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Abstract

Constraints are central to the notion of a semantic data model. How well a model captures constraints affects
its power and viability as a semantic data model. Cardinality constraints are an important subclass of general
constraints. In this paper we provide formal definitions for cardinality constraints of several semantic models,
as described in the literature. We construct a partial ordering of these constraints that shows the relative
power expressed by each cardinality constraint. We discuss our results and offer possible extensions to
contemporary cardinality constraint definitions. Our contributions include a collection and formal definition
of existing cardinality constraints, a partial ordering of this set, and recommendations for cardinality
constraint mechanisms in semantic data models.
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1. Introduction

A semantic data model captures and expresses semantic information in a way that is
-accessible to humans, yet is precise and formal [3,12, 13,20, 25]. Semantic models allow
users to organize basic modeling constructs and establish constraints over these basic
constructs. The Entity-Relationship (ER) Model, for example, provides us with entity sets,
- relationship -sets, and attributes as basic modeling constructs, and allows us to express

constraints such as “binary relationship set r is 1-to-1” [4]. :
> Although semantic models support vyarious basic modeling constructs and several
categories of constaints, we focus in this paper only on constraints and in particular only on
cardinality constraints. Cardinality constraints are of interest because they capture semantic
detail about the structure of sets of relationships or entities in data model instances.
Cardinality refers to the number of elements in a mathematical set [1]. Thus, a cardinality
constraint is a constraint that restricts the number of elements in a set. For example, if C is a
set of computers and D is a set of disk drives, we may require that all computers in C
connect to at least one disk drive in D. Figure 1(a) diagrams a legal instance for this
constraint, whereas Fig. 1(b) shows an instance that violates the constraint. If we let r
represent the binary set of connections from C to D, this cardinality constraint can be written
‘as Yc € C(|{d:d€ D A {c,d) Er}|=1). Here, and throughout the paper, {x: P(x)} de-
notes a set of x’s that satisfies predicate P over x, and |S| denotes the cardinality of set S.
Semantic data models have provided various ways to specify cardinality constraints. In this
paper we examine several cardinality constraints in existing semantic models, and we present
formal definitions for these constraints. We present definitions for relationship-set cardinality
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(a) Allowed (b) Disallowed

Fig. 1. Mapping under a cardinality constraint.

constraints in Section 2. In Section 3 we give a partial ordering of the cardinality constraints
for n-ary relationships and observe how the partial ordering changes when we restrict
relationships to be binary. We present definitions for entity-set cardinality constraints in
Section 4, and discuss how entity-set and relationship-set cardinality constraints together
- modify the partial orderings of Section 3. We discuss our results in Section 5, and also
present some extensions to existing cardinality constraint definitions. Finally, we give our
conclusions in Section 6.

2. Relationship-set cardinality constraints

We present formal definitions for cardinality constraints for the following semantic data
models: Semantic Binary Data Model (1974), Entity-Relationship Model (1976), Structural
Model (1979), Semantic Association Model (1980), Semantic Database Model (1981), -
Nijssen’s Information Analysis Methodology (1982) and its Binary Relationship Model
(1983), Enriched Entity-Relationship’ Model (1983), ‘Entity-Category-Relationship Model
(1985), Extended Entity-Relationship’ M 1986), Iris (1987), Object Modeling Tech-
~ nique (1991), anid Object-oriented Systems Analysis (1992). We present these definitions in
their approximate order of appearance in the literature. Several semantic data models are
not inicluded in this list, but after éxtensive study of the literature we believe that those listed
represent the different kinds of cardinality constraints in use today. "

To obtain uniformity in describing sets of objects and sets o relationships among objects,
we base our terminology on the ER model. Thus, we give definitions for all models in terms
of entity sets and relationship sets. Furthermore, we as ‘that an entity set is a set of
unique entities, independent of any attributes, and we assume that relationship sets are
tuples of entities aggrégated from their associated entity sets. We also assume that referential
integrity holds. For this paper, we ignore recursive relationship sets. An extension of this
discussion to include recursive relationship sets is conceptually straightforward, but notation-
ally cumbersome. " _ ‘

For our formal definitions, we use predicate calculus with elements of relational algebra.
We use angle brackets (- - ) to denote a tuple in a relationship set, and we use 7 to denote a
projection of a relationship set onto a subset of its associated entity sets. We also consider an
element a of an entity set E to be equal to (a) taken from a projection of a relationship set
onto E. N denotes the set of natural numbers {0,1,2, ...}, whereas P denotes the set of
positive integers {1,2,3,...}.
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2.1. Semantic Binary Data Model

One of the earliest semantic models is the Semantic Binary Data Model (SBDM),
introduced by Abrial [2]. This model is considered a minimalist model, since it defines a
relatively small set of basic constructs, including only binary (as opposed to n-ary) relation-
ships. The fundamental constructs of SBDM include objects, categories, and binary relation-
ships. A relationship (rel) is specified by listing two categories and two access functions
(afw’s) that define the relationship. For example, if PERSON and NUMBER were
categories, and we wished to specify an age relationship », we would write

r = rel(PERSON, NUMBER; AGE = afn(1, 1), PERSONOFAGE = afn(0, =)

The two access functions AGE and PERSONOFAGE are mappings that are inverses of each
other. ' ' :

Each access function has an associated cardinality constraint denoted by a pair of numbers
(a minimum and a maximum cardinal) in parentheses. The meaning of a cardinality
constraint (min, max) is that the corresponding access function maps an entity from one set
to at least min and at most max entities of the other set. Given a binary relationship
r =rel(E,, E,, r, = afu(min,, max,), r, = afn(min,, max,)), between entity sets E, and E,,
we can formally define the SBDM cardinality constraint as -

Ve, € E,(min, <|{tE€r,: {(E,) = e,}| < mdxl) S _. V(SBDM')

A similar formula defines the cardinality constraint on the second acée§s function. The
cardinals may take on values in the set N, and maximum cardinals may also have the value
o, which represents no upper limit.. ‘ _

A variety of semantics are associated with SBDM cardinality constraints. For example, a
minimum cardinal of 1 corresponds to a total mapping, and a maximum cardinal of 1 restricts
the mapping to be functional [2]. g

Finally, we observe that although SBDM does have a graphical representation for
categories and relationships, no provision is made for the specification of cardinality
constraints as part of the graphical representation of a model instance. If we wish to specify
SBDM cardinality constraints, we must write them down using a separate declarative
language.

2.2. Entity-Relationship Model

Chen introduced thé Entity-Relationship (ER) model in 1976 [4]. Cardinality constraints
in the ER model are restrictions on the mapping of relationship sets. Figure 2 shows three
kinds of mappings Chen defined for binary relationship sets: 1:1,1: M, and M: N. Let A
and B be the entity sets associated by relationship set . The M: N mapping in Fig. 2(a)
means that each entity of A may be associated with multiple entities in B and vice versa. An
M : N mapping imposes no constraint on cardinality. The mapping 1: M in Fig. 2(b) means
that each entity in A can have multiple related entities in B, but each entity in B can be
related to at most one entity in set A. This is defined formally as follows:

V(b)Y empr({tEr: (B)=b}|=1). . . (a)

Note the use of projection (7). This indicates that the constraint only applies to entities that
participate in r; thus the mapping may be partial. The 1: 1 mapping in Fig. 2(c) means that
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Fig. 2. ER constraints for binary relationship sets.

each entity of A can be related to at most one B and vice versa. Formally, this is

V(a) € fn'{ar(|{tE rit(A)=a}|=1) A
Y(b)EwBr(l{tEr: H(B)=b}|=1). (b)

Observe that (b) is (a) imposed on both entity sets in the relationship set. Again, the
constraint cannot require that the mapping be total.

Although Chen used mapping constraints in n-ary relationship sets in his original paper,
he did not give definitions or explicit examples of their meaning. We surmise from later
writings, particularly Teorey et al. [24], that Chen’s meaning of mapping for n-ary relation-
ship sets is that a connection marked by a 1 designates that the composite of keys of all other
connected entity sets constitutes a candidate key for the n-ary relationship set. Figure 3
shows, for example, the four mapping combinations for ternary relationship sets. Letting the
entity-set names stand for keys, the MNP mapping in Fig. 3(a) means that ABC is a
candidate key; the MNI mapping in Fig. 3(b) means that AB is a candidate key; the M11
mapping in Fig. 3(c) means that both AB and AC are candidate keys; and the 111 mapping
in Fig. 3(d) means that AB, AC, and BC are each candidate keys. '

We. formally define Chen’s n-ary mapping as follows. Let E be a set consisting of the n
entity sets for relationship set r, and let E' C E be the set of entity sets from E that are

Fig. 3. ER constraints for N-ary relationship sets.




Cardinality constraints in semantic data models 239

marked by the mapping symbol 1. For each AEE' letting E-—A=B,...B,_;, the
following must hold: : : :

V(b ..., b,.1)E Ty, ..B,_,"
({ter:(B)=b A AtB, )=b, }|=1). " (ER)

Note that (a) and (b) are special cases of (ER)

2.3. Structural Model

At Stanford University in the late 1970s, Wiederhold and Elmasri introduced the
Structural Model [27, 6,28]. The Structural Model is based on the Relational Model [5].
Among the differences are that Structural Model relations, which they call classes, are
always in Boyce Codd Normal Form; each relation has a ruling part (key) and a dependent
part; and several class types are defined that represent real-world objects. These class types
are characterized by connections between relation schemas. Figure 4 illustrates this; K;,i=1
or i =2, represents the ruling part of relation schema R, while R, — K; is the dependent
part. A connection between two relation schemas R, and R, is defined by two sets C; C R,
and C, C R, such that the domains of C; and C, are the same. As shown in Fig. 4, R, is said
to be connected 0 R, through (C;, C,). Connections are directed: the box on the end of the
limein Fig. 4 indicates that the direction is from C, to C,. Let r, and r, be relations on
relation schemas R, and R, respectively. If t, Er,, 1, Er, and £,(C)) =1,(C,), then an
instance of the connection R,(C;, C,)R, exists between ¢, and . Connections are always
binary, but the Structural Model does provide for the aggregation of several connections
through a central relation and thus effectively provides n-ary connections. S

Connections may have cardinality constraints of the form m: n, where m and n are
positive integers. The constraint m: n may take the forms 1: 1, 1: m, and m: n, correspond-
ing respectively to one-to-one, one-to-many, and ‘many-to-many cardinalities. Integers m and
1 fix the maximum number of entities (tuples) in one class (relation) that can be related to
entities in the other class.

