types of lists would be much
more challenging. As we target the “long tail” challenge in
list detection, we prefer a general approach, one that is adap-
tive to the format, genre, and domain of each page encoun-
tered. A solution to general list detection in plain or OCRed
text has never been published as far as we are aware. We
now enumerate the most closely related research we have
found.

Existing work shows how to recognize certain kinds of machine-
printed lists using specialized knowledge, geometric table
layout recognition techniques, or hand-crafted rules. Le and
Thoma [9] and Green [5] use geometric table layout recogni-
tion approaches that we believe will not achieve high gener-
ality when targeting arbitrary lists without using additional
textual and semantic clues. Like Green, Beläıd [1] recognizes
tables of content which are similar to lists. His method re-
lies on part-of-speech tagging and specialized rules which we
believe make it less general and scalable. The “layout and
language”perspective of Hurst and Nasukawa [8] is a general
approach to logical document layout recognition using an n-
gram language model (language) to regroup physical blocks
of text identified using visual clues (layout). They indicate
that this approach may help detect some lists. However,
since most text in lists is not grammatical, we expect that
it will be challenging to adapt Hurst’s approach to arbitrary



lists. The preceding work focuses on structure recognition
which may contain an element of structure detection or cat-
egorization. We are not aware of work focusing on list de-
tection in particular.

We also find work related to the present research in the web
information extraction community, including the following.
Dalvi et al. [3] detect groups of structured records in HTML
documents based on patterns in the noisy field labels ap-
plied by inexpensive field recognizers. Groups of structured
records could conceivably contain semi-structured lists as
we propose to show in this paper, although it is not clear
whether they target lists. Gupta and Sarawagi [6] apply
a few heuristics to filter out navigational and verbose lists
from a candidate pool consisting of all HTML lists in a web
crawl. They rely on HTML list tags which help in detect-
ing HTML lists. In their system, starting from all HTML
lists in their corpus, they discard a list for any of the follow-
ing reasons: (1) it has less than 4 records, (2) it has more
than 300 records, (3) it has even one record more than 300
bytes long, (4) more than 20% of its records do not have de-
limiters, or (5) more than 70% of its records are contained
inside anchor tags. Chang et al. [2] demonstrate an effi-
cient algorithm for finding repeated substrings in an HTML
page and use it to locate groups of structured records. Em-
bley at al. [4] find and segment records in multi-record web
pages using a combination of several heuristics looking for
the best record delimiter. The web wrapper induction tech-
niques above generally rely on repeated sequences of HTML
tags which are not available in OCRed lists.

We are currently designing a system we call ListDetector
to be an adaptive, weakly-supervised system for automati-
cally detecting lists in OCRed documents, at a cost lower
than typical supervised machine learning techniques allow.
In the current implementation described here, ListDetector
locates lists automatically after tuning hyper-parameters on
a few pages of hand-annotated training data, relying greatly
on weak supervision in the form of dictionary and regu-
lar expression matching. ListDetector starts processing a
page by assigning labels to word tokens that match any of
a set of cheaply constructed dictionaries and regular expres-
sions. Given the resulting sequence of noisy labels in a page,
ListDetector detects lists by identifying repeating patterns
among subsets of labels.

This present work includes the following contributions. We
provide the first version of a new public dataset contain-
ing images and corresponding OCR output and annotations
for the pages in a variety of documents within the family
history domain. We describe the data as it relates to the
task of list detection in Section 2. We present ListDetector
(Section 3), starting with a simple baseline version, followed
by several of the challenges and corresponding solutions we
encountered during development. We empirically evaluate
ListDetector on the training data along the way. We present
final experimental results in terms of a separate set of test
pages in Section 4. This is the first proposal and evaluation
of a general-purpose list detection algorithm we are aware
of. We relate a number of additional lessons learned during
the development of ListDetector in Section 5 and enumerate
conclusions and future work in Section 6.

