AN INTEGRATED ONTOLOGY DEVELOPMENT ENVIRONMENT

FOR DATA EXTRACTION

by
Kimball A. Hewett

A thesis submitted to the faculty of
Brigham Young University

In partial fulfillment of the requirements for the degree of
Master of Science
Department of Computer Science

Brigham Young University ‘

April 2000

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

Of a thesis submitted by

Kimball A. Hewett

This thesis has been read by each member of the following graduate committee and by majority vote has
been found to be satisfactory.

25 Aw v 2000

Date

David W. Embley, Committee Chairpffan

25 Apr 2000 Het il

Date Stephen W. Liddle, Committee Member

2% 4’" W
Date

S’ott N. Woodﬁeld Commlttee Member

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, | have read the thesis of Kimball A. Hewett in its final
form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable
and fulfill university and department style requirements; {2) its illustrative materials including figures,
tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is
ready for submission to the university library.

Date/ BMavid W. Embley
Chair, Graduate Committee

/)nm/ZS 2oe0 //>M*w) L() M&(}’

Accepted for the Department

(JOKelly Flana@h
raduate Coordinator

Accepted for the College

dlan F. Manglson
Associate Dean
College of Physical and Mathematical Sciences

ABSTRACT

AN INTEGRATED ONTOLOGY DEVELOPMENT ENVIRONMENT

FOR DATA EXTRACTION

Kimball A. Hewett
Department of Computer Science

Master of Science

There is an enormous amount of readily accessible data on the World Wide Web today.
Unfortunately, this data is mainly unstructured making it extremely difficult to search and impossible to
conduct traditional database queries. The Data Extraction Group has developed a system to address this
opportunity [E+99]. This system extracts and structures data from unstructured sources, based on an
ontology that describes the data with its relationships, identifying keywords, and lexical appearance. The
ontology is parsed to produce a database scheme, and the identifying keywords are used in a keyword
recognizer that is fed unstructured Web documents. Matches are organized into records according to the
ontology. These records can then be used for structured queries in a traditional database. The Data
Extraction Group has created a number of separate automated processes to assist in the extraction of data
from the web. However, a tool for managing the complexity of an ontology has not been created. We also
desired a portable solution to allow our processes to be run on multiple platforms.

The purpose of this thesis is to create a portable integrated ontology development environment as
a tool to facilitate the creation of application ontologies. This tool provides a method of editing an Object-
Relationship Model (ORM) and its associated data frames. It provides debugging functionality for editing

data frames by displaying sample text with highlighting on identified structure. Furthermore, it provides the

ability to export the application ontology for use in the data extraction process.

ACKNOWLEDGMENTS

I would like to thank the many people who supported and assisted me in the completion of this
thesis project. I want to thank Earl Boyce, my supervisor at epixfech, inc., who allowed me to take the time
I needed away from work to attend classes or visit my professors. I want to thank my graduate committee:
Dr. Embiey, Dr. Liddle and Dr. Woodfield for their valuable input and insight into the project. I especially
want to thank Dr. Liddle for the great deal of effort that he made to meet with me each week and work
through design and programming issues with me. Thanks to David Lewis who assisted me in some of the
final stages of the programming. To my children: Sarah, Heather and Joseph for their unfailing love. Most

of all T would like to show my appreciation for my wife, Rochelle, for enduring the many long hours that I

spent on the computer rather than with her and for her love and support throughout this project.

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 BACKGROUND OF DATA EXTRACTION 1
1.2 OVERVIEW OF ONTOLOGY EDITOR’S ROLE 2

2 ANALYSIS OF ONTOLOGY EDITOR 3
2.1 GENERAL GOALS 3
2.2 GRAPHICAL AND STRUCTURAL ANALYSIS 4

221 ORM Editor 4
2.2.2 Data Frame Editor]

6
223 Text Viewer 7

3 DESIGN OF ONTOLOGY EDITOR 9

3.1 GRAPHICAL DESIGN 9
311 ORM Editor 4
312 Data Frame Editor 13
313 Text Viewer 14

32 CLASS DESIGN 14
3217 Framework Classes 15
322 ORM Classes 15
323 Data Frame Classes 17
324 Persistence 18

4 IMPLEMENTATION OF ONTOLOGY EDITOR 23

4.1 CODING 23
4.1.1 Framework 24
4.1.2 ORM Editor 29
413 Data Frame Editor 32
4.14 Persistence 34
4.1.5 Coding Statistics 37

4.2 JAVADOC 37

5 CONCLUSION 59
5.1 PORTABILITY 59
52 EXTENSIBILITY 59
33 MAINTAINABILITY 60
54 FEATURES 60

BIBLIOGRAFPHY 61

Xt

LIST OF FIGURES

Figure 1: Data EXITACHON PTOCESS ...v.uivmcecieiiirntnsreeeass s s essssss s ceseneesnsenesesseseseseseeeeeseessssses s eess s s i
Figure 2: Object Relationship MOGe]c.ovumiimrioiiiii e et 5
Figure 3: Data Frame ORM........cocviiiiriininiieine st ee et seasses st ee s eseeeese e s s s ee e 6
FIGUPE 42 TEXE VIBWET «.coooii ettt ee oo eeees s s s eeese s st oeeen 7
Figure 5: Ontology Editor SCIeen SOoovuveiviieceeceee et ee s e e e oo 10

Figure 6: Object Set POPUP MEIUccrvumimieeceec e enee e reseesseeeseteee e esesess s s, 11
Figure 7: Relationship Set POPUP MENU..c....uurruiurierrieecereoeeeeeeeeeee e eeeeeeeeeee e ssesseeesssseeeeessoseseess 12

Figure 8: Data Frame EdItOr...........coccoiinieiieie e e eee oo see s ses s e 13
Figure 9: General DESIZIL...........c.ociiicrrcierntiie ettt e ee s s s ee s e ee e st es oo 15
Figure 10: ORM ObjJect DESIZI........oiuimeirirniniecmeeeeniseee s s eeeeeeeeeseese st 1esseses s eeses s s e 16
Figure 11: Data Frame DESIZcccoovvuermrireerorieciee e seesseeset s eeee e eeeseese s st sees e sees e ses s oo 17
Figure 12: File MUttt et e eee e eeee e s e e sesseseeseeeesse st es oo 27
Figure 13: ORM IMPIEMENEALIONc.oiveeriereetraitecaeeeessesesteee st e ees e eeseees s s s ees st eseaeaseess s 31
Figure 14: Data Frame IMplementation.......oo. ceuiueeeee oo eeeesee s e es e e esess oo 33

Figure 15: Model IMPIEmMentationce.ececeecreeriruiersiesennsoeeseeeeees s e esseseessessesssse e 36

xiii

1 INTRODUCTION

1.1 Background of Data Extraction

The advent of the World Wide Web has brought with it an enormous amount of readily accessible

data. Unfortunately, this data is mainly unstructured making it difficult to search and impossible to conduct

traditional database queries. The paper A Conceptual-Modeling Approach to Exiracting Data from the Web

[E+99] describes a method for extracting this data from unstructured sources. Figure | gives a graphical

view of this process. The approach is to define an ontology that describes the data with its refationships,

identifying keywords, and lexical appearance. The ontology is then parsed to produce a database scheme

and the identifying keywords are sent to a keyword recognizer that is fed unstructured Web documents for

possible matches to the ontology. The result is data that can be inserted into a database for querying,

Record Extractor

Unstructured
Record
Documents

Ontology Editor

Canstant/Keyword
Matching Hules

- j Database [;
onstant/Keyword Recognize : i i Scheme

L

Data-Record Table
(Descriptor/String/Position)

_— -
4

atabase-Instance Generato

| Populated Database]

Figure 1: Data Extraction Process

1.2 Overview of Ontology Editor’s Role

The shaded box for the application ontology shown in Fig. 1 represents an ontology with its
associated structural model and identifying keywords. Up to this point, the only manual step in the data
extraction process was the creation of the ontologies. The ontologies have been written manually, using a
formal language. This manual creation of ontologies is a tedious process prone to errors that can be difficult
to debug. The purpose of this thesis project is to create an integrated ontology development environment in
order to facilitate this process. This graphical tool consists of an Object-Relationship Model (ORM) editor,
a data frame editor, a text viewer, and a method for exporting the application ontology.

An Object-Relationship Model (ORM) instance is a conceptual model of the structure of a set of
objects and relationships [EKW92, Embley98]. Other ORM editors exist but they do not provide a
mechansim for editing and debugging data frames, nor are they portable to multiple platforms [OSM]. The
ORM editor of this project provides the ORM editing capabilities of the previous editors with
enhancements but is implemented such that it is portable as well as being integrated with a data frame
editor.

Data frames describe extraction patterns and identifying keywords for object sets defined in the
ORM, Each lexical object set in the ORM may have a data frame associated with it. The patterns within a
data frame mentioned above consist of regular expressions. One purpose of the data frame editor of this
project is to reduce the possibility of syntactical errors. As an example of the complexity of the data frame
syntax, the following text is an excerpt from a relatively simple data frame on student course work that
consists of the definition of the “Course Number” data frame:

Data frame Course Number [4]

value ™ (9\d!|[1-7]1\d\d)Rr?*
* (\.|Courses|advanced undergraduates\))\s*” left adjoining and
s AAs (VI D)X\ 2" (1) *\ (\d"” right adjoining;

end;

The text viewer is a debugging tool that assists the ontology creator in defining correct regular
expressions within a data frame. The user associates a sample text file with the text viewer, which in turn

highlights the matches from the regular expressions found in a data frame. A pattern editor [L98] was

previously created to assist in debugging regular expressions. This project integrates and extends that

capability to allow debugging to take place while editing a data frame.