A dependency constraint determines whether participation in the connection is mandatory
or optional. A total dependency makes participation mandatory for both classes. A partial
dependency makes participation mandatory for all entities of one class in a connection, but
allows optional participation for entities in the other class. The specification of no dependen-
cy allows optional participation for both classes. A connection is undirected. Thus, when a
partial dependency is specified, the optional and mandatory sides must be explicitly
indicated. The literature on the Structural Model does not indicate precisely how dependen-

e
Ry | L ]
'——C1_'—|

Fig. 4. Structural model inter-relation connection.
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cies and cardinality constraints may be written. We presume that a textual descrlptlon would
accompany the graphical description.

Together, cardinality and dependency constraints allow the description of total or partial
one-to-one, one-to-many, and many-to- -many relationships. To compare the Structural
Model with other models, we view tuples in a relation as entities and a connection as a
relationship between two entites. Let A and B be entity sets (relation schemas). If A is
connected to B via connection r with dependency d, and this connection has a cardinality
constraint m: n, m, n €EPU {e}, where m applies to A and n applies to B, then the
cardinality constraint is defined as follows:

V(a) € m,r(|{tEr: (A)=a}|<m)A
V(b)) € myr(|{tEr: t(B)=-b}ISn). » - (SM)

If the dependency constraint d is total, then we have additionally that 7, = A and mr = B.
If d specifies that 7 is partial only with respect to A, then we have m,r ='B; if r is partial only
with respect to B, then m,r = A. If d specifies no dependency, then we s1mp1y have (SM).

2.4. Semantic Association Model

The Semantic Association Model (SAM) is by Su and Lo [22]. SAM was originally
oriented towards business database modeling, but was extended to allow more natural
modeling of scientific and statistical databases [23]. In SAM, a concept may be either atomic
(cannot be decomposed) or nonatomic. A nonatomic concept is formed by specifying an

‘association of atomic or nonatomic concepts. The various kinds of associations available

distinguishes SAM from other models.

Reverting to ER terminology, an entity set in SAM may have single-valued and multl-
valued attributes, where the attribute may be total or partial. Mapping cardinality constraints
of relationship sets may be m — n, 1—m, or 1—1, indicating many-to-many, one-to-many,
or one-to-one respectively. Figure 5 111ustrates how these relationship sets are represented in

(a) Many-to-Many Relationship.

(c) One-to-One Relationship. (d) N-ary Relationship.

i Fig. 5. Semantic association model constraints.
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SAM. Figure 5(a) shows a many-to-many relationship set r between entity sets A and B,
whereas Figs. 5(b) and 5(c) show one-to-many and one-to-one relationship sets, respectively.
Figures 5(a)—5(c) show binary relationship sets. SAM allows n-ary relationship sets, n =2,
as in Fig. 5(d), where r is a ternary relationship set among entity sets A, B, and C.

In addition to mapping constraints, SAM allows for the specification of candidate keys for
a relationship set. Such a key may involve any number of attributes, but only one key per
relationship set may be specified. Thus, there are two definitions for SAM cardinality
constraints: mapping constraints and candidate key constraints. :

Let A and B be entity sets associated by relationship set 7. A many-to-many mapping,
m — n, shown in Fig. 5(a), imposes no constraint on the mapping cardinality. A 1—m
mapping from A to B, as diagrammed in Fig. 5(b), means that each entity in B can be
related to at most one entity in A, but an entity in B may be related to many entities in A.
We express this formally as follows: :

V(b) € myr(|{t € moyr: KB) =D} =1). . ©

A 1—1 mapping, shown in Fig. 5(c), imposes the above constraint on both A and B as
follows:

V(a) € mr([{t € mupr: (A)=a}|=1) A
V(b)Y € myr(|{t € fn'ABr:t(B)=b}|=1). ' (d)

Notice in the ternary relationship set r of Fig. 5(d), that each mapping constraint is binary.
In an n-ary relationship set, mapping constraints can only be applied to binary pairs of entity
sets. Thus, (c) and (d) apply equally well to both binary and n-ary relationship sets.

In general, a SAM mapping constraint is a collection of pair-wise mapping constraints. We
define this formally as follows. Let r be an n-ary relationship set involving entity sets in E.
Since a 1 — 1 mapping from A to B can be viewed as two 1 — m mappings, one from A to B
and the other from B to A; and since an m — n mapping imposes no constraint, we assume
without loss of generality that all mapping constraints are 1 — m. For each 1 — m mapping
constraint on a pair of distinct entity sets A € E and B € E, the following must hold:

V(b) € myr(|{t € mypr: (B)=Db}|=1). (SAM)

For candidate-key constraints, let r be an n-ary relationship set, and let
{A,, A,,..., A} be the candidate key for r, p<n. Then the following must hold:

v(ay,...,a,) € Tay..aT
({ter:t(A))=a, A - AH(A,)=a,}|=1). (SAM-k)

Since there can be at most one candidate key for a relationship set, there is only one such
constraint for the relationship set.

2.5. Semantic Database Model

The Semantic Database Model (SDM) has its roots at M.L.T. in the late 1970s [19,10].

SDM was revised and became well-known in the early 1980s when Hammer and McLeod
presented the current version [11]. In SDM, an entity set is called a class, and relationship
sets are represented through the specification of attributes. An attribute associates an entity
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of one class with one or more entities of another class. Attributes may be single-valued (the
default) or multivalued, and multivalued attributes may be constrained to associate one
entity with between min and max other entities. Also, an attribute may be required to
exhaust the class from which it takes values. '

Figure 6 illustrates a sample SDM model fragment. There are three classes: A’s, B’s, and
C’s. The class A’s has three attributes: R, S, and T. R establishes a many-to-one relationship
from A’s to B’s, where each of the A’s is associated with between 2 and 5 B’s. S and T
establish one-to-one relationships between A’s and C’s, and A’s and B’s respectively. SDM
attributes are essentially one-way mappings. However, a pair of attributes can be declared as
inverses so that two-way mappings can be established. Our example shows a bijection
between B’s and C’s in the form of inverse attributes U and V. These mappings constitute a
bijection because U and V both cover their codomains. Finally, R and S + T are identifiers
(candidate keys) for the A’s class. We now proceed to the formal definitions, using the
example in Fig. 6.

In order to compare SDM with other models, we must transform the concepts slightly. Let
A and B be entity sets (classes), and let A have a multivalued attribute R that maps entities
of A to entities of B, with cardinality constraints min and max, (2 and 5 respectively in Fig.
6). Let r be the set of ordered pairs (4, b) such that a € A and b € B and attribute R maps
a to b. Then the following must hold:

V{a) € m,r(min<|{tEr: HA) = a}| < max) " (SDM)
where min €P, max EP U {~} and min<max. If R is a single-valued attribute, then we

have (SDM) where min = max = 1. If R is required to exhaust B, then in addition to (SDM)
we have myr = B.

A's
description: first sample SDM class
member attributes:
R
value class: B's
multivalued with size between 2 and 5

value class: C'é
T
value class: B's
identifiers:
R
S+T

B's
description: second sample SDM class
member attributes:
U
value class: C's
exhausts value class
inverse: V

C's /
description: third sample SDM class
member attributes:

y .
value class: B's
exhausts value class
inverse: U

Fig. 6. SDM constraints.
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As mentioned previously, SDM incorporates the concept of candidate key. Attributes may
be specified as identifiers, or keys. Recall that the class of A’s in Fig. 6 has two candidate
keys: the multivalued attribute R and the composite key S + T. The formal definition for
candidate keys in SDM is as follows (again we revert to ER terminology). Let r be an n-ary
relationship set and let {Aq, .- > A} bea candidate key for r, p <n, where the A s are

attributes. Then the following must hold:

V(an oo @) ETaat |
/

({ter: t(A1)=a1/\---/\t(Ap)=aP}|=1). (SDM-k)

2.6. Nijssen’s Information Analysis Methodology and the Binary Rélationship Model

Nijssen’s Information Analysis Methodology (NIAM) [26] is an analysis methodology that
includes a semantic data model, later called the Binary Relationship Model (BRM) [17, 18].
BRM is a semantic data model in which there are only binary relationships among entities.
In BRM, an entity set is called an object type, and a relationship set is called a. relationship
type. Entity sets A and B may be associated in a relationship set, written as A(R,, R,)B,
where R; and R, are the roles of A and B respectively. Not all entities in set A need be
involved in role R;. The set of entities from A that appear in the tuples for A(R, R,)B is
called the active set of A for Ry, written activer (A). The union of all active sets for roles of
A is denoted active(A). All entities of A must belong to active(A).

BRM has several kinds of cardinality constraints, called cardinality, identifier, total, and
uniqueness constraints. The most basic is the cardinality constraint, shown in Fig. 7(a). Let r
represent A(Ry, R,)B. A cardinality constraint min .. max for role R, of r is defined

formally as

V(a) € myr(min<|{tEr: t(A) = a}| < max) (BRM)

where min €P, max €P, 1< min < max, and max may be omitted. If max is not specified,

min..max ‘
o[ (e

O
O
2]

(a) Cardinality Constraint (b) ldentifier Constraint
v Voo '
() O
(c) Total Constraint (d) Total Identifier Constraint

v
min..max HE
) ol
(e) Total Cardinality Constraint

(f) Uniqueness Constraint

H
>

Fig. 7. BRM constraints.
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then there is no upper bound on the expression, and thus we may equate rmax with . The
cardinality constraint 1 alone (i.e. min = 1 and max unspecified) expresses no constraint,
since any value that appears in the projection of the relationship set must appear at least
once. Figure 7(b) shows an identifier constraint, which is a special case of the cardinality
constaint where min = max =1.