2. TASK AND DATA
We are currently collecting and annotating a corpus of sev-
eral kinds of OCRed historical documents which we will pro-
vide to the public. For the current project, we manually
marked the beginnings and endings of a variety of lists in
a sample of pages from two historical newspapers and one
high school yearbook. The newspapers are The South Aus-
tralian Government Gazette, 1867–1884, and The Queens-
land Government Gazette, 1904–1910. The yearbook is the
Bedford High School Abacus, Bedford, Ohio, 1960. We an-
notated three pages from each of the newspapers (which are
all the pages we have available to us) and 36 pages from the
yearbook. We then split these pages into a training set con-
sisting of all six pages of newspaper and 20 of the pages of
the yearbook, and a test set consisting of the remaining 16
pages of the yearbook. Many of the pages contain no lists,
and all the pages contain at least some non-list text, so we
have plenty of opportunity to test for false positives. We
put all the newspaper pages into the training set because
we had already begun development work while visually in-
specting these pages before deciding to create a relatively
“blind” test set . Figure 1 shows part of a yearbook page
and Figure 2 shows the corresponding OCR text.

Before creating a system to detect lists, we should define
what a list is. We are working on a formal definition to
propose in future papers. For this paper, we enumerate the
criteria that are most relevant to the discussions below.

A list is text consisting of three or more list items called
records. Each record consists of one or more fields (sub-
strings), in addition to the record delimiter if present. At
least one field in each record must correspond in both se-
mantic role or category and position to a field in some other
record. At least one record must contain text that is different
from the other records. These criteria must be visible in the
OCR text to a person familiar with the corresponding image
and the topic (domain) of the document.

Figure 3 shows our annotation of the two lists in Figure 2.

We experimentally evaluate several versions of ListDetec-
tor. When one approach predicts the location of a list, it
effectively divides all the word tokens on a page into two
categories: list and non-list. Because we compute accuracy
metrics from word token counts, it is important to know
how we tokenize the text. We split text into word tokens
at whitespace boundaries and at transitions between char-
acter types. We consider alphabet, digit, and each type of
punctuation character to be a separate character type.

We compute precision, recall, and F-measure using standard
formulas borrowed from the information retrieval commu-
nity. Precision is the number of words that ListDetector
correctly assigns to a list divided by the total number of
words it assigns to lists. Recall is the number of words List-
Detector correctly assigns to a list divided by all words that
should have been assigned to a list. F-measure (F1) is the
harmonic mean of precision (P ) and recall (R):

F1 =
2PR

P + R

We compute these metrics for each page. We then compute
aggregate F-measures over a set of pages in two ways: us-
ing macro-averaging and micro-averaging. A macro-average



Figure 1: Part of a page from a school yearbook.

Figure 2: OCR for image in Figure 1.

Figure 3: Expected list detection and structure
recognition output for the text in Figure 2.

over pages is simply the mean of the metric over those pages.
A micro-average is a weighted average—weighted by the
number of words in each page. Using both averages gives
a more balanced impression of performance. The macro-
average emphasizes the most common styles of page; the
micro-average emphasizes the largest pages. To present a
single score by which to compare approaches, we use the
average of the macro- and micro-averaged F-measures, and
call this the AA score.

3. APPROACHES TO LIST DETECTION
We designed our first approach to list detection with sim-
plicity, our list definition, and the text in Figure 4 in mind.
We call it Simple Literal Pattern Area (SLPA). SLPA relies
on the assumption that all the records in a list will have
some amount of identical text in common. SLPA enumer-
ates, scores, and ranks all the literal substrings (“patterns”)
in an input page. Based on our list definition, SLPA fil-
ters out any pattern candidate less than two words long or
occurring less than three times. For example, the pattern
“<NewLine> District No.” has a length of four and a hit
count of seven in Figure 4, so this pattern is preserved, along
with all substrings longer than one word. SLPA scores the
remaining patterns using the product of the pattern’s length
and hit count (the pattern’s “area”). Our example pattern
has an area score of 28. Finally, SLPA selects the pattern
with the highest area score and marks all text between the
first and last occurrence of this pattern as a list.