21

2 ANALYSIS OF ONTOLOGY EDITOR

General Goals

Portability — The project is portable to Unix, Windows, and Macintosh operating systems.. This
requirement allows multi-platform usage. In order to achieve this end the project uses Java as its
programming language. A prototype with some of the required functionality was written during the
analysis stage to ensure that Java could provide the necessary capabilities. “
Extensibility — The current project provides a graphical Object Relationship Model (ORM) editor. The

project lays the ground work for extending the functionality to include Object Behavior Models

(OBM) and Object Interaction Models (OIM) so that subsequent projects can benefit from the work

already completed.

Maintainability — As the basis for future projects, the project code must be created in a manner that it

can be easily maintained. This is done through the use of good programming practices. Specifically,

the project is documented through the analysis and design as well as the implementation. The

implementation documentation has been created through the use of Javadoc comments.

Furthermore, code reviews ensure that the code is well written, understandable and suitably

commented.

Features

a. Graphical ORM Editor — the ORM editor provides an interface for defining the structural
relationships within an ontology.

b. Graphical Data Frame Editor — the data frame editor provides an interface for defining the regular
expressions that identify objects defined in the ORM.

¢. Graphical Text Viewer —the text viewer allows for graphical highlighting of identified objects
within a sample of text. This tool facilitates debugging of regular expressions defined in the data

frames.

2.2 Graphical and Structural Analysis

22.1 ORM Editor

The ORM editor supports the ORM editing features contained in Allegro [C98]. Specifically it

supports the following features:
1. Editing of structures contained in an ORM (see Fig. 2)
2. A Multiple Document Interface (MDI) environment

a. Multiple views

b. Toolbar support

¢. Support for tiling and cascading windows
3. Drawing preferences

a. Font

b. Color

c. Line width
4. Editing support

a. Cut, Copy and Paste

b. Selection of objects

¢. Alignment

d. Move to front (move to back)
5. Persistence support

a. Readingto file

b. Writing to file

Object-Set D Singleton
Lexical Object Object Set

Object Set

Generafization Set

A Specialization Set

Nonlexical
Object Set names -
. 7 applies
Cbject-Set Name Rl Mo l Generalization/Specialization [
- ; Object-Set | 1
1 Cardinality |
yConstraint + 0 N el ,)
: : i M appl
Pt ‘ ' General Canstraint f mpp es
Relationship-SetName | meeo o N __IIT"TTTTm3 ;5--' -

includes Object-Set Name
for Connection | meeeemeopmmeeeas

1" a*
o]

Generalization/Specialization
Constraint |

' % applies
1*1 to
E Participation E
 Constrait_| a +520
2> 2~ for b1+b2>0 iq

1 hames 1

Relationship-Sat Name };@ship Set

o iy

Relationship-Sat Name, Connection -= Object-Set Name At applies
to

1

Co-Qccurrence
Constraint

Figure 2: Object Relationship Model

222 Data Frame Editor

A data frame includes the value and context expressions needed to extract objects {defined in an
ORM) from an unstructured text source. The graphical data frame editor needs to provide a graphical
interface for entering value and context expressions. The interface must provide for entry of the

information shown in Fig. 3.

' MName ;
1
hasf
1 has
or
Data Frame “alue Fhrase
1 0 0: ™

has¢

' SQOL Field Len :
has _(E?rlt? }_d. I:Elb_e_! _'
___,-F'
1 1 51 flag q*p--------===m--- :
—»* — Context Expression !
Context Phrase Ly EEE__ _*:-_-_-_—_—--_-_-_ _______
1 has » Applies Tu,
x*_ __F'_p ______

Figure 3: Data Frame ORM

223 Text Viewer

The graphical text viewer is used for debugging data frames. It takes advantage of the pattern
matching conducted by the Pattern Editor utility [L98] to display text matches from the data frames. The
graphical text viewer allows the user to associate a sample text file with the viewer. When the user selects a
data frame the graphical text viewer highlights the text matching the regular expressions in the data frame.

Fig. 4 is a screen shot of the text viewer integrated with the data frame editor.

03 Toyota 424 Exira cab, 5spd, CD, p.s., excellent cond,
1:58400. 225-8313

milesit orlkmil. or iemitb

Figure 4: Text Viewer

3 DESIGN OF ONTOLOGY EDITOR

The description of the design is divided into two main sections: the graphical design dealing with
the user interface and the class design dealing with the internal objects of the Ontology Editor. Both play an
integral role in the complete design of the Ontology Editor. We first look at the graphical design followed

by the class design.

3.1 Graphical Design

This section describes the user interface that has been designed and gives screen shots of the
implementation of the design. There are three main areas of concern in the graphical design: the ORM
editor, the data frame editor and the text viewer that is used for debugging data frames. Together they

constitute the main editing functionality that the user sees, and each is discussed in turm.

3.1.1 ORM Editor

The ORM editor is similar to Allegro’s GUI interface [C98]. As such, many of the menu options
and toolbar buttons will be familiar to those who have worked with Allegro. The goal of this portion of the
project was not to redesign the ORM editor found in Allegro but rather implement it in Java so that it

would be portable in the future. Therefore the Ontology Editor’s look and feel is similar to Allegro (see

Fig. 5).

Figure 5: Ontology Editor Screen Shot

The Ontology Editor has the concept of a drawing state. The user can create new objects or object
sets by clicking on the object or object set state buttons respectively. This sets the “state” of the editor, at
which point any click in the drawing canvas creates an object or object set depending upon the state. The
user can edit the name of an object or object set by double clicking on the text field of the name. Indeed,
any fext field can be edited in the same fashion. Right-clicking on an object set displays a popup menu with

options available for modifying the object set such as making it lexical, read-only, an object-set object, or

adding a cardinality constraint (Fig. 6).

FhoneNr

Figure 6: Object Set Popup Menu

The user can create relationship sets by clicking on the relationship set button, clicking on one
object set, and then dragging the mouse cursor to another object set where he releases the mouse button.
This action creates a default relationship set between the two object sets. The user can then customize the
relationship set by editing the participation constraints and relationship set name. Right-clicking on a
relationship set displays a popup menu with options to show left and/or right arrow heads, show a diamond,

or add a co-occurrence constraint (Fig. 7).

Figure 7: Relationship Set Popup Menu

The toolbar also provides state buttons for adding notes, creating specializations and adding
general constraints. The selection state button allows the user to select and move object sets, notes, text
fields, and other items that have been added to the canvas. Above the state button toolbar is a toolbar with
action buttons. Clicking an action button performs the corresponding manipulation, such as aligning

objects, bringing objects to the front or sending them to the rear of other objects, and changing fonts, line

widths and coloring. All toolbar actions are also available through the pull down menus.

3.1.2 Data Frame Editor

Prior to the Ontology Editor, data frames were created by writing textual descriptions. Fig. 3
showed the structure of the data required in data frames. Fig. 8 shows the graphical design of the data frame
editor dialog. The “Name” field is a combo box from which the user can select any of the object sets that
exist on the canvas. Once a name is selected, all fields are updated to show the value and context phrases
associated with the object set. Initially an object set does not have any value or context phrases, but they
can be added by clicking the new button to the right of the “Value Labe!” combo box or “Context Label”
combo box. After adding a new phrase, the user can edit its label in the combo box. The user can remove

unwanted phrases by selecting the phrase in the combo box and clicking the delete button.

[1-00d? 43} i

M$1d) left adjoining and M) right adjoining g

o A e i

Figure 8: Data Frame Editor

13

The expressions below the Value and Context labels are extended regular expressions that can be
entered in the corresponding edit control. To the right of each expression edit control is a colored button.
The color of the button is the color used by the text viewer to highlight matches when the regular
expression is found in the scanned text. If the color is pure white, highlighting is disabled for the
correspomding expression.

In order to facilitate regular expression creation, macros and lexicons can be defined and
subsequently used in data frames. Like the data frame editor, the macro and lexicon editor is needed to edit
regular expressions. Therefore it has a similar design; due to the similarities it is not further mentioned
here. Macros are regular expressions that we expect to reuse and lexicons reference a file of common

strings such as a list of surnames.

3.1.3 Text Viewer

The text viewer uses a Java class library called ORO Matcher [OR099] for manipulating Perl 5
style regular expressions. The Ontology Editor integrates the text viewer with the data frame editor and the
macro frame editor. In Fig. 8 shows a View button and a Change Source button. The Change Source
button is used to select a file to be used as the text in which to search for the regular expressions defined in
the data frame or macro.

The View button expands the data frame editor dialog to show the testing text, which is
highlighted with the colors associated with the regular expressions from the data frames or macros. (Fig. 4)
Note: JDK 1.2°s JTextArea does not support the coloring. JDK 1.3 or higher is required in order to see the

highlighting colors.

3.2 Class Design

Many of the classes that are discussed shortly follow a model-view-controller architecture.
Particularly when the classes represent persistent objects. The basic idea of the model-view-controller
architecture is to separate out underlying data structure from the user interface controls. All classes that

represent data structures are called "models” and the classes that represent the user interface controls are :

called "views". The concept is that different views can be used to display a model.

3.2.1 Framework Classes

In order to support the Multi-Document Interface the Ontology Editor allows for several
application ontology documents to be opened at one time. Fig. 9 graphically describes this design. Each
document has a frame associated with it. A frame is a child frame main window that delegates all
knowledge of ontology editing to an editing canvas. When a user interacts with the Ontology Editor, it
passes the messages on to either the document or frame as appropriate. The frame delegates ontology .
editing messages to the canvas. The canvas also receives editing interaction directly from the user. The
canvas handles all editing interaction, and specifically all keyboard and mouse interactions within the
canvas area. The classes OntologyDocument, OntologyFrame, and CntologyCanvas represent

the document, frame, and canvas respectively,

OntologyDacument

OntalogyCanvas

1
:
A
ki
B
:
&
4

Figure 9: General Design

3.22 ORM Classes
All ORM objects derive from DrawObj. OntologyCanvas is the container that displays all

DrawCbj’s in the ORM. It also instantiates all derivations of DrawOb3j as required by the menu/button

15

options selected by the user. The DrawOb7 class encapsulates all of the common functicnality of objects,
object sets, relationship sets, etc.