'A total constraint on role R,, shown in Fig. 7(c) specifies that active(A) = activep (A), ot -
in our standard terminology, that m,r=A. Total constraints may be combined with
cardinality constraints, if desired. For example, Fig. 7(d) shows a total identifier constraint,
and Fig. 7(e) shows a total cardinality constraint.

A uniqueness constraint is a candidate key. By indicating that a set of object types
identifies (is a key for) another object type, n-ary relationships can be implied from the
binary relationships. Figure 7(f) shows a uniqueness constraint; the active sets of B and C
serve as unique identifiers for elements of A. In other words, if ABC is a relation schema,
then BC is a candidate key for the schema. The formal definition for candidate keys in BRM
is as follows (again we revert to ER terminology). Let r be an n-ary relationship set and let

{A,...,A,} bea ¢andidate key for 7, p <n. Then the following must hold:
Y{a,..., ap) E Tyl
(|{ter: t(A1)=a14-_--/\t(Ap)=ap}|=1). } ' (BRM-k)

2.7. Enriched Entity-Relationship Model

" The Enriched Entity-Relationship Model (EER) by Lenzerini and Santucci [15], extends
the ER model’s fundamental constructs of entity, relationship, and attribute, by adding subset
and generalization hierarchies among entities and also among relationships. EER also
includes several integrity constraints not found in the ER model and introduces some new
cardinality constraints. These constraints are written as text, and not as part of a graphical
diagram. :
EER’s relative cardinality constraint constrains the number of times instances of one set of
entities can be related to instances of another set of entities. For example, suppose. that
entity sets STUDENT, COURSE, and GRADE are related by relationship ENROLL-
MENT. We can indicate that a student may receive at most one grade for a course by
.specifying a relative cardinality constraint of ‘

Cmax[ENROLLMENT(STUDENT/COURSE,GRADE)] =1.

This can be read as, ‘in the relationship set ENROLLMENT, a STUDENT value may
appear with at most one COURSE, GRADE value pair.’

In addition to a maximum relative cardinality, a minimum relative cardinality constraint
may be specified. A minimum cardinality, Cmin, may be listed as optional, in which case the
minimum is either 0 or Cmin. Let r be an n-ary relationship set, and let X = {4, ..., A}

and Y ={B,,...,B,} be disjoint collections of entity sets participating in r. The assertion
Cmin[r(X/Y)] = min.and Cmax[r(X/ Y)] = max requires the following:

V{a,... ,_aP)E Tay.al

(min<\{tEmy, a,p..5T HA)=a, A NH(A,)= a,}| < max) .(EER-1)

where min, max >0. Note again that Cmin or Cmax may be undefined, in which case the
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corresponding inequality is ignored. Furthermore, if Cmin is not optional, then m, a7
must equal the full cross product A; X -+ X A .

Lenzerini and Santucci also deﬁned several 1mportant concepts for reasonlng about their
cardinality constraints. First, a set of cardinality constraints is consistent if there exists at least
one database state that satisfies every constraint in the set. Second, a set of cardinality
constraints is well-defined or sound if the minimum and maximum cardinalities, and every
cardinality in between, are actually attainable for every cardinality constraint in the set.

2.8. Entity-Category-Relationship Model

In the Entity-Category-Relationship (ECR) model, Elmasri, Hevner, and Weeldreyer
extended the ER model by defining the category concept [7]. A category is a classification of
entities used for generalization or specialization. Cardinality constraints in the ECR model
are based on participation constraints [2, 6, 8]. Given a relationship set r involving entity set
A, a participation constraint is a pair of integers (min, max), where each entity in A must
participate in r at least min and at most max times, where 0 < min < max and 1 < max. Also,
max may be the special symbol «, in which case there is no upper limit on participation. The
default participation constraint is (0, ®), representing no constraint on participation.

Figure 8 shows a general relationship set in an ECR diagram. Let A, ...,A, be the n
entity sets (categones) related by relationship set r. A participation constraint (mm max) for
an entity set A is defined formally as follows:

Ya € A(min<|{tE€ r: H(A) = a}| < max) (ECR)

where min €N, max € P U {}, and 0 < min < max. Relationship set r is total with respect to
entity set A if min =1, and partial if min =0.

2.9. Extended Entity-Relationship Model

In Teorey, Yang, and Fry’s Extended Entity -Relationship (XER) model, cardinality
constraints are based on mapping cardinalities as in the ER model [24]. However, in addition
to specifying a cardmahty mapping, each entity set may also be marked as optional (partial)
or mandatory (total) in the relationship set. In an entity set designated as mandatory for a
relationship set, all entities must participate in the relationship set.

Fzgure 9 shows some XER cardinality constraints. Instead of using 1’s and letters to mark
‘one’ and ‘many’ entity sets, corners of the central polygon are shaded for the ‘many’
connections. Figure 9( a) is thus a 1-many relationship set from A to B. To mark an entity set
as optional, a circle is placed on its connecting line. For mandatory participation, the
connecting line has no special marking. Thus, in Fig. 9(a) entities in A participate optionally
while entities in B participate mandatorily in the relationship set. Fig. 9(b) shows a ternary
relationship between entity sets A4, B, and C. The shaded corners mark A and B as many

Ay Ay Aq

A, {min, max,)
A, (min,, max,)

A,.,.(min o max,)

Fig. 8. ECR constraints.
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Fig. 9. XER constraints.

sides and the unshaded corner marks C as a 1 side. Participation of all entity sets in this
example is optional.

Formally, let E be the n entity sets for relationship set r, and let E' C E be the entity sets
of E attached to unshaded corners. For each A€ E', letting E—~ A= B, ... B,_,, the
following must hold: o

‘V<b1, b ) E Tp,.B,
' ({t€r:tB)=by A A HB,_1) = bn—l}l =1) (XER)

where if A is mandatory, then m,r = A must also hold.

2.10. Iris

Lyngbaek and Vianu introduced the Iris data model in [16]. An Iris schema is a directed
graph combined with a set of constraints. Literal and non-literal types (entity sets) are
represented respectively as labeled square or round nodes in a graph. Relationship sets are
called functions and relate the cross product of one group of entity sets to the cross product
of another group. Figure 10 shows how relationship sets are drawn in Iris. Arcs with optional
role labels connect a cross-product symbol to entity sets and a directed arrow connects the
two cross-product symbols.- ;

The Iris cardinality constraint is called a participation constraint. Fig. 10 shows two
examples. The r: A[1, ] cardinality constraint in Fig. 10 means that every entity in A
participates at least once in r, and the constraint 7: A, B[0,2] means that AB-pairs can
participate at most twice. :

Given an n-ary relationship set r relating entity sets A, . . ., A, a participation constraint
takes the form r: A, ..., Ap[min,max], p<n, where min is 0 or 1 and max is any
non-negative integer or o, and means that each tuple of the cross product A; X -+ X A,
must participate in r at least min and at most max times. When min is 0 and max is «, the
cardinality constraint imposes no restriction. The formal definition of an Iris participation

R S PR K C

Al ) r i A[1,e9]
£ . } . r: A,B[0,2]

Fig. 10. Iris constraints.
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constraint is

V(ay,...,a,) EA XX A

p

(min<|{t€r: t(A;))=a; A" A t(Ap) =a,}| s.max)v (Iris)

where min € {0,1} and max €P U {}.

2.11. Object Modeling Technique

Object Modeling Technique (OMT) by Rumbaugh et al. is a recent model for object--
oriented analysis and design [21]. Object classes and associations in OMT correspond to
entity sets and relationship sets in the ER model. OMT has two methods for defining
cardinality constraints: multiplicity for binary relationship sets and candidate keys for n-ary
as well as binary relationship sets. Figure 11 gives examples of multiplicity and candidate-key
constraints. : . _

Multiplicity is a generalization of the ER cardinality constraint. Instead of allowing only 1
or many, OMT allows a set of natural numbers to constrain the cardinality. However, OMT
only permits multiplicity constraints for binary relationship sets. For example, in Fig. 11(a),
entity sets A and B are associated by relationship set r. The multiplicity of A is given as 0,
3-5, which means {0,3,4,5}, and the multiplicity of B is given as 1+, which means
{1,2,3,...}.

Let r be a binary relationship set associating entity sets A and B and let » have multiplicity
s for A. Formally, the OMT multiplicity constraint is defined as

' VbéB(l{tE r:(B)=b}€s). ' (OMT-m)

For n-ary relationship sets of degree greater than two, OMT only uses candidate keys to
specify cardinality. Candidate keys may also be used for binary relationship sets in addition
to multiplicity constraints. The OMT diagram in Fig. 11(b) requires AB and AC to be
candidate keys for relationship set . Although not explicitly stated, we assume that an OMT
candidate key cannot have zero attributes. The formal definition for candidate keys in OMT
is as follows. Let 7 be an n-ary relationship set and let {A4,,..., A,} bea candidate key for
r, p<n, where the A/’s are attributes. Then the following must hold: :

V{a,,...,a,)E Ta,.a,l

({tE€r:A)=a,n---AHA)=a,}|=1). (OMT-k)

r {Candidate Keys: (A,B) (A,C)}

(a) Multiplicity ' (b) Candidate Key

Fig. 11. OMT: constraints.




248 ‘ S.W. Liddle et al.

2.12. Object-oriented Systems Analysis

Object-oriented Systems Analysis (OSA) is an object-oriented systems modeling tech-
nique that includes a semantic data model [14,9]. An OSA object class corresponds to an
entity set in the ER model. OSA defines two relationship-set cardinality constraints:
participation constraints, and co-occurrence constraints. Participation constraints restrict the
number of times an entity may be involved (or participate) in a relationship set. Co-
occurrence constraints are a generalization of functional dependencies. '

In Fig. 12(a), entity sets A and B are associated by relationship set 7. A has a participation
constraint of 1:1, which means that each entity in A must participate exactly once in 7. B has
a participation constraint 1:# which means that each entity in B must participate at least
once in r and may- participate an unlimited number of times. Participation constraint 0:*
represents no constraint. A participation constraint is specified by a comma-separated list of
min: max pairs. It is common for a participation constraint to use a single range of integers,
as in Fig. 12(a), but there are also occasions where the more general form is useful.