SLPA, as well as all variation reported in this paper, conve-
niently though incorrectly assume that the first occurrence
of a pattern marks the beginning of a list and the last oc-
currence of a pattern marks the end of a list, which causes
ListDetector to discard the last nine tokens in Figure 4.
The approaches in this paper also recognize only contigu-
ous and constant patterns. For example, if an OCR error
had inserted or removed a period in one of the occurrences
of “<NewLine> District No.” in Figure 4, that occurrence
would not be considered part of the same pattern. We will
revisit these two limitations in future research.

The AA score for SLPA on the training data is 51.2%, as we
show in the top row of Table 1. This score is our starting
point, a baseline against which to compare the following
developmental changes of ListDetector. One note of caution
as we implement changes in response to errors we see in
the training data: if an “improvement” is too specific to
the training data, then scores computed on the test data
may actually decrease at the same time they increase in the
training data. This is called over-fitting the training data in
the machine learning community.

SLPA relies on very lenient constraints on pattern length
and hit count to filter spurious lists. As we reviewed the
false positives produced by SLPA in the training data, we
noticed that stricter constraints would help. Increasing the
lower bound on pattern length and hit count independently
improved precision, but usually at the expense of recall and
F-measure. Raising the lower bound on their product from
6 to 10, however, improved both macro-averaged and micro-
averaged F-measure which moves the AA score from 51.2%
to 62.8% on the training data. We call this second approach
Bounded Literal Pattern Area (BLPA).



List Detection Approach Macro-averages Micro-averages AA
Prec. Rec. F1 Prec. Rec. F1 F1

Simple Literal Pattern Area (SLPA) 41.0% 57.7% 31.3% 62.3% 82.5% 71.0% 51.2%
Bounded Literal Pattern Area (BLPA) 77.7% 56.0% 49.6% 70.9% 82.1% 76.1% 62.8%
Repeated Literal Pattern Area (RLPA) 77.7% 61.8% 53.4% 73.1% 93.6% 82.1% 67.7%

Pattern Area, Näıve Bayes Selector (PA-NB) 65.3% 85.3% 62.7% 74.6% 96.2% 84.0% 73.4%
Pattern Area, Standard Deviation Selector (PA-SD) 42.7% 98.7% 46.6% 63.3% 99.6% 77.4% 62.0%

Bounded Pattern Area, Standard Deviation (BPA-SD) 55.7% 90.2% 57.3% 66.8% 98.4% 79.6% 68.5%
Bounded Pattern Area, Standard Deviation (BPA-SD) 2 63.6% 87.6% 62.0% 73.0% 93.8% 82.1% 72.0%
Bounded Pattern Area, Standard Deviation (BPA-SD) 3 64.5% 89.1% 63.3% 76.9% 96.9% 85.7% 74.5%

Table 1: Evaluation of incremental changes in ListDetector with respect to the training data. “AA” is the
average of the two kinds of F-measure averages.

Figure 4: Part of a page from a historical newspaper.

BLPA assumes that there is at most one list per page and
that this list is spanned by just one pattern. As we inspected
the training data, we saw that neither assumption is correct.
Our next approach, Repeated Literal Pattern Area (RLPA),
addresses this deficiency by marking text spanned by the
top three patterns instead of the top one pattern. It ignores
patterns of intermediate rank that are covered by higher-
ranking patterns. Using multiple patterns raises AA score
in the training data from 62.8% to 67.7%.

RLPA and its predecessors have a glaring deficiency. Ac-
cording to our definition, a list’s records must share one or
more fields, but these fields need not contain identical text.
Many of the lists in our training data contain no reason-
able literal pattern. On the other hand, almost all of them
contain semantically related fields that could at least sup-
plement a literal pattern. Consider the three-digit numeral
in the records of Figure 4 that join the four-word pattern
mentioned above with an additional two- to three-word pat-
tern. One way we might recognize a repeating pattern of
semantically-related fields is to construct named entity rec-
ognizers for those fields. However, we wish to avoid this as
it is expensive to develop accurate recognizers for the fields
in each list in a corpus. Dalvi et al. [3] provide an idea that
we adapt to the present setting. We construct cheap, noisy

field recognizers in the form of flat dictionaries and regular
expressions which have some chance at matching some of the
fields in the lists of a given domain. ListDetector will add a
label to all the words in a page that match a recognizer.