In order to separate the user interface from actual data, each DrawCbj has an associated model.
The model itself has no knowledge of the DrawOb3j, nor how it is to be displayed or used. brawObk]j
contains the rules for drawing a model. Fig. 10 shows the relationships between the various DrawObj

derivations and their associated models.

DrawQbj

Text BaseConnector BaseObjSest

GeneralConstraint | Note RelSst | | Specialization Obj || ObjSat

1 1 1 1 1 1
has has has has ha
/ = P/ / has\
ot/ o 01 a1 0:1

Texthodel | | RelSetModel | { SpecializationModel | | ObjectModel ObjectSetModel

Y

Connectoriodel

OSMModel

Figure 10: ORM Object Design

3.23 Data Frame Classes

The graphical design of the data frame editor basically provides a dialog with multiple combo
boxes and edit controls. Unlike the ORM editor, which required specialized “view” components for
drawing to the canvas, the data frame editor need only tie in the data contained in models to the user
interface controls of the dialog. Therefore the design of the data frame classes concentrates only upon the
models used to contain that data. In the analysis section, Fig. 3 showed the relationships that comprise a
data frame. We simply need to convert the nonlexical object sets Data Frame, Value Phrase and Context

Phrase from Fig. 3 to the models DataFrameModel, ValuePhraseModel and

ContextPhraseModel as shown in Fig. 11.

has = ~—~—" o 7 7 T A

1 has 1'*!'““”'”"'”"_""
M Context Expression ,

C')
o
=
=
]
it
5
—
@
o
°

_______________ z

ContextPhraseModel |0

L
K\P‘E‘s\“\ Applies To .
has 0 rmmmmmmm e e ‘|
X Case Sensitivity : :

Figure 11: Data Frame Design

DataFrameModel, ValuePhraseModel and ContextPhraseModel each provide

methods for accessing their associated lexical data. The DataFrameModel in addition provides methods

for accessing the ValuePhraseModel and ContextPhraseModel instances that participate in

relationships with it.

324 Persistence

We chose XML as the foundation for persistence. The file storage method used by Allegro was
MFC specific and did not allow for data frame information. The previous hand-created ontologies and data
frames were strictly textual and did not specify graphical user interface information. Either way a new
format was required for our project. Instead of continuing to use a proprietary format we chose to use an
open format that would allow for other products to visualize the stored data. Furthermore, we found
numerous existing XML implementations that we could leverage. We chose to use Sun's Java Project X:
Technology Release 2. It is a Java class libraries that implements the XML Java interfaces defined by the
World Wide Web Consortium (W3C). We conducted some preliminary testing of the toolkit and found it to
be up to the task and easy to use.

The following is the Document Type Definition (DTD) for the Ontology Editor. It allows the
storage of user interface information such as the layout of the objects, but does not require it. The DTD was
designed with the idea of allowing it to be used by follow on tools that require the data but not the user
interface information.
<|ELEMENT OSM (Style?, {ObjectSet | Object | GeneralConstraint | Note i

RelationshipSet | GenSpec | Asscclation | Macro |
Lexicon)*)>
<!ATTLIST OSM
X CDATA #IMPLIED
v CDATA $IMPLIED
width CDATA #IMPLIED
height CDATA #IMPLIED
igy; NMTOKEN "1™
>
<!|ELEMENT ObjectSet {DataFrame?, Style?, {ObjectSet |

RelationshipSet)*)>
<!'ATTLIST ObjectSet

ID NMTOKEN #REQUIRED
Name CDATA "ObiSet”
b4 CDATA non

y CDATA "0
Lexical (Y|N) "N"
ReadOnly (YIN) "N©
Highlevel (YIN) "HN"
Primary (YIN) "N"

ObjectSetlkbject NMTOKEN #IMPLIED

A o i

CardinalityConstraint CDATA #IMPLIED (R
>

<!ELEMENT Object (ObjectName)>
<!ATTLIST Object

D NMTOKEN #REQUIRED
x CDATA "Q"
v CDATA "Q"
ObjectSet NMTOKEN #IMPLIED

>

<!ELEMENT ObjectName (Text)>
<!ELEMENT Note (Text)>
<!ELEMENT GeneralConstraint ({Text)>

<!ELEMENT Text (Style?)>
<!ATTLIST Text

D NMTOKEN #IMPLIED
x CDATA #IMPLIED
v CDATA #IMPLIED
text CDATA #IMPLIED

>

<!ELEMENT Style (Line?,Font?)>
<!ATTLIST Style

FillColor CDATA #IMPLIED
>

<!ELEMENT Font EMPTY>
<!ATTLIST Font

Family CDATA #IMPLIED
Style CDATA #IMPLIED
Size CDATA #IMPLIED
Color CDATA #IMPLIED

>

<!ELEMENT Line EMPTY>
<!ATTLIST Line
Width CDATA #IMPLIED
Color CDATA #IMPLIED
>

<!ELEMENT RelationshipSet {Style?,RelationshipSetName, Connection,
Connaction+t, CoCccurrenceConstraint®, (ObjectSet |
RelationshipSet)*)>

<!ATTLIST RelationshipSet

1D NMTOKEN #REQUIRED

X CDATA #IMPLIED

y CDATA #IMPLIED]
LeftArrow {Y|N) TN

RightArrow (YIN) "y"

ShowDiamond (YIN) N

>

<!ELEMENT RelationshipSetName (Text)>

<!ELEMENT Connection (Style?, ParticipationConstraint¥):>
<IATTLIST Connection
ObjectSet NMTOKEN #REQUIRED
>
<!ELEMENT ParticipationConstraint (Text)>

<!ELEMENT CoQOccurrenceConstraint EMPTY>
<'ATTLIST CoOccurrenceConstraint

X CDATA #IMPLIED
vy CDATA #IMPLIED
LeftSet CDATA #IMPLIED
RightSet CDATA #IMPLIED

CardinalityConstraint CDATA #IMPLIED

<!ELEMENT GenSpec (Style?, GenConnecticn+, SpecConnectiont)>
<!ATTLIST GenSpec

ID NMTCKEN #REQUIRED
b4 CDATA #IMPLIED
¥ CDATA #IMPLIED

GenSpecCeonstraint (UNION|MUTEX|PARTITION|INTERSECTION|NONE)
>
<!ELEMENT SpecConnection (Style?)>
<!ATTLIST SpecConnection
ObjectSet NMTOKEN #REQUIRED
>
<!ELEMENT GenConnection (Style?)>
<!ATTLIST GenConnection
ObjectSet NMTOKEN #REQUIRED
>

<!ELEMENT Assocociation (Connection, Connection)>
<IATTLIST Association

Ib NMTOKEN #REQUIRED
b 4 CDATA #IMPLIED
y CDATA #IMPLIED

>

<!ELEMENT DataFrame ({ValuePhrase | ContextPhrase)*)>
<!ATTLIST DataFrame

SQLFieldLen CDATA #IMPLIED
>

<!ELEMENT ValuePhrase EMPTY>
<!ATTLIST ValuePhrase

Label CDATA #IMPLIED
ValueExpression CDATA #IMPLIED
ValueExpColor CDATA #IMPLIED
ExceptionExpressicn CDATA #IMPLIED
ExceptionExpColor CDATA #IMPLIED
RegContextExpression CDATA #IMPLIED
RegContextExpCeclor CDATA #IMPLIED
ConfidenceTag CDATA #IMPLIED
CaseSensitive (Y|N) "N

"NONE"

< !ELEMENT ContextPhrase

<!ATTLIST ContextPhrase
Label
ContextExpression
ContextExpColor
AppliesTo
ConfidenceTag
CaseSensitive

>

<!ELEMENT Lexicon

<!ATTLIST Lexicon
Label
FileName
CaseSensitive
Separators

>

<!ELEMENT Macro
<IATTLIST Macro
Label
Bedy
Color

EMPTY>

CDATA
CDATA
CDATA
CDATA
CDATA
(YN}

EMPTY>

CDATA

CDATA
{(YIN)

CDATA

EMPTY>
CDATA

CDATA
CDATA

#IMPLIED
#IMPLIED
#IMPLIED
$IMPLIED
#IMPLIED
"Nl!

#REQUIRED
#REQUIRED
#IMPLIED
#IMPLIED

#REQUIRED
#REQUIRED
#IMPLIED

4 IMPLEMENTATION OF ONTOLOGY EDITOR

In order te achieve the general goal of portability, we chose Java as the implementation language.
In researching Java, we discovered that the Abstract Windowing Toolkit {AWT) was not as powerful as we .l

would have liked. However, the Java Foundation Classes (JFC) provided many of the controls that were

lacking in AWT. It also provided a framework to assist development of an MDI application. Furthermore,

JFC is written such that it does not use native operating system GUI controls. Rather, it creates each control

itself, which allows for the development of an application that will look the same on any platform. JFC
allows the “look and feel” to be chosen at run time from among Windows, Motif, or native Java “Metal”

look and feel.