In Fig. 12(b), entity sets A, B, and C participate in a ternary relationship set . Each entity
in A participates in r between zero and three or between five and seven times, each entity in
B participates at least twice, and each entity in C participates zero or more times. However,
there is also a co-occurrence constraint : ‘

AC—2:5)>B

which means that pairs of entities from A and C that appear in some tuple of r must co-occur
(appear together) with at least two and at most five entities from B. If the maximum in Fig.

12(b) were * instead of 5, there would be no upper limit on the co-occurrence constraint. A

1:% co-ocurrence constraint imposes no restriction. As with OSA participation constraints,

the general form of a co-occurrence constraint allows an arbitrary number of comma-

separated min: max pairs. Note that min must be at least 1 because any combination of
entities for a left side of a co-occurrence constraint either does not appeat in a relationship
set or appears at least once with some combination of entities for the right side. .

We formally define the OSA participation constraint min, : max,, min,: maxy, . .., min,

: max, for entity set A as follows:

Ya € A((min, <|{tEr: t(A)= a}| < max,)
VoV

(min, <|{tE r: (A) = a}| < max,)) | (0SA-p9)

‘where min, EN, max; EPU {*}, 1<i<k, and * denotes .

AC —{25y» B

Fig. 12. OSA constraints.

N
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An OSA co-occurrence constraint for relationship set r has the form
Ay ... A, ~(min,: max,, min,: max,, . .., min,: max, > B, ... B,

where A;, 1<i<p, and B;, Lsj=<gq are both non-empty sets of entity sets involved in r,
and {A,..., A, }N{B;,..., B,} =Q. The formal definition is

Y{ay,...,a,)€E Ta,.a,T

(min<|{te TA,...A,By..B, t(AI) =a; A AH(A)= ap}l < max, )

V ... V

(min, <|{te TAy...ApBy... BT * HA)=a A ANH(A,)= ap}l = max}c)) (OSA-co)
where min, €P, max, € (PU {*}), 1<I<k, and * denotes «.

As Fig. 12(b) shows, both participation constraints and co-occurrence constraints can be -
imposed on the same relationship set. Thus, when an n-ary relationship set has a combina-
tion of participation and co-occurrence constraints, we have the formula ‘

(OSA-pc;) A -+ A (OSA-pc,) A
(OSA-co) A++- A (OSA-co,,) (OSA-)

where (OSA-pc;), 1<i<n, is the participation constraint for the ith entity set of r, and
(OSA-co;), 1<j<m, m=0, is a co-occurrence constraint on 7.

3. Partial orderings

In this section we present two partial orderings of the cardinality constraints defined in
Section 2. The first partial ordering is for cardinality constraints on n-ary relationship sets.
The second is for cardinality constraints on binary relationship sets. We also present a
universal upper bound for these partial orderings. The precedence relation for the partial
orderings is denoted by =. If A and B are semantic models, A= B means that any
cardinality constraint expressible by B has an equivalent representation in A. A= B can be
read as ‘A dominates B.’ If A= B and B= A, we say A= B.

3.1 N;ary relationship sets .

For n-ary relationship sets we consider the following cardihality constraints: ER, SAM,

‘SAM-k, SDM-k, BRM-k, EER-1, ECR, XER, Iris, OMT-k, OSA-pc, OSA-co, and OSA-c.

We do not include SBDM, SM, SDM, BRM, or OMT-m because. these constraints apply
only to binary relationship sets. Figure 13 gives a diagram of the partial ordering. We now
present lemmas and counter examples leading to a theorem that establishes the validity of
the partial ordering.

Lemma 1. SDM-k= OMT-k = BRM:k.

Proof. Immediate from the definitions. [
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0SA-c EER-r
OSA-pc DSA-co Iris
ECR

SAM SDM-k = OMT-k = BRM-k XER

. SAM-k ER

Fig. 13. Partial ordering of cardinality constraints for N-ary relationship sets.

Lemma 2. OSA-c= OSA-pc and OSA-c= OSA-co.
Proof. Immediate from the definitions. O
Lemma 3. OSA-c= XER.

Proof. Given an arbitrary XER cardinality constraint, we show how to construct an
equivalent OSA-c cardinality constraint. Consider an XER cardinality constraint on a
relationship set r. Let E be the n entity sets for r, and let E' C E be the entity sets of E
attached to unshaded corners. For each A€ E' letting {By, By, .- - B, ,}=E—A, we
write the OSA-co constraint By B, ... B, —~(1: 1)> A. Noting that 1<x<1implies x =1,

and that mp 5, . 5,_aT =7 this co-occurrence constraint reduces (OSA-co) to
o By

: V(bl,'... b )ETa s T
(€ r: ((By)=by A AUBu) = bia}[=1)

which is (XER). However, we must also account for the possibility of A being mandatory. If
A is optional, we write the OSA-pc constraint 0:# for A, otherwise write the OSA-pc
constraint 1:% for A. By (OSA-pc) the participation constraint 1:* for A is

Vac A(l<|{tEr: (A)= a}|)
which implies ‘that m,r=A given our assumption of referential integrity. ‘U
Lemma 4. EER-r = Iris.
Proof. Consider an Iris cardinality constraint, 7: Ay, ..., A p[min, max], on a relationship‘

set . We construct an equivalent EER-r constraint as follows. Let E be the set of entity sets
participating in 7, let X = {A,,...,A,} be a subset of E, and let Y={By,: .., B,} be

T SRR

s
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F — X. We now write the EER-r constraints Cmin[r(X/Y]=1 and Cmax[r(X/Y)] = max.
Observing that m,, 4 5,.57 =7 and substituting in (EER-r), we obtain
v{a,,...,a,) € Tapn,

(1$|{t€r:t(A1)=a1/\---/\t(Ap)=ap}|smax)v : (1)

We now consider the two cases for the Iris min. If min =1, then we specify that Cmin is not
optional. By the definition of EER-r, this means that A, X+ X A, =y 4T Substitution
of the cross product for the projection in (1) yields (Iris), where the Iris min =1. Now

* suppose that the Iris min = 0. In this case we specify Cmin to be optional; thus m, 4 7 need
‘not be the same as A; X -+ X A,. Thus, in addition to (1), we have

V(ay, .. @) E(AyX X A, =Ty aT)
(I{tEr:t(A1)=a1/\---At(Ap)=ap}|=0). , (2)

Consider a tuple ¢/ € A; X -++ X A,. Either ¢’ is in m, 41, OF itisin A; X -+ XA, —
Tay. A, Therefore, thé cardinality of the set of tuples in 7 that have the same A,-... A,-
values as ¢, as restricted by (1) and (2), is between the Iris min (=0 in this case) and the Iris
max. O

Lemma 5. Iris = XER.
Proof. Consider an XER cardinality constraint on a relationship set 7. Let E be the set of
entity sets for , and let E' C E be the entity sets of E attached to unshaded corners. We
construct an equivalent Iris constraint as follows. For eachA€EE letE-—A=B,...B,_;.
Now write the constraint 7: By, ..., B,_4[0, 1], and, if A is mandatory, write the constraint
A[1,]. Substituting 7: By, . .., B,_4[0,1] in (Iris), we obtain

,V<b1, SRR bn-—1> EBy X X Bn—l(i{te rit(B;))=b A A t(Bp) = bn—l}l <1).
Since 7y, 4,7 C A XX A,, this implies

V{by, ..., b, 1) € WBI‘..B,,_Ir(l{t-E r: t(Bx) =b, A AUB, )= b,-i}|=1)
which is (XER). When A is mandatory, by substituting r: A[1, ] in (Iris), we also obtain

Yae A(l<|{tEr: H(A) = a}| <)
which, because of referential integrity, implies that m,r = A. 0O

Lemma 6. Iris = SDM-k.

Proof. Let K={A,,...,A,} bean SDM-k candidate-key constraint on relationship set 7.
Consider the Iris constraint 7: A ... A4,[0,1], which by substitution in (Iris) is

V(al,...,ap)eAIX-“XAP(HtEr:t(A1)=a1/\---/\t('Ap)=ap}|$1).

Since 7y 4,7 C A, x---%x A,, this implies
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V{ay,...,q,) € "TAI...AP"(HtE rit(A)=a; A AHA)= a}|=1)

which is (SDM-k). O
Lemma 7. OSA-co= SDM-k.

Proof. Let r be a relationship set on scheme R={A,, ..., A} and let K=
(A, ..., AL, psn be an SDM-k candidate-key constraint. If K= R, then K represents
no constraint since 7 is a set. Therefore, we assume without loss of generality that K is a
proper subset of R. Now consider the OSA-co constraint K—~1:1)~»R—-K. Noting that
1< x =<1 implies x =1, by substitution in (OSA-co) this is :

s

Via,,...,a,) € 7rA1mApr(|{tE mer: ((A) = a A A l(Ay) = ap}l =1)

which is (SDM-k). O
Lemma 8. OSA-pc= ECR.

Proof. Immediate from the definitions. (ECR) is a special case of (OSA-pé), where there is
only one min: max range and max is constrained to be greater than or equal to min. O

Lemma 9. EER-r= ECR.