For the following experiments, we assembled 11 recogniz-
ers. Six dictionaries include 8400 given names, 142,000 sur-
names, 13 person titles, 200 Australian cities, eight Aus-
tralian states, and 15 religions. Four regular expressions
include numerals of between one and four digits in length,
upper-case initial letters, with and without a following pe-
riod, and capitalized words. It is important to note that
aside from the category of these 11 recognizers, they were
not refined in any way to perform well on this corpus—their
contents were taken from external sources. We also include
the word itself as a noisy label so that literal patterns are
still discoverable. We now want ListDetector to find list-like
patterns among this extended vocabulary of symbols just
like it did with the vocabulary of the literal text.

Assembling enough field recognizers to ensure that every
list in a corpus is sufficiently covered by recognizers means
that often ListDetector will assign multiple labels to a given
word. In our training data, it is common for the same word
to receive four different labels (e.g. given name, surname,
capitalized word, and the word itself) and have even seen
words receive five labels (the four just mentioned plus Aus-
tralian city). The primary challenge in using multiple, noisy
labels is to construct a single, flat pattern consisting of just
one label per token—the “correct” label—and to ensure that
the resulting patterns are more indicative of lists than the
original, literal text.

To address this challenge, we implemented two ways to select
a single label per token. The first method is to train a
näıve Bayes classifier to select each token’s label based on the
labels of that token and its six neighbors. We do not want to
the incur the additional cost of hand labeling training data,
so we train the classifier on the noisy labels, themselves, as
both input features and output classes, training a separate
model for each token using all the tokens in a page except
for the token it is applied to. Our justification for using
this approach is that, assuming there is a list on a page, the
words in the list will tend to be in similar contexts (next to
neighbors with similar labels) and therefore the label most
strongly associated with that context should be chosen by
the model. In other words, we expect that the true labels in



a list pattern will produce label co-occurrence counts that
dominate any other labels that occur randomly. We call
this approach Pattern Area with Näıve Bayes Label Selector
(PA-NB). It performs better than RLPA after tuning some
hyper-parameters on the training set as described below for
standard deviation approach, increasing the AA score from
67.7% to 73.4%.

Pattern Area with Standard Deviation Label Selector (PA-
SD) replaces the näıve Bayes classifier with a simpler heuris-
tic based on a similar justification. Assuming there is a list
on a page containing at least one type of labeled field, the
distance between subsequent instances of the label should
tend to be constant, or in other words the standard devia-
tion of the distances should be low. All other labels should
tend to be placed randomly on the page and therefore have
a higher standard deviation. This is inspired by a simi-
lar heuristic used by Embley et al. [4] to perform record
boundary detection in web pages. To leverage this heuris-
tic, ListDetector ranks the available field labels according
to standard deviation and selects the best-ranked label for
each token.

This second heuristic performs poorly at first, lowering the
training data AA score from 67.9% to 62.0%. Using 8 pat-
terns instead of 3 patterns per page improves the score only a
small amount. Using the noisy labels has naturally improved
recall, now that more list content can be used to generate
patterns. We must therefore improve precision, which the
noisy labels have decreased so much that the F-measure also
decreases. Bounding the area score is one way to do this.
Changing the lower bound from 10 to 26 increases the AA
score to 68.5%. We call this approach Bounded Pattern Area
with Standard Deviation Label Selector (BPA-SD).

BPA-SD still produces a lower precision than recall. One
reason is, two lists may share the same pattern and yet be
separated from each other by some other non-list text which
ListDetector classifies as being part of the same list. An-
other reason is, ListDetector can find patterns on a page
without any list. It will select the ones with the lowest stan-
dard deviation no matter how high that standard deviation
is. To address these two concerns and improve precision,
we altered BPA-SD in two ways. In the first (BPA-SD 2),
ListDetector removes text from a list between two instances
of a pattern whenever they are farther apart than 2.5 times
their pattern’s standard deviation. In the second (BPA-SD
3), ListDetector will filter out patterns that have a stan-
dard deviation larger than 50 word tokens. These two final
adjustments raise the AA score to 72.0% and 74.5%, respec-
tively, the highest on the training data in this paper.