Initially, we started development with JDK 1.1.7. This version of the JDK allowed for JFC to be
used as a separate package. The release of JDK 1.2 integrated JFC into the JPK. Version 1.1.7 though
useful still had some limitations. The graphics toolkit was rather immature and did not provide some useful
functionality. In particular, it did not provide for drawing lines greater than a single pixel in width. JDK 1.2
greatly enhanced the graphics toolkit. It not only allowed for lines of any width, but also iarovided for
drawing end caps at the end of each line. Another weakness of JDK 1.1.7 was that it only allowed for the
translation of drawings within the coordinate space. JDK 1.2 allows translation, rotation, scaling, and more.
All of these are very powerful drawing capabilities that are truly needed in a graphical editing application
such as the Ontology Editor. Therefore, the Ontology Editor application took advantage of the capabilities
of IDK 1.2 and requires JRE 1.2 or higher to run.

We first discuss the code implementing our design, also providing some statistics about the code.
We then describe the use of Javadoc for creating code documentation. The code and instructions for

installation of this project can be found at http://www.deg.byu.edu/ontologyeditor.

41 Coding

The coding section is organized into the following sections: Framework, ORM Editor, Data Frame
Editor, Persistence, and Coding Statistics. The Framework section describes the classes used for the

implementation of the frame windows, menus, and toolbars that support the Multi-Document Interface

(MDI). The ORM Editor section describes the implementation of the class design discussed earlier.

Likewise the Data Frame Editor section explains the classes used for implementing data frames, macros
and lexicons. The Persistence section covers how data captured in classes from the framework, ORM
editor, and data frame editor are saved and restored using XML. Finally, the Statistics section gives

statistical information about the code such as the number of lines of code written in the project.

4.1.1 Framework

The framework was designed to make extensions straightforward. With that goal in mind, we have
worked to support extensions with few changes to the existing code. For example, there is an external
properties file that can be modified to specify new menu options and classes to load that introduce new
functionality. We first give a brief overview of the framework and then discuss Internal Frames, Resources,

Menus and Toolbars, and finally Actions.

Every Java application contains amain {) method. Like C++, the main ()} method is the primary
entry point for the program. The OntologyEditor class contains the main () method in this
application. This class is also the main window of the application and as such derives from JFrame. JFrame

is a JFC class that provides a frame window with the ability to create child windows such as internal

frames, menus, and tootbars. Besides being a container for other windows, this class also manages the
loading of appropriate resources for creating menus and toolbars. It also loads and prepares “Act ion”

classes, which are the primary means of redirecting user input to various parts of the program.

4.1.1.1 Internal Frames

In order to create an MDI environment, we created the OntologyEditor class from a JFrame
and added to it the menus and toolbars. The client or desktop area is created from a JDesktopPane,
which provides support for multiple child frame windows. All child frames are derivations of
OntologyInternalFrame, which extends JInternalFrame. Each child frame is added to the
instance of JDesktopPane assigned to the OntologyEditor. The JDesktopPane class handles

many of the MDI requirements in regards to child frames, though we did have to implement our own

cascading and tiling.

The primary internal frames of concern in this application are OntclogyFrame, DataFrame,
and MacroFrame. OntologyFrame is the child frame for the ORM Editor. DataFrame and

MacroFrame are the child frames for the Data Frame editor and Macro and Lexicon editor respectively.

We discuss the implementation for each later.

4.1.1.2 Resources

The OntologyEditor class uses a ResourceBundle to store all information needed to
create menus and toolbars. The ResourceBundle in this case is data loaded from a file called

OntologyEditor.properties. The following is the first part of the file as an example:

#
% Resource strings for UntclogyEditor A

Title=Ontolegy Editor

¥ list all actions

Actions=new open clcose save savels exit select cbject cbjectSet .
relationshipSet association note aggregation specialization A
constraint editDataFrame editMacro cascade tileHor tileVert
delete selectfll abcout font alignleft alignRight alignTop
alignBottom alignHorCenter alignVertCenter moveFront moveBack
spaceAcross spaceDown

MainTocolbar=new cpen save - undoe redo - font fillColor lineColor
lineWidth - alignlLeft alignRight alignTop alignBottom -
alignHorCenter alignVertCenter - spaceAcross spaceDown -
moveFront moveBack

ObjectToolbar=GROUF select object objectSet relationshipSet asscciation
note aggregation specialization constraint

menubar=file edit view format window help

file=new open close save savelAs - exit
filelabel=File
fileHotKey=F

newLabel=New
newHotKey=N
newImage=images/new.gif
newAction=NewhAction
newTocltip=New

openlLabel=0Cpen
openHotKey=0
openlmage=images/open.gif
openfction=COpenlction
cpenTooltip=0Open

Resource bundles work by assigning particular labels to data. For instance, the first line is
“Title=Ontology Editor” which associates the keyword “Title” to the value “Ontology Editor”. The
OntologyEditor class knows to look for the keyword “Title” in the resource bundle to determine what
to place as the caption on the main window. We could have hard coded this title, but by placing the data in
a resource bundle we can easily change it without recompiling the program. In addition a resource file
gives great flexibility for translating resources to other languages. Furthermore, Java supports the idea of
locale specific resources that can be loaded by specifying the locale either at startup or while running.
Using resource bundles provides the possibility of translating the resources for the OntologyEditor and

providing locale support if it is ever desired.

4.1.1.3 Menus and Toolbars

Besides providing a location for storing resource strings, the OntologyEditor.properties
file also controls what menu options are available and visible as well as specifying the class to invoke when
a menu option is selected or a toolbar button is clicked. Notice the “Actions” keyword. After this keyword
are listed all user interface actions that are supported. Following this list are the “MainToolbar”,
“ObjectToolbar”, and “menubar” keywords. These keywords refer to two toolbars and the main menu
respectively. The two toolbars show the action buttons and the menu shows the menu items to display. For
example, the menu bar shows “file edit view format window help” which correspond to the menu items
seen in the Ontology Editor menu of “File, Edit, View, Format, Window, and Help”.

As an example we will look at the “file” action to gain an understanding of the information
available:
file=new open close save savels - exit
filelLabel=File
fileHotKey=F

The “file” keyword shows “new open close save saveAs — exit”. Recall that the “file” action was
listed as being a part of the “menubar”. The “file” keyword is likewise showing the child menu items which

are displayed when the “File” menu option is selected as shown in Fig. 12.

26

Figure 12: File Menu

Notice that the pull down menu contains menu items for “New, Open, Close, Save, Save As and

Exit.” The hyphen in the action list refers to a spacer in the case of toolbars and a separator line as seen
here in the case of menus. Every action that has a label is designated by its keyword with the “Label”
extension. In this example the keyword “fileLabel” associates the word “File” which will be the string
displayed for that action. If a hotkey is desired it can be associated by appending “HotKey” to the action

keyword. Notice that Fig. 12 shows “F” as being a hotkey for the “File” menu.

In order to see the other associations that are available we will now inspect the “new”action:
newLabel=New
newHotKey=N
newlmage=images/new.gif
newhActicn=NewAction
newTooltip=New

The “new” action has a label and a hotkey associated with it like the “file” action did. Since there
are not further submenus this action does not show a list of actions. An image can be associated with an
action by appending “Image” to the keyword. In this case, it provides the path to the image to use. The -
image is displayed wherever such display is appropriate. In this case it is seen in the drop down “File”
menu as well as on the toolbar. Appending “Tooltip™ to the keyword can associate a tooltip that displays

whenever the mouse cursor hovers over the button on a toolbar. “Action” is appended to a keyword to

associate the Java class that will be used to handle all user interaction that causes this action to fire. If an

27

action class is not specified, then by default Ontosaction is used. This leads us to our next discussion:

Actions.

4.1.1.4 Actions

During initialization, the Ontology Editor instantiates an action handler for each action found in

the “Actions” list. Every such class must be an instance of the class OntosAction or a derivation

thereof. The OntosAction class extends AbstractAction overriding the actionPerformed()

method. By default, every action is forwarded to the active child frame as shown in this code snippet:

public void actionPerformed (ActionEvent evt)
JInternalFrame frame = editor.getdActiveFrame () ;
if {frame instanceof ActionListener)
{ (ActionListener) frame) .actionPerformed (evt) ;

The new, save, saveAs, close, and exit actions as well as others all have specific derivations of

OntosAction to handle their special requirements. The following shows the code for the “new” action’s
Action class:

class NewAction extends OntoshAction
{

public NewAction ()

{

1

public void actionPerformed{ActionEvent evt)

{

OntologybDocument doc = new OntologyDocument () ;
if (doc.newDocument{))
{
OntologyFrame frame = new OntologyFrame {doc, editor);
frame.addInternal FramelListener {
new FrameWindowListener (editor, frame)) ;
frame.setState
OntologyFrame.getStateByString (editor.objectState)) ;
editor.addFrame (frame} ;
frame.toFront {) ;
frame.setVisible (true) ;

try

{

frame.setSelected {true);

}

catch (PropertyVetoException e)

{
}

As can be seen, the derivations of OntosAction havea primary concern of overriding the
actionPerformed () method to supply special functionality. In this case a new
OntologyDocument is instantiated, and it is then associated with a new instance of an
OntologyFrame. After creation the internal frame is added to the desktop and configured to be the
topmost window.

The OntosAction class is a key to easing the integration of future extensions. An independent
addition need only add the appropriate menu options to the OntologyEditor. properties file and
create a derivation of OntosAction to handle creation of any new internal frame instances that are

needed. Obviously, any new functionality that requires that a preexisting action be overloaded would
require modifications to that action class. For example, we may want the new button to pull up a dialog to

allow the user to choose what type of new document to create. Currently there is only knowledge of an
OntologyDocument, but this could be extended in the future to support other document types. In this
case, we could modify NewAction to display a dialog allowing the user to choose from document types that

are supported.