Proof. Let r be an n-ary relationship set with schema R={A, ..., 4,}. Given an ECR
constraint (min,, max;) on A, 1=<i<n, we construct an equivalent EER-T constraint as
follows. If min,=0 then let Cmin[r(A,/R— A;)] be optional, else let Cmin[r(A;/
R — A))] = min;, where Cmin is not optional. Now let Cmax[r(A;/R— A;)]= max;. Sub-
stituting this instance of Cmin and Cmax into (EER-), and noting that 7, z- agl =1, We
obtain -

V{(a,) Efn-Air(minisl{tE ri #(A,) = a;}| < max,) : (3)

for every i, 1<i<n. If Cmin is not optional, then WA,T=AU and since (a;) =4,
substitution yields

Va,€ A(min,<|{tEr: (A;)= a,}| < max,)

which is (ECR). If Cmin is optional, then we know min; = 0; thus 74 7 need not be the same
as A,. Thus, in addition to (3), we have

V{(a;) € (A= ma))
({rer: (A)=a}[=0). Q)

Consider a tuple ' € A;. Either ¢ is in m, 1, OF itisin A; — 74t Therefore, the cardinality

of the set of tuples in r that have the same A -values as ¢, as Testricted by (3) and (4), is
between the ECR min; (=0 in this case) and the ECR max;. O

Lemma 10. EER-r= SAM.
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' Proof. An m —n SAM constraint imposes no constraint, and so we need not examine the

m — n case further. Also, sincea 1—1 SAM constraint from A to B is the same as al—m
SAM constraint from A to B and a 1—m SAM constraint from B to A, we need only
consider the 1—m case. For each 1—m SAM constraint from A to B in an n-ary
" relationship set 7, where A and B are distinct entity sets involved in r, we write the EER-r
constraint Cmax[r(B/A)]=1. This yields

V(b) € mpr(|{t E mppr: AB) = b} =1)
which is (SAM). O
Lemma 11. OSA-co=SAM.
| Proof. Similar to ﬁroof of Lemma 10, using B —(1: 1> A for Cmax[r(B/A)]=1. O
Lemma 12. SDM-k = SAM-k. |

Proof. Immediate from the definitions. The difference is that SAM-k constraints are
restricted to one per relationship set, whereas the number of SDM-k constraints per
relationship set is unrestricted. U

Lemma 13. SDM-k= ER.

Proof. Consider an ER constraint on an n-ary relationship set r. Let E be the set of entity
sets for 7, and let E' C E be the set of entity sets in E marked by the mapping symbol 1. For
each A € E', we write the SDM-k candidate key constraint E — A. For each such SDM-k
constraint, letting E— A= {By, ..., B,_;}, we have

v{b,,...,b, 1) E Tp,..B,_,"

({ter: €B)=by A= AUB, ) =Dy} =1)
which is (ER). O
Lemma 14. XER = ER.

Proof. Immediate from the definitions. (XER) is (ER) with the addition of the ability to
specify mandatory connections. a .

We now have all the lemmas necessary to establish the domination relationships of our
n-ary partial-ordering result. However, to show that there are no more domination relation-
ships in the partial ordering, we also need the counter examples in Table 1. Observe that
some counter examples that might be expected are not needed. For example, ER # OSA-pc,
since OSA-pc=ECR and ER # ECR together imply ER # OSA-pc; for if not, then ER=
ECR. In general, we need counter examples only for the least lower bounds of non-
dominated models. For example, for ER we need counter examples for only SAM, SAM-k,
ECR, and XER.

Theorem 1. The set of models {ER, SAM, SAM-k, SDM-k, BRM-k, EER-r, ECR, XER,
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Iris, OMT-k, OSA-pc, OSA-co, OSA-c} together with the precedence relation = satisfies the
partial ordering in Fig. 13.

Proof. Lemmas 1-14 and Counter Examples 1-30. O

o - ¥
§

3.2. Binary relationship sets

For binary relationship sets we consider the following cardinality constraints: SBDM, ER,
SM, SAM, SAM-k, SDM, SDM-k, BRM, BRM-k, EER-1, ECR, XER, Iris, OMT-m,
OMT-k, OSA-pc, OSA-co, and OSA-c. Figure 14 gives a diagram of the partial ordering for

Table 1
Counter examples for N-ary relationship-set results .
# | Z Counter Example* Notes
EER-t ‘ .

1 # OSA-pc 1:1,3:* OSA-pcon A EER-T cannot Testrict participation’

to a disjoint range of integers.

2 # OSA-co A—1:1,3:*)>B #1

OSA .
3 # TIris riA,B[1,1] OSA cannot ensure that r is the
cross product of A and B. -
Tris
4| #ECR (2,2) ECRon A Iris cannot ensure that entities’
in A participate more than once.
5 # SAM Let r be ternary on A, B, | Iris cannot enforce a functional
' and C; 1-m from A to B. dependency that involves only some
of the entity sets of r.
OSA-pc

6 # SAM #5 OSA-pc cannot constrain participation
of co-occurrences, only participation
of single-entity occurrences.

7 # SAM-k Let r be ternaryon A, B ,.| #6

and C with key AB.
8 #ER Let r be temaryon A, B, #6
and C with1on C.
ECR

9 # OSA-pc #1 ECR cannot restrict participation
to a disjoint range of integers.

10 # SAM #5 ECR cannot constrain participation
of co-occurrences, only participation
of single-entity occurrences.

11 # SAM-k #7 #10 )

12 #ER #8 #10

OSA-co

13 #ECR (1,2) ECR on A OSA-co cannot ensure that entities
in A participate in r.

14 # XER A mandatory #13 :

SDM-k=OMT-k=BRM-k

15 # ECR T #4 : SDM-k cannot ensure that entities
in A participate more than once.

16 #SAM <. #5 SDM-k cannot enforce a functional
dependency that involves only some
of the entity sets of 7.

17 # XER #14 SDM-k cannot ensure that entities
in A participate in r.

*Counter examples assume a binary relationship set r involving entity sets A and B, unless otherwise

specified.
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Table 1 (cont.)
Counter examples for N-ary relationship-set results

T S

g
:Z;‘ # | # Counter Example* Notes
4 XER .
:2 18 #ECR #4 XER cannot ensure that entities
in A participate more than once.
19 # SAM #5 XER cannot enforce a functional
§ dependency that involves only some
q of the entity sets of r.
20 # SAM-k Let r be ternary on A, B, | For n-ary relationship sets, XER keys
and C with key A. involve n—1 entity sets.
SAM
21 #ECR #4 SAM cannot ensure that entities
in A participate more than once.
22 # SAM-k #7 SAM cannot enforce composite
candidate-key constraints.
23 #ER #8 #22
ER )
24 # SAM #5 ER cannot ensure participation
of entities in A with respect to B,
) only with respect to all of r.
25 # SAM-k #20 For n -ary relationship sets, ER keys
involve n—1 entity sets.
26 # ECR #4 ER cannot ensure that entities
in A participate more than once.
27 Z XER #14 #26
SAM-k
28 #ER 1’son A and B SAM-k can only specify one key per
relationship set. B
29 #SAM 1-1 from A to B ‘ This implies that A and B are both :
keys. But SAM-k can only specify one
key per relationship set.
30 #ZECR #4 SAM-k cannot ensure that entities
in A participate more than once.

*Counter examples assume a binary relationship set r involving entity sets A and B, unless otherwise
specified.

cardinality constraints restricted to binary relationship sets. We now present lemmas and
counter examples leading to a theorem that establishes the validity of this partial ordering.

Lemma 15. OSA-pc= OSA-co for binary relationship sets.

Proof. Given an OSA-co constraint for a binary relationship set, we show how to construct

an equivalent OSA-pc constraint. Let r be a binary relationship set involving entity sets A

and B. An OSA-co constraint has the form A ~(min,: max,, . .., min,: max;)> B. Observ-
ing that for a binary relationship set, 7,57 =7, (OSA-co) reduces to

V{a) € m,r((min, <|{tEr: (A) =a}|<max,) v "V ' NPt

(min, <|{tEr: (A) = a}| < max,)) . ' '

Now, for the participation constraint: 0:0, min, : max,, ..., min, : max,, (OSA-pc) is

Vac A((|{tEr: ((A)=a}|=0) v
(min, <|{tEr: (A)=a}|<max,) v -V

(min, <|{tEr: (A) = a}| <max,)) .
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OMT-m = OSA-pc = OSA-C EER-r

OSA-co SDM = BRM Iris

SBDM =ECR : ‘

n XER
ER = SAM = SDM-k= OMT-k = BRM-k

SAM-k

Fig. 14. Partial ordering of cardinality constraints for binary relationship sets.

Since we are assuming referential integrity, and since whenever (a) € w7, |[{tET: (A)=
a}|>0, the second formula implies the first, and thus, OSA-pc= OSA-co. A similar
construction holds for an OSA-co constraint B —(min, : max,, ..., min,: max, > A. U

Lemma 16. OMT-m = OSA-pc = OSA-c for binary relationships sets.

Proof. We show first that OMT-m = OSA-pc, and then that OSA-pc=OSA-c. Let r be a
binary relationship set associating entity sets A and B. Let r have OMT multiplicity s for B,
then by (OMT-m),

VYae A(|{tEr: (A)=a}|Es).
But this is equivalent to
Va € A((min, <|{tEr: (A)=a}|<max,)V -V
(min, <|{t € r: 1(A) = a}| < max,))

where s = {min,: max, ..., min;: max,}, which is (OSA-pc) for min,: max,, ..., min,,
: max, for A. Thus, OMT-m= OSA-pc.

By Lemma 15 OSA-pc= OSA-co for binary relationship sets. Thus, we can replace each
OSA-co constraint in (OSA-c) with an equivalent OSA-pc constraint, as shown in Lemma

15. The result is a conjunction of only OSA-pc constraints, and hence, OSA-pc= OSA-c.
]
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Lemma 17. SDM = BRM for binary relationship sets.

Proof. Immediate from the definitions, noting that max =0 in (SDM) is the same as
omitting max for (BRM). 0O

Lemma 18. SBDM = ECR for binary relationship sets.

Proof. Immediate from the definitions. [
T . L

Lemma 19. ER = SAM = SDM-k = OMT-k = BRM-k for binary relationship sets.

Proof. Let r be a binary relationship set involving entity sets A and B. The table below
shows correspondences among the four possible OMT-k candidate keys, the four possible A
to B ER mappings, and the four possible A to B SAM mappings. The table also shows the
OMT-k constraint, the ER constraint, and the SAM constraint, which by (OMT-k), (ER),
and (SAM) are all identical. [ : .

‘OMT-k ER ° SAM : "Constraint

{(AB)} M:N m-—n None

{(A)} M:1 m-1 V(ayemr({tEr: (A)=a}|=1)
{(B)} 1: M 1-m V(b Emyr(|{tEr: (B)=b}|=1)
{4, (B)} 1:1 1-1 v(a)Emr(|{tEr: t(A)=a}|=1) A

V(b) Emyr(|{tEr: (B)=b}|=1)

Lemma 20. OSA-pc = SDM for binary relationship sets.