4. EXPERIMENTAL EVALUATION
Table 2 shows the results of intermediate and final versions
of ListDetector as evaluated against the test data—pages
that we did not inspect during development. The raising
of the lower bound on pattern area in SLPA that improved
precision in the training data without affecting recall did, in
fact, affect recall substantially in the test data while at the
same time maximizing precision. The next change did noth-
ing to help the situation, namely increasing the number of
selected patterns per page. The change did improve recall in
the training data. We expect that when we have a larger test
set, some improvement will again be visible. The test data

also confirms that using either the unsupervised näıve Bayes
classifier or the standard deviation heuristic to select noisy
labels is effective at raising F-measure if used in conjunction
with the additional precision-raising constraints.

5. ADDITIONAL LESSONS
Keeping with the theme implied by this paper’s title, we
would like to pass on a few other lessons learned (or re-
learned) as part of this project.

Extra blank lines and horizontal rules between text blocks
appear like list patterns to ListDetector. We added them as
unique “words” to our OCR text at first, wanting to preserve
as much information about a page as we could. We removed
them from the OCR before generating the evaluation metrics
reported here.

Using a training set that is not representative of the test set
can make it difficult or impossible to perform well (assuming
no transfer learning). This is similar to changing the target
evaluation metric in the middle of development. It is harder
to hit a moving target than a stationary one.

It is sometimes unknown when positive changes in the train-
ing data will consistently predict positive changes in the test
data. We were more confident that improvements in the
training data were not accidental if there was an improve-
ment in more than one metric, such as both macro-averaged
and micro-averaged F-measure. We believed that using both
metrics as a guide helped us accept enhancements in List-
Detector that actually improved performance on the unseen
test data.

In early experiments, we noticed that improving precision
when the test set already had higher precision than recall
was often a bad idea, even if the change improved the over-
all F-measure in the training data. Since F-measure stays
close to the lower of its two components, this suggests that
it is useful to keep track of which component is the limiting
component at each point in development. This observation
also reiterates the need to ensure that training and test data
are representative of each other so it is less likely that pre-
cision is the limiting component in one set at the same time
that recall is the limiting component in the other.

Also early in development, we noticed that jittery evaluation
metrics (metrics that went up and down drastically in com-
parison to minor changes in hyper-parameter values) was a
sign of a bug (a misplaced parenthesis) in one of our most
important numerical functions (standard deviation).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the first proposed method
of general list detection in free text or OCR output we are
aware of. We have enumerated some of the challenges and
possible solutions in this task and have empirically evaluated
and compared these solutions. We conclude that, despite
several deficiencies and näıve assumptions, ListDetector can
categorize text as belonging to lists with 86.3% F-measure
based on a micro-average over pages in our test corpus. We
have also begun producing an annotated corpus of historical
OCRed document for others to use.

Since we are just beginning to investigate list detection,



List Detection Approach Macro-averages Micro-averages AA
Prec. Rec. F1 Prec. Rec. F1 F1

Simple Literal Pattern Area (SLPA) 55.9% 43.8% 34.5% 74.9% 83.5% 79.0% 56.8%
Bounded Literal Pattern Area (BLPA) 100.0% 12.3% 12.4% 100.0% 63.2% 77.4% 44.9%
Repeated Literal Pattern Area (RLPA) 100.0% 12.3% 12.4% 100.0% 63.2% 77.4% 44.9%

Pattern Area, Näıve Bayes Selector (PA-NB) 79.4% 41.6% 38.3% 86.1% 85.2% 85.6% 62.0%
Pattern Area, Standard Deviation Selector (PA-SD) 34.5% 81.7% 36.0% 46.6% 96.5% 62.8% 49.4%