4.1.2 ORM Editor
OntologyFrame is the internal frame that contains the ORM editor. It loads its data from the
OntologyDocument that is assigned to it upon its creation. OntologyDocument handles persistence

issues discussed later. OntologyFrame is actually only a container for the OntologyCanvas. The
canvas is the drawing window where the majority of the work occurs in the ORM editor.

OntologyCanvas extends JComponent. In JFC, every window control such as an edit control or

combo box derives from JComponent. JComponent also extends the Container class and as such is

29

o

aliowed to have child windows that are typically other JComponents. OntologyCanvas is a
JComponent so that it can be the parent window to all ORM elements that are added to it.
All drawable objects in the ORM (see Fig. 8) derive from DrawObj. DrawOb7 itself derives

from JComponent. As the base class for all drawable objects it defines key behavioral methods,

including:
DrawObj (OSMModel model)
int getID(}
void setID(int id)
void addNotifvy ()
void delete()
void deleteSelected(}
boolean isSelected ()
void setSelected (boolean bval)
void selectAll (Rectangle rect)
void unselectAll ()
void offset (int x, int vy}
void offsetSelected(int x, int v)
Point getCenterPoint () ‘
Point getIntersectionPoint (Point pt) :
CSMModel getModel (} :
voiad setModel (0OSMModel model} :
Rectangle normalizeRect (Point pl, Point p2) f
Canvas getCanvas () :

These niethods are used by OntologyCanvas on all DrawObj’s that it contains. Derivations of
DrawOb] sometimes need to override some of these methods to get behavior other than the default. For
example, the of £set () method is overridden in RelSet in order to call the of fset () method of the
Relation instances that participate in the relationship with it.

In order to expound upon the implementation of the design, we must now revisit the design in

more detail. Fig. 11 shows DrawObj and its derived classes. Notice the EditableText class that
derives from JTextArea, which is a multi-line edit control with some functionality for handling markup
text such as HTML. When text is required within the drawing canvas an EditableText object is used.
OntologyCanvas handies all drawing interactions from the user, therefore all DrawObj and

EditableText instances forward interactions that they receive to the OntologyCanvas. In this way

any requests for selecting or dragging objects can be uniformly handled. The one exception is when the

AT,

30

user is actually editing text within EditableText. In this case its base class JTextArea handies the

editing.

A

GeneralConstraint H Nnte

| RelSet “ Spemahzatlon I Relation |

Every Connection that padicipates contraing

in a retationship with RelSet is a Relation \ particpation 1names
and a Retlation only participates with a
BaseConnectat that is a ReiSet, names

o

EditableText]

Figure 13: ORM Implementation

All DrawObj classes support common user interactions (via the OntologyCanvas). These
interactions include selection, dragging, deletion, etc. The Text class is used whenever there is a

requirement for draggable text. The Text class simple wraps the EditableText as an embedded
component. The one case that the Text class does not wrap EditableText is with the name of the
ObjSet. In this case the ObjSet itself wraps the EditableText.

Although OntologyCanvas handles all interaction with the user, the individual DrawObj
instances handle their own particular functionality. For example, each derivation of DrawObj overrides
the paint () method to allow specialized drawing.

Many derivations of DrawOLj require some type of border. In the case of ObjSet, itisa g

rectangular border. Borders may need to be solid lines, dashed lines, or double lines. Instead of

implementing the necessary borders for each derivation, we created the ObjBorder class. The

ObjBorder class extends the AbstractBorder class from JFC. It supports borders of various widths
and colors as well as supporting a commeon way of drawing a border showing the object to be selected.
Every DrawCbj has an ObjBorder, and every derivation can configure the border with customized
drawing options.

JDK 1.2 provided a graphics library much more powerful then previous JDKs. In particular it
supports drawing lines with multiple widths and endcaps. It also supports the idea of creating drawable
shapes that can then be translated, rotated or scaled. These are powerful graphical concepts, which came in
very useful in the ORM editor. Besides drawing rectangles, the Ontology Editor requires the ability to draw
more complex shapes such as diamonds, triangles, and arrows. While the diamonds and triangles are not
too difficult to draw, the ability to draw and arrow and then rotate and translate was very useful for drawing

relationship sets.

4.1.3 Data Frame Editor

The implementation of the Data Frame Editor required some modification to the original analysis

and design. Fig. 12 shows an ORM with the major classes used in the implementation of data frames.

32

s T

A« R L

g gy

T

JintemalFrame

En!ulagylnternalFrame |

tontrols

! Name | ! SQL Field Len !

Figure 14: Data Frame Implementation

The DataFrame class derives from OntologyInternalFrame, which in turn derives from
JInternalFrame. Asa JInternalFrame, it is the child frame window inside the primary frame
window of the Ontology Editor. Not shown in Fig. 12 are all the user interface controls that are used by
DataFrame, but the layout is exactly as shown in Fig. 6 from the graphical design.

Java supports the concept of layout managers. In this case, we used a GridBagLayout to
position all of the controls on the frame. The GridBagLayout is a powerful tool that allows for
individual controls to be configured within a grid. Each control has preferred size, minimum size, and

growth parameters that GridBagLayout uses to determine actual layout positions and sizes.

33

v

In the graphical design of the data frame editor, there is a drop down combobox that allows the
user to select which CbjSet to edit. Rather than merely copying a list into the combobox, we created the
DataFrameList class. This class derives from AbstractListModel and can be used by a
combobox to specify items within the combobox, The DataFrameList is a collection of all of the
DataFrameModel instances associated with Obj Sets existing in the ORM. The combobox displays the
name of each DataFrameModel in its drop down list. Using the DataFrameList also provides
another advantage; if a user left the data frame editor open and returns to the ORM editor to add another
ObjsSet, then the combobox is immediately aware of the new addition.

The DataFrameModel class now becomes what was the Data Frame in the analysis (Fig. 3). As
mentioned before, we use models to contain only data and not user interface controls. The only significant
differences between Fig. 3 and Fig. 12 are that java classes were created for both ValuePhraseModel
{previously Value Phrase) and the ContextPhraseModel {previously Context Phrase). Each of these

classes provides accessor methods for the data they control. Not allowing direct access to member variables

AR S

is a good programming practice and in this case very necessary, because the member variables actually do

not exist and the accessor methods access an XML document to determine the information.

g o ey

Before continuing it is worth noting here some of the underlying control that occurs within the
DataFrame class. Many of the controls need to be disabled until their parent control has an appropriate
entry created. Any changes made to the data displayed in the controls are immediately recognized and
propagated to the appropriate model. In this manner the XML document is always kept up to date in

memory and ready to be saved to disk.

4.1.4 Persistence

We chose to implement persistence through the use of XML. In the design phase we created a
Document Type Definition (DTD). The DTD defines the valid format for defined XML documents. In
order to implement XML, we searched for pre-existing tools and found a toolkit created by Sun

Microsystems calied Java Project X, Technology Release 2. This toolkit conforms to an API defined by the

World Wide Web Consortium (W3C) for accessing XML documents.

Every instance of an OntologyDocument is associated with an XmlDocument from the XML
toolkit. This Xm1Document provides access to all elements contained therein. Any changes made during
editing of an ontology are immediately made to the XmlDocument held in memory which can then be
saved upon request.

Many of the elements defined in the DTD are directly represented in code by java classes. In fact,
the toolkit provides a class called an ElementNode that represents an XML element. All model classes
used in the OntologyEditor either derive from ElementNode directly or from one of its derivations.
In this manner, we were able to tie in the model classes directly with XML for persistence. But the classes
that use the models only access methods specific to the individual model and not ElementNode with the
exception of the OntologyCanvas. The OntologyCanvas is responsible for associating each model
with its view class and therefore requires use of the Xm1Document and its El ementNode instances as it
creates the associations. If the underlying persistence mechanism ever needs to change then those changes
will be isolated to the OntologyDocument, OntologyCanvas and the model classes’

implementations. Fig. 15 shows all of the models used in the OntologyEditor.

35

o r kg

ElementNode

LineModel

StyleModel

Fonthodel

MacroModel

LexiconModel

DataFrameMadet

OShMModel PhraseModel CardinalityConstrainthlodel

ContextPhraseModel ValuePhraseModel

TR ™ 4 g G R T e i e

TextModel
ObjectModel
ObjectSetModel
ConnectionModel 2
ConnectorModel CoOccurrenceConstrainModel :f
:

RelSettdodel | | SpecializationModel i

Figure 15: Model Implementation

4.1.5 Coding Statistics

There has been quite a bit of work involved in coding this project. Wherever possible we have
tried to use existing code libraries such as the XML class libraries and OROMatcher. In addition we have
strived to design our classes with reuse and maintenance in mind. The following are some of the coding
statistics:

Lines of code: 11,470
Java Class Files: 70

Java Class Count: 110 (includes internal classes)

4.2 Javadoc

In order to enhance the extensibility and maintainability of the code it is useful to have code
documentation. However as code changes and evolves outside documentation easily becomes out of date.
Code that is documented within the source files can be updated as changes are made to the code. Of course
this still takes some discipline on the programmer’s part but a programmer is much more apt to maintain
documentation if it is found with the code then otherwise.

The javadcc utility that comes with the JDK provides a very convenient way of creating html
documentation for existing java source files. Without any effort on a programmer’s part, javadoc can
create a complete listing of all classes within a project and their APL. In addition it provides a hierarchy tree
of all classes within a project and their derivations.