Proof. Let r be a binary relationship set involving entity sets A and B. Since R single-valued
is a special case of R multivalued, we assume without loss of generality that B has a
multivalued attribute r that maps entities of B to entities of A with cardinality constraints
min and max. If min and max are positive integers, then we write the OSA-pc constraint
0:0, min: max for A; if the SDM max is «, then we write the OSA-pc max as *. This yields

© Ya€ A(({tEr: t(A)=a}|=0)v
(min<|{ter: ((A)= a}| < max))

5

which as in Lemma 15 implies
V{a) € mr(min<|{tEr: H{A) = a}| < max)

which is (SDM). We must also consider whether the SDM constraint exhausts B. If not, the
formula stands as specified. If so, then we must have 7,7 = B, which can be written as an
additional OSA-pc constraint with a minimum participation of at least 1 on B. Since one
SDM constraint may be equivalent to two OSA-pc constraints on separate entity sets, we
must consider the interaction between multiple constraints. First suppose that the inverse
attribute of r does not exist. Then the OSA-pc constraint on B would be 1:#*. Now suppose

. that the inverse attribute of  were multivalued with size between min, and max,. Then the

OSA-pc constraint on B would be min,, : max,. Since min, €P, this OSA-pc constraint will
ensure that mm,r = B. If the inverse attribute were required to exhaust 4, then we must
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strengthen the OSA-pc constraint on A to min: max. This yields

Va € A(min<|{tEr: H(A)= a}| < max)

and since a € A implies (a) € m,r, this formula implies (SDM). O

Lemma 21. EER-r= SDM for binary relationship sets.

Proof. As in the proof of Lemma 20, we assume a binary relationship set r involving entity
sets A and B, with an SDM constraint that B be multivalued with size between min and max.
We write the equivalent’ EER-r constraint as Cmin[r(A/B)] = min and Cmax[r(A/
B)] = max, with Cmin optional. Noting that m,zr = r, then by (EER-1), o

V{a) € m r(min < |(ter: (A)= a}| < max)
which is (SDM). If the SDM constraint must exhaust B, then we must also have mgr' = B. As
in the proof of Lemma 20, there are several cases for interaction of SDM constraints. If the
inverse attribute for r does not exist, then we specify Cmin[r(BIA)] =0 with Cmin not
optional, which forces 77 = B while imposing no additional constraint on 7. If the inyerse
attribute for r is multivalued with size between min, and max,, then we would impose the

additional EER-r constraint Cmin[r(B/A)] = min,. Furthermore, if the inverse attribute
exhausts A, then we would require that Cmin[r(A/B)] not be optional, thus forcing
t that A be multivalued. [

myr = B. The case is similar for an SDM constrain

Lemma 22. SDM = ECR for binary relationship sets.

ng entity sets A and B. Given an ECR "
alent SDM constraint as follows. We must
min = 0, which means that entities in
min and max. By

Proof. Let r be a binary relationship set involvi
constraint (min, max) on A, We construct an equiv
consider two cases: min =0 and min # 0. First, supposc
A need not participate in r. Let A be multivalued with size between

(SDM), this yields
)

V{a) € m r(min S.\{t.e.r: t(A) = a}| < max) ,

but since min =0 and any (a) Emyr participates zero times in 7, then (5) implies .

(6)

Va€ A(min<|{tEr: H(A)= a}| < max)

which is (ECR). Now suppose min # 0; then
A participate in r, Or in other words, 747 =

which is (ECR). U

A. Then by substitution, (5) yields (6) again,

Lemma 23. Iris = SM for binary relationship sets: .

Proof. Let r be a binary relationship set involving entity sets A and B. Given an SM
constraint m: n, where m applies to A and n to B, we construct an equivalent Iris constraint
as follows. Consider Iris constraints 7: A[0, m] and r: B0, n]; by (Ixis), this yields

v(a) € A([{tET: (A)= a}|=m)A

v(b) € B({tEr: (B)=Db}|=n) (7)

the ECR constraint requires that each entity in _

et kR S
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-~ We now must consider several cases. First, suppose the SM dependency is partial with

~ respect to both A and B. Then m,7 need not be the same as A. In this case we observe that

(7) is equivalent to (SM), noting that any (a) & 7 ,r will appear in no tuple of r (which is

less than m), and any (a) € 7 can appear at most m times. Similarly, 7,7 need not be the

- same as B. Second, suppose that the dependency is partial only with respect to B. Then : |

"% (SM) requires that m,r= A. We strengthen the Iris constraint from r: A[0,m] to A s

r: A[1, m], which ensures that each entity in A will participate in 7, or that m,r= A as ' : ’-

' “desired. The case is similar if the dependency is partial only with respect to A. Third,

~ suppose the SM dependency is total. Then we strengthen both Iris constraints to have a
- lower bound of 1 as in the previous case, ensuring that m,r = A and mpr=B. U

Lemma 24. ECR = SM for binary relationship sets.

- Proof. Assume a binary relationship set r and SM constraint m: n as in the proof of Lemma
- 23. Consider the ECR constraints (0, m) on A and (0, n) on B, which by (ECR) yield

Va€ A(O<|{tEr: (A)=a}|<m) A
vbe BO<|{tEr: (B)= b} <n).

Since the cardinality of any set is nonnegative, this implies

Vae A(|{teT: H(A) = a}|<m) A
vb e B(|{tEr: (B)=b}|<n)

which is equivalent to (7). Following reasoning similar to that of the proof of Lemma 23,
these ECR constraints are equivalent to. the given SM constraint when there is no SM
dependency ‘(i.e., the dependency is partial with respect to both A an B). If the SM
dependency is partial only with respect to A, then we satisfy the requirement that 7pr = B
by strengthening the ECR constraint on B to (1, n). Similarly, if the dependency is partial
only with respect to B, then we strengthen the ECR constraint on A to (1, m). Finally, if the
SM dependency is total, we strengthen both ECR constraints. O

Lemma 25. SM = XER for binary relationship sets.

Proof. Let r be a binary relationship set involving entity sets A and B. There are several
possible XER constraints on 7. First, suppose both corners are shaded; this represents no
constraint. Second, suppose only one corner is shaded, say the corner to which B is attached.
Then we create an SM cardinality constraint of 1 with A and « with B. By (SM), this is

V(a) e myr(|{tEr: (A)= a}|<1) A
V(b)yEmpr([{tEr: «B)= b}|<).

By definition, an entity in ,r appears in at least one tuple of r; also, the second conjunct
represents no constraint. Thus, the above formula reduces to

V{a) € myr(|{tEr: (A) = a}|=1)

which is (XER) for n=2. The case is similarlif only the corner attached to A is shaded.
Third, if both corners are unshaded, then we create an SM cardinality constraint of 1 with
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both A and B. This yields

V{(a) € myr(|{tEr: (A)=a}|=1) A

V(b) € myr(|{tEr: (B)=b}[=1)
which is two instances of (XER) for n=2. Now we must consider the effect of optional
versus mandatory connections. The corresponding concept in SM is partial versus total
Table 2 ' : S
Counter examples for binary relationship-set results
# | & Counter Example* Notes !
EER-r
31 #Z OSA-co #2 #1
Iris

32 # OSA-co A—(2:%y>B Iris cannot ensure that entities in A
that participate do so more than once.

33 # SBDM=ECR #4 #4

OMT-m=0SA-pc
34 # Iris #3 OMT-m=0SA-pc cannot ensure that r
is the cross product of A and B.
OSA-co : o
35 # XER #14 #13
SBDM=ECR

36 # Iris #3 SDBM=ECR cannot ensure that r is
the cross product of A and B.

37 # OSA-co #32 SBDM=ECR cannot both allow non-
participation of entities in A and
ensure at least 2 occurrences.

38 # SDM=BRM Let B be multivalued with | #37 ‘

size between 2 and 4.
SDM=BRM
39 # Iris #3 SDM=BRM cannot ensure that r is
. the cross product of A and B.

40 # OSA-co #32 SDM=BRM cannot both allow non-
participation of entities in A and
ensure at least 2 occurrences.

SM

41 # OSA-co #32 SM cannot ensure that entities in A

) that participate do so more than once.

42 # SBDM=ECR #4 #41

43 # TIris T #3 SM cannot ensure that r is the
cross product of A and B.

XER -

44 # OSA-co #32 XER cannot ensure that entities in A
that participate do so more than once.

45 #SM Total dependency XER cannot ensure that entities
in A participate in r.

ER=SAM=SDM-k
=0OMT-k=BRM-k ]

46 Z OSA-co #32 ER=... cannot ensure that entities in A
that participate do so more than once.

47 # XER #14 #26

SAM-k o

48 ZER=... #28 #28

*Counter examples assume a binary relationship set r involving entity sets A and B.
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‘dependencies. In XER, a mandatory connection on A requires that m,r = A; in SM, if the
* relationship set r is partial only with respect to B, then m,r = A. Thus, if only the connection

“to A is optional, then the SM dependency is partial only with respect to A, and similarly if

.‘th'll‘y B is optional. If both are optional, then the SM dependency is partial with respect to
~ both A and B. If both are mandatory, then the SM dependency is total. [l

"“YWe now have all the lemmas necessary to establish the domination relationships of our
" binary partial-ordering result. However, to show that there are no more domination
" relationships, we also need the counter examples in Table 2.

: Theorem 2. The set of constraints {SBDM, ER, SM, SAM, SAM-k, SDM, SDM-k, BRM,
BRM-k, EER-r,ECR, XER, Iris, OMT-m, OMT-k, OSA-pc, OSA-co, OSA-c} together with

S the precedence relation = satisfies the partial ordering in Fig. 14.

Proof. Lemmas 1, 4, 11, 12, 14-25 and Counter Examples 31-48. [

4. Entity-set cardinality constraints

Until now we have only considered relationship-set cardinality constraints. However, two
of the models studied, EER and OSA, also have entity-set cardinality constraints. In this
section, we give formal definitions for the entity-set cardinality constraints of EER and OSA,
and we show how these constraints, in combination with the relationship-set constraints
éléﬁried earlier, modify the partial orderings of Section 3.