Bounded Pattern Area, Standard Deviation (BPA-SD) 63.0% 56.0% 42.4% 72.6% 84.6% 78.1% 60.2%
Bounded Pattern Area, Standard Deviation (BPA-SD) 2 83.7% 55.5% 51.1% 89.3% 83.4% 86.3% 68.7%
Bounded Pattern Area, Standard Deviation (BPA-SD) 3 83.7% 55.5% 51.1% 89.3% 83.4% 86.3% 68.7%

Table 2: Evaluation of incremental changes in ListDetector with respect to the test data. “AA” is the average
of the two kinds of F-measure averages.

there are many additional improvements we plan to make to
the research described above. Our experiments have been
sensitive to the small size of both training and test data
and to ListDetector’s several hyper-parameters. We plan
to overcome these challenges in our ongoing research. It is
important to have a representative sample of pages in both
training and test sets. We will therefore annotate hundreds
of additional pages of OCRed text from a greater variety
of historical documents. The annotations will contain infor-
mation about list location, list structure, and relational field
content.

We have also begun designing and implementing improve-
ments and alternate approaches to list detection by integrat-
ing the following additional information and techniques into
ListDetector:

1. Leveraging visual layout clues like line spacing, tab
stops, and font style,

2. Acknowledging OCR errors by relaxing the strictness
or contiguousness of our pattern language,

3. Using patterns discovered on one page to help discover
similar patterns on another page that may contain
fewer records,

4. Performing list structure recognition as a post-processing
step to make corrections in the results of the initial list
detection step,

5. Bootstrapping field dictionaries via information extrac-
tion from other lists in the same document, and

6. Acknowledging that field recognizers with a high hit-
count naturally have a low standard deviation, even
when they are not part of a list, by using unsuper-
vised statistical language modeling to locate list-like
patterns among the noisy labels that are unlikely to
occur by chance (i.e. collocation metrics).

We expect that these ideas, especially the last four, will
enable ListDetector to become more adaptive to document
style and content with no added cost in terms of knowledge
engineering or human supervision.

7. ACKNOWLEDGMENTS
We thank Ancestry.com for providing most of the document
page images and OCR output we are assembling as part of
the public corpus.

8. REFERENCES
[1] A. Beläıd. Recognition of table of contents for

electronic library consulting. International Journal on
Document Analysis and Recognition, 4:35–45, 2001.

[2] C. Chang, C. Hsu, and S. Lui. Automatic information
extraction from semi-structured web pages by pattern
discovery. Decision Support Systems, 35:129–147, 2003.

[3] N. Dalvi, R. Kumar, and M. Soliman. Automatic
wrappers for large scale web extraction. Proceedings of
the VLDB Endowment, 4:219–230, 2010.

[4] D. W. Embley, Y. S. Jiang, and Y. Ng.
Record-boundary discovery in web documents. In
Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pages 467–478,
Philadelphia, Pennsylvania, USA, 1999.

[5] E. Green and M. S. Krishnamoorthy. Model-based
analysis of printed tables. Proceedings of the
International Conference on Document Analysis and
Recognition (ICDAR), 1072:214–217, 1995.

[6] R. Gupta and S. Sarawagi. Answering table
augmentation queries from unstructured lists on the
web. Proceedings of the VLDB Endowment, 2:289–300,
2009.

[7] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong.
Evaluating the performance of table processing
algorithms. International Journal on Document
Analysis and Recognition, 4:140–153, 2002.

[8] M. Hurst and T. Nasukawa. Layout and language:
Integrating spatial and linguistic knowledge for layout
understanding tasks. In Proceedings of the Eighteenth
Conference on Computational Linguistics, pages
334–338, Saarbrücken, Germany, 2000.

[9] D. X. Le and G. R. Thoma. Automatically creating
biomedical bibliographic records from printed volumes
of old indexes. In Proceedings of the 9th World
Multiconference on Systemics, Cybernetics and
Informatics, pages 267–274, Orlando, Florida, USA,
2005.