Any documentation added to a class, method or member variable will be placed in the HTML
documentation created by javadoc provided he follows the javadoc syntax. The following is the
documented source code of the EditableText class.

import java.awt.*;

import fjava.awt.event.*;

impert -javax.swing.JComponent;
import javax.swing.JTextArea;

import javax.swing.JLabel;

import javax.swing.text.Highlighter;

/**

* <code>EditableText</code> is a simple edit cecntrol derived

FIRP—

* from <code>JTextArea</code>. It is used by all derivations
* of <code>DrawObj</code> that require text to be displayed
* and edited.
*

* This control modifies the behavior of JTextArea by disabling
* the control uniess it is double-clicked.
*
* Bauthor Kimball Hewett
* @see Drawlbj
* Esee CObjSet
* @see Text
*/
public class EditableText)
extends JTextArea ;
implements FocusListener, MouseListener, MouseMotionlistener
{
/-k-}r

* This boolean member variable maintains the state of

* whether or not the control is in edit mode.

*

* Bsee #isEditingText ()

*/
private boolean m_bEditing = false;
private Color m_selectColor;
private Color m_ selectTextColor;

*
Spt e ety e e s e -

Iz

© * When the control loses focus this method will take
* the control out of edit mode by calling editText i
* (false). E
* :
* @param evt]
* @see #editText (boolean) H
y ¥

public EditableText()
{

initialize();

*

EditableText constructor

This method like the default constructor calls
<code>initialize{)</code> to
prepare the control for display.

@param text The edit control is initialized with the String
<ccde>text</code>
@see #initialize()

ok EF F ok ok ok F &

~

public EditableText (String text)
{

super (text);
initialize();

™~
*

L A T R SR S

T

This method initializes the control for display.

It sets up the control as a <code>Focuslistener</code>,
<code>Mouselistener</code> and
<code>MouseMotionlListener</code>.

By default the <code>JTextArea</code> control would
change the colors of the text when it is disabled.
This is inappropriate for the use in the
<code>OntolcgvEditor</code> so the initialize method
also sets the disabled colers to be the same as the
enabled cclors.

private void initialize()

{
addFocusListener{this);
addMouselistener (this);
addMouseMotionlistener {this);
setDisabledTextColor(getForeqround());
m_selectColor = getSelectionColor!);
m_selectTextColor = getSelectedTextColor(};
setSelectionColor(getBackground(});
setSelectedTextColor(getForeground());
setEnabled(false);
setEditable(false};

*
/* This method may be called to determine if the control is
* currently in editing mode.
*
* @return true if editing
*
puélic boolean isEditingText ()
{ return m bEditing;
}

/**

* This method is called to place the control in either

* edit or non-edit mode. If in edit mode it will enable

* editing and will display a caret in the control.

*

»

¥ <code>editText (boolean)</code> is typically called when

* double-clicked or when the control loses focus.

*

* @param bEdit bEdit is true if the control is to bea placed
* in edit mode.

* bEdit is false if the control is to be placed in non-edit
* mode.

* @see #focuslost

* @see #mouseClicked

+*

S

public void editText (boolean bEdit)
{
m_bEditing = bEdit;
setkEnabled (m bEditing};

39

setEditable{m bEditing);

if (m bEditing)

{
requestFocus () ;
setSelecticnColor (m selectColor);
setSelectedTextColor (m selectTextColor);

}
else // text selected upon lost focus? unselect it
{
setSelectionColor {getBackground());
setSelectedTextColor (getForeground(});
select (0,0);

public void feocusGailned{FocusEvent evt)
{
}

*

/
When the control loses focus this method will take the
control out of edit mode by calling

<codereditText (false)</code>.

Rsece f#editText

L A N 2

~

public void focusLost {FocusEvent evt)

{
editText (false);

// Since containers will resize, let's leave something in
// the control if it is empty
if {(getText().length{} == 0)

setText (" ");

*

This method checks to see if the control has been
double-clicked. If so and the contreol is not in edit mode,
then the control is placed in edit mode by calling
<codereditText (true)</code>.

@param evit evt provides the number of mouse clicks
@see #editText

N T

T

public void mouseClicked (MouseEvent evt)
{
if (!m bEditing && evt.getClickCount({) > 1)
{
editText (true);
}

}

public void mouseEntered{MouseEvent evt)
{
}

O A I S i

public void mouseExited(MouseEvent evt)
public void mousePressed{MouseEvent evt)
public void mouseReleased (MouseEvent evt)
public void mouseDragged (MouseEvent evt)
public void mouseMoved (MouseEvent evt)

public veid setForeground(Color ¢}

super.setForegroundic)
setDisabledTextColor(c);

All code documentation that is entered by the programmer must adhere to the syntax required by
javadoce. Basically it must precede the documented class, method or variable and be inside comments as
shown above. Programmer documentation may use any valid HTML tags such as <BOLD> o cause
bolding, but the use of header tags such as <H1> is discouraged because header tags are used by javadoc
itself. Links within the documentation can be created through the use of special keywords such as @see as
done in several places within the EditableText code.

Having looked at one of the source files to visnalize the documented code, it is now useful to see
the HTML documentation that can be created by javadoc. The HTML document corresponding to the

EditableText class was created by running javadoc with the following options:

javadoc ~private -use -version -author -splitindex -windowtitle
* Ontology Editor” EditableText.java

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class EditableText

java.lang.Object
I

+-java.awt.Component

+-java.awt.Container

+-javax.swing,JComponent

+-javax.swing.text TextComponent

+-javax.swing.|TextArea

I
+-EditableText

public class EditableText

extends javax.swing.JTextArea

implements java.awt.event.FocusListener, Jjava.awt.event. MouseListener,
Jjava.awt.event. MouseMotionListener

EditableText is a simple edit control derived from JTextArea. It is used by all derivations
of DrawObj that require text to be displayed and edited.

This control modifies the behavior of jTextArea by disabling the control unless it is

double-clicked.

Author:
Kimball Hewett
See Also:

DrawQbj, ObjSet. Text, Serialized Form

iijavax.swingJTextArea.Accessib!ejTextArea

javax.swing.text.]TextComponent.AccessibleTextComponent,
javax.swing.text.JTextComponent.ClipboardObserver,
javax.swing.text [TextComponent.ComposedTextCaret,
javax.swing.textTextComponent.Defaultkeymap, javax.swing.text.JTextComponent.FocusAction,
javax.swing.text.JTextComponent.inputMethodRequestsHandler,
javax.swing.text.JTextComponent.KeyBinding, javax.swing.text]TextCom ponent.MutableCaretEvent

javax.swing.JComponent.KeyboardBinding, javax.swing)Com ponent.KeyboardState

§ava.awt.Compnt.AWI Ireec o

private m bEditing
boolean This boolean member variable maintains the state of whether or not the contro! is in
edit mode.

privateim_selectColor
java.awt.Color

privateim selectTextColor
java.awt.Color

composedTextEnd, composedTextStart, DEFAULT_KEYMAP, defaultBindings, defaultClipboardOwner,
disabledTextColor, editable, editor, FOCUS_ACCELERATOR_KEY, focusAccelerator, focusAction,
focusedComponent, highlighter, inputMethodRequestsHandler, keymap, keymapTable, margin,
model, needToSendKeyTypedEvent, opaque, originalCaret, selectedTextColor, selectionColor

'_bounds, accessibleContext, alignmentX, alignmentY, ANCESTOR_USING_BUFFER, ancestorNotifier,
| autoscroller, border, changeSupport, clientProperties, flags, HAS_FOCUS, IS_DOUBLE_BUFFERED,
I5_OPAQUE, IS_PAINTING_TILE, KEYBOARD_BINDINGS_KEY, listenerList, maximumSize,

43

minimumSize, NEXT_FOCUS, paintimmediatelyClip, paintingChild, preferredSize,
readObjectCallbacks, REQUEST_FOCUS_DISABLED, tmpRect, TOOL_TIP_TEXT_KEY, ui, uiClassID,

UNDEFINED_CONDITION, vetoableChangeSupport,
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT, WHEN_FOCUSED, WHEN _IN_FOCUSED_WINDOW

component, containerListener, containerSerializedDataVersion, dispatcher, layoutMgr, maxSize,

ncomponents, serialVersionUID

actionListenerk, adjustmentListenerK, appContext, assert, background, BOTTOM_ALIGNMENT,
CENTER_ALIGNMENT, changeSupport, componentListener, componentListenerk,
componentOrientation, componentSerializedDataVersion, containerListenerK, cursor, dropTarget,
enabled, eventMask, focusListener, focusListenerk, font, foreground, hasFocus, height, incRate,
inputMethodListener, inputMethodListenerk, isinc, isPacked, itemListenerK, keyListener,
keyListenerK, LEFT_ALIGNMENT, locale, LOCK, minSize, mouseListener, mouseListenerk,
mouseMoationListener, mouseMotionlistenerk, name, nameExpiicitlySet, newEventsOnly,
ownedWindowk, parent, peer, peerFont, popups, prefSize, RIGHT_ALIGNMENT, serialversionUID,
textListenerk, TOP_ALIGNMENT, valid, visible, width, windowListenerkK, x, y

EditableText(
When the control loses focus this method will take the control out of edit mode by calling editText

(false).
EditableText(java.lang.String text)

EditableText constructor This method like the default constructor calls initialize() to prepare the
control for display.

voidileditText{boolean bEdit)
This method is called to place the control in either edit or non-edit mode.

voidifocusGained (java.awt.event.FocusEvent evt)

voidjjfocusLost(java.awt.event.FocusEvent evt)
When the control loses focus this method will take the control out of edit mode by calling

editText(false).

privatelinitialize()
void This method initializes the control for display.

booleanjjisEditingTextQ

This method may be called to determine if the control is currently in editing mode.