4.1. Enriched Entity-Relationship Model

~'In the EER model, an absolute cardinality constraint specifies a minimum and maximum
~ number of instances for a given entity or relationship set. For example, suppose we have 500
parking spaces available; we can specify that the entity set representing parking spaces has a
maximum cardinality, Cmax, of 500 (we can also assign a minimum cardinality, Cmin). As
another example, suppose that we have an unspecified number of parking spaces; and an
unspecified number of vehicles that may be parked; however, there is a limit of 20 reserved
parking spaces. We can model this with a relationship set Is Assigned To between entity sets
Vehicle and Parking Space, together with an absolute cardinality constraint Crmax =20 on the
relationship set.

Let S be an entity set or a relationship set. Given Cmin[S] = min and Cmax|[S] = max, the
following must hold:

min < |S| < max ‘ (EER-a)
where min, max €P. Note that Cmin or Cmax may be omitted, in which case the
corresponding inequality of (EER-a) is ignored.

“Since EER absolute and relative cardinality constraints can appear together for an n-ary
relationship set r, we have the formula

(EER-r,) A+ A (EER-1,) A (EER-a;) A -+ A (EER-a,) (EER)

where (EER-r,), 1<i<p, is a relative cardinality constraint for r, and (EER-a)),1<j=<gq,
is an absolute cardinality constraint on r or an entity set involved in .
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4.2. Object-oriented systems analysis

In OSA, an object-class cardinality constraint restricts the number of entities that may
belong to a particular entity set. In Fig. 15, A has an object-class cardinality constraint of
2:10, which means that the number of entities in A must be between 2 and 10. Another
feature of the OSA semantic model is that each relationship set can be viewed as an entity
set; this is done using a relational object class. A relational object class is an entity set whose
members are in a one-to-one correspondence with the elements of the corresponding
relationship set. Thus, through the relational object class, OSA’s Ob]CCt -class cardlnahty '
constraint can be applied to relationship sets.

Formally, an OSA object-class cardinality constraint for entity set A is of the form
min,: max,, min,: max,, . .., min,: max,, and is defined as follows:

min, <|A| < max,

Vv

min, <|A| < max, (OSA-0)
where min, EN, max,E(NU {*}), 1<i<k, and * denotes .

In addition to object-class cardinality constraints, OSA also supports one other feature
involving object-class cardinalities. The domains of the min;: max, ranges in the definitions
of (OSA-pc), (OSA-0), and (OSA-co) are augmented to include entity-set cardinalities. For
example, the participation constraint on B in Fig. 15 is |A| (shorthand for |Al:|Al),
indicating that each entity in B must relate through r to | A| entities in A, in other words, to
all entities in A. Similarly, because of the participation constraint on A, each entity in A
must relate to all entities in B. In this example, because of the participation constraints on A
and B, r must equal the full cross product of A and B. Entity-set cardinalities used in OSA
cardmahty constraints need not be restricted to entity sets participating in the same
relationship set. For example, the object-class cardinality constraint on B in Fig. 15 indicates
that the cardinality of entity set B must be the same as the cardinality of entity set C.

Since OSA relationship-set and entity-set cardinality constraints may appear in combina-
tion for an n-ary relationship set r, we have the formula

(OSA-pcl) AN N A (OSA-pC")_/\

(OSA-co ) A--- A(OSA-co,,) A .

(OSA-0,)A--- A (OSA-0,) - (0SA)
where (OSA-pc;) and (OSA-0;), 1<i<n, are participation and object-class cardinality

constraints respectively for the ith entity set of r, and (OSA-co;), 1<j<m, is a co-
occurrence constraint for r, and where min, ENU {|A|: A is an entity set}, max; ENU

N
pat
(=)
Iﬂ

ICl

Bl 1Al

Fig. 15. OSA entity-set cardinality constraints.
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© {xYU{|A|: A is an entity set}, min; EPU {|A|: A is an entity set}, and max; EPU {*}U
{|Al]: A is an entity set}. : ,
.- As an aside, the shorthand (| A| for | A|:| A]) holds universally in OSA. Thus, for example,
** “.an OSA user may write 1 for 1:1 or 2 for 2:2 in any participation constraint, co-occurrence
-___‘c'onstraint, or object-class cardinality constraint.

43 Modified partidl—ordering results

.+ We now explore how the addition of entity-set cardinality constraints affects the partial
~orderings of Section 3. We do this by adding EER and OSA to the partial orderings. Our

¢ next lemmas show that EER dominates EER-r but not OSA-c, and that OSA is a universal
- "upper bound for the partial orderings.

 Lemma 26. OSA = EER.

" “Proof. As in the other lemmas, we show that OSA dominates EER in the partial ordering by
- . considering an equivalent OSA constraint for an arbitrary EER constraint. First, consider an
EER-r constraint. Let Cmin[r(X/Y)] = min and Cmax[r(X/Y)] = max be relative cardinality

© constraints on an n-ary relationship set r, where X={A,,4,,...,A4,} and Y=
{By;B,,. .., B,} are disjoint collections of entity sets involved in r. Suppose X is empty;

‘then the EER constraint is vacuously satisfied. Thus, we need not write any OSA constraint.
Now suppose Y is empty, but X is not. Since Y is empty, (EER-1) reduces to

V(a,...a,) € wAl.'_.Apr

(min<|{t€Emy 4T HA)=a, A AH(A,)=a,}| <max).

- Now, since the projection of a relationship set is itself a set, tuples in the projection occur
“exactly once. Since min must be greater than 0, the only value for min that can satisfy this
formula is 1. Any positive integer can satisfy max. If min>1, the only relationship set that
can satisfy the constraint is the empty relationship set. In this case we write the OSA
constraint 0:0 on the relational object class corresponding to r. If, however, min =1 then
the EER constraint is trivially satisfied by any r, and we need not write any OSA constraint.
The preceding discussion assumes Crmin to be optional. If Cmin is not optional and min = 1,
then the EER constraint forces ryr to consist of the full cross product of the entity sets in X.
We write an equivalent OSA constraint by specifying the co-occurrence constraints

A, . A, 4,14, 4,
Al Lo Ap—-ZAp -(lAp—ll:‘Ap—ll)—) Ap—l

AAs.. A, (4,4~ 4,

together with the participation constraint 1:# on each entity set in X.
We must show that the above OSA-co and OSA-pc constraints enforce 7y, .47 =

A, X+ X A, as claimed. By (OSA-co), the first co-occurrence constraint listed above yields

V(al, ey ap—1> € WAI...Ap_lr

(l{tE Ta,y..4,7" HA)=a; A A t(Ap—l) = ap—l}l = IApl) :

RS
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By the participation constraints, we know 7, r = A, for A; € X; thus, there is at least one
tuple in m, Ayt Thus, to satisfy the first ‘co-occurence constraint above, each tuple in
Taydy il must assoc1ate with |4, | different A ,-values in m, Al Thus, we know that
there 4ré at least |A,| distinct tuples in my 4 _,ar- Since there are at least |A | distinct
tuples in o A1~ a4, T and since the second co-occurrence constraint listed above forces each
tuple in 7, zA “r to associate with |A, ;| A, ,-values, there are at least |A, |4,

tuples in 7, 4 *r. Similar consideration of the third co-occurrence constraint above forces at
least |A, HAI, 1||A 2| tuples in o, ., Continuing for all p co-occurrence constraints;
yields |’7TA a71= A4, 14,]. Since the pI‘O]CCthl‘l is a set, we know that |m, . 4 7=
| A4, |A |, which implies a,, 4 r=A; X =X A,.

We now return to the iast case for EER-r. If nelther X nor Y is empty, we write the
co-occurrence constraint X —(min: max)—> Y. By (OSA-co), substituting for X and Y, this is

V(ay,...,a,)€E Ta,..a,

(min<|{t€ Tay...ApBy...B, HA)=ayn- AHA,)= ap}l = max) A

which is (EER-r). If Cmin is not optional, we also write the co-occurrence and part101pat10n‘

constraints listed above to enforce 4, = A X XA

Fmally, we show how an EER absolute cardinality constraint can be written using OSA
constraints. Let E be an entity set, with Cmin[E] = min and Cmax[E] = max. Then we wnte
the OSA-o constraint min: max for E. By (OSA-0), this yields

min < |E| < max

which is (EER-a). Similarly, if E is a relationship set, we specify the OSA-o constraint on
the relational object class for E. [

Lemma 27. OSA= OSA-c.
Proof. Immediate from the definitions. [
Lemma 28. EER = EER-r.

Proof. Immediate from the definitions. [

" Counter Example 49. EER # OSA-pc, because given a binary relationship set r involving

entity sets A and B, the OSA participation constraint 1:1,3:% on A cannot be expressed by
EER. This is because EER does not allow disjoint ranges to be specified.

Counter Example 50. EER # OSA-co, because given a binary relationship set r involving
entity sets A and B, the OSA co-occurrene constraint A —(1:1,3: *)—> B on r cannot be .

expressed by EER. Again, this is because EER does not allow disjoint ranges to be
specified.

Counter Example 51. EER-r # EER, because given an entity set E, EER-r cannot constrain
the cardinality of E.




Cardinality constraints in semantic data models 265

We now have the lemmas needed to establish a universal upper bound for the partial
“orderings shown in Figs. 13 and 14.

The;jf;aih 3. OSA is a universal upper bound for the partial ordering of cardinality constraints
" for n-ary relationship sets (Fig. 13), with the additional modification that EER dominates
EER-r and all models domiinated by EER-r. :
: Proﬁf. Theorem 1, Lemmas 2628, and Counter Examples 49-51. [
: Theéfém 4. OSA is a universal upper bound for the partial ordering of cardinalit); constraints
- for binary relationship sets (Fig. 14), with the additional modification that EER dominates
- EER-r.and all models dominated by EER-r.