44

SRR

voidiimouseClicked(java.awt.event.MouseEvent evt)
This method checks to see if the control has been double-clicked.

voidimouseDragged (java.awt.event.MouseEvent evt)

voidjimouseEntered(java.awt.event. MouseEvent evt)

voidimouseExited (java.awt.event. MouseEvent evt)

voidiimouseMoved(java.awt.event. MouseEvent evt)

voidiimousePressed{(java.awt.event. MouseEvent evt)

voidimouseReleased(java.awt.event. MouseEvent evt)

voidjisetForeground(java.awt.Color ¢

append, createDefaultModel, getAccessibleCntext gl, tlunWidh, tiCo, o
getlineEndOffset, getlineOfOffset, getlineStartOffset, getLineWrap,
getPreferredScrollableViewportSize, getPreferredSize, getRowHeight, getRows,
getScrollableTracksViewportWidth, getScrollableUnitincrement, getTabSize, getUIClassiD,
getWrapStyleWord, insert, isManagingFocus, paramString, processComponentKeyEvent,
replaceRange, setColumns, setFont, setLineWrap, setRows, setTabSize, setWrapStyleWord,
writeObject

, addCaretListener, addinputMethodLlistener, addKeymap, copy, createComposedString, cut,
exchangeCaret, fireCaretUpdate, getActions, getCaret, getCaretColor, getCaretPosition,
getDisabledTextColor, getDocument, getFocusAccelerator, getFocusedComponent, getHighlighter,
getinputMethodRequests, getKeymap, getKeymap, getMargin, getScrollableBlockincrement,
getScrollableTracksViewportHeight, getSelectedText, getSelectedTextColor, getSelectionColor,
getSelectionEnd, getSelectionEnd, getSelectionStart, getSelectionStart, getText, getText, getUl,
isEditable, isFocusTraversable, isOpague, isProcessinputMethodEventOverridden, loadKeymap,
mapCommittedTextToAction, mapEventToAction, modelToView, moveCaretPosition, paste,
processinputMethodEvent, read, readObject, removeCaretListener, removeKeymap, removeNotify,
replacelnputMethodText, replaceSelection, select, selectAll, setCaret, setCaretColor, setCaretPosition,
setDisabledTextColor, setDocument, setEditable, setEnabled, setFocusAccelerator, setHighlighter,
setinputMethodCaretPosition, setkKeymap, setMargin, setOpaque, setSelectedTextColor,
setSelectionColor, setSelectionEnd, setSelectionStart, setText, setUl, updateUl, viewToModel, write

45

_paintimmediately, addAncestorListener, addNotify, addPropertyChangeListener,
addPropertyChangelistener, addVetoableChangelistener, adjustPaintFlags, alwaysOnTop,
bindingForKeyStroke, checkIfChildObscuredBySibling, computeVisibleRect, computeVisibleRect,
contains, createToolTip, enableSerialization, firePropertyChange, firePropertyChange,
firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, firePropertyChange, firePropertyChange, fireVetoableChange,
getActionForKeyStroke, getAlignmentX, getAlignmentY, getAutoscrolls, getBorder, getBounds,
getClientProperties, getClientProperty, getComponentGraphics, getConditionForKeyStroke,
getDebugGraphicsOptions, getFlag, getGraphics, getHeight, getlnsets, getinsets, getLocation,
getMaximumsSize, getMinimumsSize, getNextFocusableComponent, getRegisteredKeyStrokes,
getRootPane, getSize, getToolTipLocation, getToolTipText, getToolTipText, getTopLevelAncestor,
getVisibleRect, getWidth, getX, getY, grabFocus, hasFocus, isDoubleBuffered, isfocusCycleRoot,
isLightweightComponent, isOptimizedDrawingEnabled, isPaintingTile, isRequestFocusEnabled,
isvalidateRoot, keyboardBindings, paint, paintBorder, paintChildren, paintComponent,
paintimmediately, paintimmediately, paintWithBuffer, processFocusEvent, processKeyBinding,
processKeyBindings, processKeyBindingsForAllComponents, processKeyEvent,
processMouseMotionEvent, putClientProperty, rectanglelsObscured, rectanglelsObscuredBySibling,
registerKeyboardAction, registerKeyboardAction, registerWithKeyboardManager,
removeAncestorListener, remavePropertyChangelistener, removePropertyChangelistener,
removeVetoableChangelistener, repaint, repaint, requestDefauitFocus, requestFocus,
resetKeyboardActions, reshape, revalidate, scrollRectToVisible, setAlignmentX, setAlignmenty,
setAutoscrolls, setBackground, setBorder, setDebugGraphicsOptions, setDoubleBuffered, setFlag,
setMaximumSize, setMinimumSize, setNextFocusableComponent, setPaintingChild, setPreferredSize,
setRequestFocusEnabled, setToolTipText, setUl, setVisible, shouldDebugGraphics,
superProcessMouseMotionEvent, unregisterKeyboardAction, unregisterWithKeyboardManager,

update

add, add, add, add, add, addContainerListener, addimpl, applyOrientation, countComponents,
deliverEvent, dispatchEventimpl, dispatchEventToSelf, doLayout, eventEnabled, findComponentAt,
findComponentAt, getComponent, getComponentAt, getComponentAt, getComponentCount,
getComponents_NoClientCode, getComponents, getCursorTarget, getLayout, getMouseEventTarget,
getWindow, initlDs, insets, invalidate, invalidateTree, isAncestorOf, layout, lightweightPrint, list, list,
locate, minimumSize, nextFocus, paintComponents, postProcessKeyEvent, postsOldMouseEvents,
preferredSize, preProcessKeyEvent, print, printComponents, printOneComponent,
processContainerEvent, processEvent, proxyEnabieEvents, proxyRequestFocus, remove, remove,
removeAll, removeContainerListener, setCursor, setFocusOwner, setlayout, transferFocus,
updateCursor, validate, validateTree

ey s T TS

A ngimie g

action, add, addComponentListener, addFocusListener, addKeylistener, addMouseListener,
addMouseMotionListener, areinputMethodsEnabled, bounds, checkimage, checklmage,
coalesceEvents, constructComponentName, contains, createlmage, createimage, disable,
disableEvents, dispatchEvent, enable, enable, enableEvents, enablelnputMethods, getBackground,
getBounds, getColorModel, getComponentQOrientation, getCursor, getDropTarget,
getFont_NoClientCode, getFont, getFontMetrics, getForeground, getinputContext, getintrinsicCursor,
getlocale, getlocation, getLocationOnScreen, getName, getNativeContainer,
getParent_NoClientCode, getParent, getPeer, getSize, getToolkit, getToolkitimpl, getTreelock,
getWindowForObject, gotFocus, handleEvent, hide, imageUpdate, inside, isDisplayable, isEnabled,
isEnabledimpl, isLightweight, isShowing, isValid, isVisible, keyDown, keyUp, list, list, list, location,
lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouselp, move,
nextFocus, paintAll, postEvent, preparelmage, preparelmage, printAll, processComponentEvent,
processMouseEvent, remove, removeCompenentListener, removeFocusListener,
removelnputMethodListener, removeKeylistener, removeMouselistener,
removeMouseMotiontistener, repaint, repaint, repaint, resize, resize, setBounds, setBounds,
setComponentOrientation, setDropTarget, setLocale, setlocation, setlocation, setName, setSize,
setSize, show, show, size, toString, transferFocus

clone, equals, finalize, getClass, hashCode, notify, notifyAll, registerNatives, wait, wait, wait

m_bEditing

private boolean m_bEditing

This boolean member variable maintains the state of whether or not the control is in edit mode.
See Also:

isEditingTextQ

m_selectColor

private java.awt.Color m_selectColor

m_selectTextColor

private java.awt.Colar m_selectTextColor

EditableText

public EditableText(
‘When the control loses focus this method will take the control out of edit mode by calling editText
(false).
Parameters:
evt -
See Also:
editText(boolean)

EditableText

public EditableText({java.lang.String text)

EditableText constructor This method like the default constructor calls initializeQ) to prepare the
control for display.

Parameters:

text - The edit control is initialized with the String text

See Also:

initializeQ

initialize

private void initialize()
This methed initializes the control for display. It sets up the control as a FocusListener,
MouseListener and MouseMotionListener.

By default the JTextArea control would change the colors of the text when it is disabled. This is

inappropriate for the use in the OntologyEditor so the initialize method also sets the disabled
colors to be the same as the enabled colors.

isEditing Text

public boolean isEditingText(
This method may be called to determine if the control is currently in editing mode.
Returns:
true if editing

editText

public void editText(boolean bEdit)
This method is called to place the control in either edit or non-edit mode. If in edit mode it will
enable editing and will display a caret in the control.

editText(boolean) is typically called when double-clicked or when the control loses focus.
Parameters:

48

bEdit - bEdit is true if the control is to be placed in edit mode.

bEdit is false if the control is to be placed in non-edit mode.
See Also:

focusLost(ava.awt.event.FocusEvent), mouseClicked(java.awt.event.MouseEvent)

focusGained

public void focusGained{java.awt.event.Focustvent evt)
Specified by:
focusGained in interface java.awt.event.FocusListener

focusLost

public void focuslost(java.awt.event.FocusEvent evt)
When the control loses focus this method will take the control out of edit mode by calling
editText(false).
Specified by:
focusLost in interface java.awt.event. FocusListener
See Also:

editText(boolean)

moeuseClicked

public void mouseClicked(java.awt.event. MouseEvent evt)
This method checks to see if the control has been double-clicked. If so and the control is not in
edit mode, then the control is placed in edit mode by calling editText(true).
Specified by:
mouseClicked in interface java.awt.event.MouseListener
Parameters:
evt - evt provides the number of mouse clicks
See Also:

editText(boolean)

mouseEntered

public void mouseEntered(java.awt.event.MouseEvent evt)
Specified by:
mouseEntered in interface java.awt.event. MouseListener

mouseExited

public void mouseExited (java.awt.event.MouseEvent evt)
Specified by:
mouseExited in interface java.awt.event. MouseListener

49

mousePressed

pubtlic void mousePressed(java.awt.event. MouseEvent evt)
Specified by:
mousePressed in interface java.awt.event. MouseL.istener

mouseReleased

public void mouseReleased(java.awt.event.MouseEvent evt)
Specified by:
mouseReleased in interface java.awt.event. MouseListener

mouseDragged

public void mouseDragged(java.awt.event.MouseEvent evt) i
Specified by:
mouseDragged in interface java.awt.event. MouseMotionListener

mouseMoved

public void mouseMoved{java.awt.event. MouseEvent evt)
Specified by:
mouseMoved in interface java.awt.event. MouseMotionl istener

setForeground

public void setForeground(java.awt.Color ¢)

Overrides:
setForeground in class javax.swing.JComponent

PREV CLASS NEXT GLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

As can be readily seen, the documentation that can be created by javadoc is quite extensive.