: ,‘froof. Theorem 2, Lemmas 26-28, and Counter Examples 49-51. o

- 5. Discussion

' 5.1...Observations

_ We have presented partial orderings of cardinality constraints for both n-ary and binary
i 'fcla{_tiio:nship sets, together with a universal upper bound. These partial orderings reveal some
. interesting facts. : »

‘Ig»iFibrjé»t, there are three general kinds of relationship-set cardinality constraints; mapping,
participation, and co-occurrence constraints. In broad terms, mapping constraints are a
, gegéi‘alization of the mathematical notion of functional versus non-functional mappings.
bepccurrence constraints are a generalization of functional dependencies, of which an
important subclass is candidate-key constraints. Participation constraints are a generalization
of the idea of total versus partial relationship sets. Boundaries between these categories are
fuzzy, but we offer the following categorization. Mapping constraints include SAM, SAM-k,
ER, SDM-k, OMT-k, BRM-k, XER, and SM. Participation constraints include SBDM,
~ ECR, SDM, BRM, OSA-pc, OMT-m, and (restricted to binary relationship sets) OSA-co.
‘quoccurrence constraints include OSA-co, Iris, EER-r, and the candidate-key constraints.
'VV‘:M'S\é;‘cond, we have seen several different approaches to specifying these constraints. For
example, OSA divides its constraints into the three broad classes described above, whereas
OMT (for binary relationship sets) and EER (for relationship sets in general) provide a
considerable degree of power with only one constraint mechanism. In fact, if EER were to
allow disjoint ranges, it could serve as a universal upper bound for the relationship-set
partial orderings (but not for the combined entity-set and relationship-set partial orderings,
because an OSA entity set that is not even connected to a relationship set can affect the
cardinality constraints of the relationship set).

Third, ER model constraints are at or near the bottom of the partial orderings; whereas
the later models, EER, OMT, and OSA, are at or near the top. This illustrates that over
time, semantic models have expanded the class of information that can be captured using
cardinality constraints. It also shows that later work has generally been built on prior work.

Fourth, the relative power of cardinality constraints for some data models changes when
comparing binary and n-ary results. Perhaps the most striking example is OMT. In the n-ary
case, where candidate keys must be used to specify cardinality, OMT is among the least
powerful, but in the binary case OMT dominates most of the partial ordering. EER and
OSA, on the other hand, consistently dominate most of the partial ordering for both n-ary
and binary cases.
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Finally, we observe that the binary relationship-set partial ordering, extended to include
OSA as a universal upper bound, forms a lattice. This can be verified by checking each pair
of elements in the partial ordering to see that they have unique least upper and greatest
lower bounds. The universal lower bound in the binary relationship-set case is SAM-k. The
extended n-ary partial ordering, however, even with the addition of a universal lower bound,
does not form a lattice. For example, in Fig. 13, SAM and XER have no least upper bound,
and OSA-c and EER-r have no greatest lower bound. Several other combinations are also
missing least upper or greatest lower bounds. This leads us to ask the question, what
cardinality constraints are we missing? As an example, we could introduce a new cardinality
constraint that dominates SAM and XER, but is dominated by OSA and EER-r. The new
cardinality constraint would have functional co-occurrence constraints plus the ability to
specify total mappings. We could pursue this course until we arrive at a lattice of cardinality
constraints for the n-ary case.

5.2. OSA revisited

We have already seen that OSA has powerful cardinality constraints. OSA has additional
features that increase its power and expressiveness even further. OSA allows the use of
expressions and variables in defining the min; and max; for OSA cardinality-constraint
ranges. A term of an expression may include constants, variables, and functions. Functions
may include ordinary arithmetic operators (e.g. addition or multiplication), or they may be
more complex. We have already seen one of the functions that can be used: the entity-set
cardinality function. This allowed us to fix a universal upper bound for the partial orderings.

With variables, for example, we can specify that entity sets A and B both have an
object-class cardinality constraint x.. This constraint does not specify the actual number -of
entities in either set, but does ensure that |A|=|B|. This notion can be combined with
arbitrary functions; for example, entity sets A and B could have object-class cardinality
constraints of x and 2x + 7 respectively, which establishes a relative relationship between the
cardinalities of sets A and B.

Each variable in an OSA cardinality constraint is either Type 1 or Type 2. A variable is
Type 1 if it is included in the participation constraints for exactly one object class, and is
Type 2 otherwise. The purpose of a Type 1 variable is to specify a particular value of the
variable for each object in the object class; each object may have a distinct value associated
with a Type 1 variable. A Type 2 variable, on the other hand, is fixed for all objects in an
object class. .

The example in Fig. 16 illustrates both Type 1 and Type 2 variables. Here, we assume that
there are processes communicating across a computer network, and that a process can only
have one active network session. A process may either establish a direct session to another
process, or it may enlist the services of a logical link to perform the appropriate session
routing and physical link control. If two processes reside on the same node in the network,

supports

Logical 3| —~— Physical b € {64, 128, 256}
Link 0: 0:b Link
2 0:2b
serves\ /J(ses
c d
Active 2a: c+d=1Vec=d=1

Network Process

Fig. 16. Variables in OSA cardinality constraints.
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then a logical link may bypass a physical link. A physical link may support 64, 128, or 256
simultaneous sessions. To model this, we specify three object classes, Physical Link, Logical
Link, and Active Network Process. We assign the variable a to the cardinality of Logical
Link. Since each logical link serves exactly two processes, the cardinality of Active Network
Process is bounded below by 2a. The upper bound is * because a process may establish a
direct session, but no information is given in the model regarding the total number of
sessions that can be supported by the set of all physical links. Note that a is a Type 2 variable
“because it is not involved in the specification of any participation constraint. To model the
capacity of each physical link, we specify a general constraint b € {64, 128, 256} and then use
b in the participation constraints for Physical Link. Bach physical link can support up to b
logical links or up to 2b direct uses by active network processes. Because b is determined by
- the particular physical link involved, we would like to instantiate b separately for each
physical link. Since b is a Type 1 variable, we have achieved the desired result. We may, for
example, have a physical link supporting 64 logical links and being used by 128 active
network processes, and another physical link supporting 256 logical links and being used by
512 active network processes, but we could not have a physical link supporting 24 logical
links or one supporting 256 logical links and being used by 64 active network processes.
Variables ¢ and d are also Type 1. The general constraint ¢+ d=1v ¢ = d = 1 ensures that
an active network process either is using a physical link, or a logical link, or both. We can
represent mutual exclusion in a similar fashion, for example with a general constraint
ct+d=1.
' We refer the interested reader to Appendxx A of the reference for OSA [9], where a
- formal definition of OSA is given. There, the meaning of Type 1 and Type 2 variables is
; ,formally integrated into the definitions of the OSA cardinality constraints.

e ‘5;3.’.;Cardmallty constraint extensions

... Extensions to the OSA model have also been considered. Sometimes more is known about
: I‘i,the part1c1pat1on of an entity in a relationship set than can be expressed with a simple set of
~ integers. For example, the participation of Doctor in the relationship set.- Doctor has
S Speciality may be written as 1:*, but we may know that only a few doctors have more than
_ one specialty. For this case, and for similar cases, a participation constraint of the form
_min: avg: max, where avg is the average of expected participations of entities from the set,
‘may be beneﬁc1a1 For Doctor has Specialty, for example, we might have the cardinality
- constraint 1:1.001:* on Doctor. Similarly, we could tag co-occurrence constraints with an
. average. We can also generalize this concept by usmg a probability distribution rather than a
~ simple mean.

6. Conclusion

" 'We have presented formal definitions for cardinality constraints for several semantic data
models including: cardinality constraints for SBDM; 1-1 and 1-many mappings for the ER
model; cardinality and dependency constraints for SM; mapping and candidate-key con-
'Stramts for SAM; cardinality constraints for SDM; cardinality, identifier, total, and unique-
ness constraints for BRM; relative cardinality constraints for the EER model; participation
constraints for the ECR model; 1-mappings and many-mappings along with mandatory and’
optional constraints for the XER model; participation constraints for the Iris model;
multiplicity and candidate-key constraints for the OMT model; and participation and
Co-occurrence constraints for the OSA model.

* Using these formal definitions, we have developed partial orderings showing the relative .
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power of the relationship-set cardinality constraints. From Theorem 1 we are able to
conclude that for n-ary relationship sets, no model’s relationship-set cardinality constraints
dominates or is subsumed by all others. OSA’s participation and co-occurrence constraints
together and EER’s relative cardinality constraints appear strongest because together they
dominate all other models’ cardinality constraints. Neither of these strongest constraints,
however, dominates the other. ECR participation constraints, SAM mapping and candidate-
key constraints, and ER mappings appear weakest because none dominates any of the other
models’ cardinality constraints. From Theorem 2 we are also able to conclude that for binary
relationship sets, no model’s cardinality constraints dominates or is subsumed by all others.
Candidate-key constraints are the only cardinality constraints that do not dominate any
others for binary relationship sets. EER relative cardinality constraints, and OMT multiplici-
ty constraints which are equivalent to OSA participation constraints, are the dominant
cardinality constraints for binary relationship sets, but neither dominates the other.

For EER and OSA, we also presented entity-set cardinality constraints. EER has an
absolute cardinality constraint that applies to entity sets and relationships sets. OSA has an
object-class cardinality constraint and also allows the use of object-class cardinalities in the
specification of all its cardinality constraints. We demonstrated how to write EER absolute
and relative cardinality constraints using OSA constraints, and thus showed that OSA has
the most powerful set of combined relationship-set and entity-set cardinality constraints. This
led to the universal upper bound of Theorems 3 and 4. With the universal upper bound of
Theorem 4, it can be shown that the resulting partial ordering for cardinality constraints on
binary relationship sets is a lattice. '

We ptesented a number of observations about the partial orderings and discussed
additional features of OSA, including the use of variables and expressions in cardinality-
constraint specification.. We also suggested a possible extension to OSA cardinality con-~
straints including the use of averages and probability distributions; which would be useful for
implementation purposes. ' )

Possibilities for future work include discovering new cardinality constraints sufficient to
expand our n-ary partial ordering so that it becomes a lattice. Also, it is likely that more
powerful cardinality-constraint ideas could be discovered as a result of this formal com-
parison of existing cardinality constraints for semantic data models.
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