Even without programmer comments in the code the tool provides quick access for viewing the API of each

class. With the programmer comments it becomes even more powerful. The major classes of the Ontology

Editor have had programmer comments added to their methods in order to facilitate understanding the code

by future programmers who will extend and maintain the code.

Prior to leaving this section it will be useful to show the tree of classes that javadoc produces. We

have already found this HTML page very useful when explaining the hierarchy of classes within the

Ontology Editor. Its benefits lie in not only listing each class but especially in the derivation hierarchy.

PREV NEXT

FRAMES NO FRAMES

Class Hierarchy

o class java.lang.Object

Hierarchy For All Packages

o class AboutDialog. Hyperactive (implements javax.swing.event.HyperlinkListener)

o class AboutDialog.SymAction (implements java.awt.event. ActionListener)

o class javax.swing.AbstractAction (implements javax.swing.Action, java.lang.Cloneable,
java.io.Serializable)

o class OntosAction

Q

class AlignBottomAction
class AlignHorCenterAction
class AlignLeftAction

class AlignRightAction

class AlignTopAction

class AlignVertCenterAction

51

o class CloseAction

o class DataFrameAction

o class ExitAction
o class FontAction

o class HelpAboutAction

o class MacroEditorAction

o class MoveBackAction

o class MoveFrontAction

o class NewAction

o class OpenAction
o class SaveAction

o class SaveAsAction

o class SpaceAcrossAction

o class SpaceDownAction

o class StateAction

o class WindowCascadeAction

o class WindowFrameAction

o class WindowTileHorAction

o class WindowTileVertAction

o class javax.swing.border, AbstractBorder (implements javax.swing.border.Border,
java.io.Serializable)

o class ObjBorder
o class java.util. AbstractCollection (implements java.util. Collection)
o class java.util AbstractList (implements java.util. List)

o class java.util. Vector (implements java.lang.Cloneable, java.util List,
java.io.Serializable)

o class ExpressionVector

o class javax.swing.AbstractListModel (implements javax.swing.ListModel,
java.io.Serializable)

o class DataFrameList (implements javax.swing.ComboBoxModel)

o class Arrow (implements java.awt.Shape)

¢ class Colorlcon (implements javax.swing.Icon)

O

class java.awt.Component (implements java.awt.image.ImageObserver,
java.awt MenuContainer, java.io,Serializable)

o class java.awt.Container
o class javax.swing.JComponent {implements java.io.Serializable)

o class javax.swing.AbstractButton (implements
Jjava.awt.ItemSelectable, javax.swing.SwingConstants)

o class javax.swing. JButton (implements
Jjavax.accessibility. Accessible)

o class ColorButton

o class CoOccurrenceConstraint. ArrowComponent

o class DrawObj
o class AlignableObj

o class BaseConnector

o class Aggregation

o class Association
o class Conjunction
o class Interaction

o class RelSet

o class Specialization

o class BaseObjSet
o class Obj

o class ObjSet (implements
javax.swing.event. Documentl.istener)

o class PlaceHolder
o class State
o class Transition
o class Connection
o class Relation

o class CoOccurrenceConstraint (implements
Jjavax.swing.event. DocumentListener)

o class Text (implements
Jjavax.swing.event. DocumentListener)

o class GeneralConstraint

53

o class Note

o class GridSpacer

o class javax.swing.JFileChooser (implements f
javax.accessibility. Accessible) i

o class ExtFileChooser

o class javax.swing.JInternalFrame (implements
javax.accessibility. Accessible,
Javax.swing.RootPaneContainer,

Jjavax.swing. WindowConstants)

o class OntologyInternalFrame (implements
javax.swing.event.InternalFrameListener)

o class DataFrame (implements
java.awt.event.ActionListener,
java.awt.event. FocusListener,
Jjavax.swing.event.InternalFramel.istener,
Jjava.awt.event. FtemListener)

c class MacroFrame (implements
java.awt.event,ActionListener,
java.awt.event.FocusListener,
javax.swing.event.InternalFramel istener,
java.awt event.ItemListener)

© class OntologyFrame (implements

java.awt.event. ActionListener)

o class javax.swing.text.JTextComponent (implements
Javax.accessibility. Accessible, javax.swing.Scrollable)

o class javax.swing.JTextArea

o class EditableText (implements
Jjava.awt.event.FocusListener,
java.awt.event.MouseListener,
java.awt.event.MouseMotionListener)

o class MacroFrame.Spacer

o class OntologyCanvas (implements

java.awt.event. ActionListener, Canvas,
Jjava.awt.event. KeyListener, java.awt.event. MouseListener,
Jjava.awt.event. MouseMotionListener)

o class PrimaryMarker

o class java.awt. Window

o class java.awt.Dialog

o class javax.swing.JDialog (implements
Jjavax.accessibility. Accessible,

54

javax.swing. RootPaneContainer,
Jjavax.swing. WindowConstants)

o class AboutDialog
o class FontDialog

c class java.awt.Frame (implements java.awt.MenuContainer)

o class javax.swing. JFrame (implements
Jjavax.accessibility. Accessible,
javax.swing RootPaneContainer,
Javax.swing. WindowConstants)

o class OntologyEditor

class ExpressionVector.Expression

class javax.swing.filechooser.FileFilter

o class ExampleFileFilter

o class OSMFileFilter

class FontDialog.SymAction (implements Jjava.awl.event. ActionListener)

class FontDialog.SymItem (implements Jjava.awt.event.ItemListener)

class Framelnfo
class IDGenerator

class javax.swing.event.InternalFrame Adapter (implements
Javax.swing.event.InternalFrameListener)

o class FrameWindowListener

class java.awt.event.KeyAdapter (implements Jjava.awt.event.KeyListener)

o class FontDialog.SymKey

class MatechMarker

class com.sun.xml.tree.NodeBase (implements org.w3c.dom Node,
com.sun.xml.tree NodeEx, org.w3¢.dom.NodeList, com.sun.xml.tree. XmIWritable)

o class com.sun.xml.tree. ParentNode (implements
com.sun.xml.tree. Xm|Readable)

o class com.sun.xml.tree. ElementNode (implements
com.sun.xml tree.ElementEx)

o class CardinalityConstraintModel

¢ class DataFrameModel

¢ class FontModel

o class LexiconModel (implements LabelModel)

55

o class LineModel
o class MacroModel (implements LabelModel)
o class OSMModel

o class ConnectionModel ‘

o class ConnectorModel

o class AssociationModel

o class RelSetModel

o class SpecializationModei

o class CoQccurrenceConstraintModel

o class ObjectModel

o class ObjectSetModel
o class TextModel

o class PhraseModel (implements LabelModel)

o class ContextPhraseModel

o class ValuePhraseModel

o class StyleModel

o class OntologyDocument

o class OntologyDocument.OntologyDocError {(implements org.xml.sax.ErrorHandler)

o class OntologyEditor.ActionChangedListener (implements
Jjava.beans.PropertyChangeListener)

o ciass OntologyPopupMenu

o class PhraseEditor (implements Jjavax.swing. ComboBoxEditor,
Javax.swing.event. DocumentListener)

o class Style
o class java.awt.event. WindowAdapter (implements java.awt.event. WindowListener)

o class FontDialog. ThisDialogAdapter

o class WindowCloser

Interface Hierarchy

o interface java.util. EventListener

o interface java.awt.event.KeyListener

o interface Canvas(also extends java.awt.event.MouseListener,
java.awt.event MouseMotionListener)

o interface java.awt.event. MouseListener

o interface Canvas(also extends java.awt.event. KeyListener,
Jjava.awt.event. MouseMotionListener)

o interface java.awt.event. MouseMotionListener

o nterface Canvas(also extends java.awt.event KeyListener,
java.awt.event. MouseListener)

o interface LabelModel

PREV NEXT FRAMES NO FRAMES

The hiérarchy tree is a convenient way of browsing the classes. Every local class has a link that
can be clicked to pull up the documentation for that particular class.

The use of javadoc provides an extremely valuable tool for understanding the API and
hierarchy of the classes in Ontology Editor. Those tasked with extending or maintaining the Ontology

Editor in the future should find their job of understanding the existing code easier with the help of the

documentation created by javadoc,

5 CONCLUSION

In conclusion, we should revisit the goals set forth for the Ontology Editor to evaluate our success.
Those goals were portability, extensibility, maintainability, and the features of the ORM editor, data frame

editor, and text viewer,

5.1 Portability

We chose to write the Ontology Editor in Java so that we could leverage the ability of Java to run
on multiple platforms. The Ontology Editor has been successfully run on Microsoft Windows 95, Windows
NT, Linux and Solaris operating systems. By implementing the project in a programming language that
provides portable user interface controls, we were able to meet the goal of portability. The Ontology Editor

should run fine on any operating system for which IDK 1.2 or higher has been provided.

5.2 Extensibility

Throughout the project we have strived to design and implement in such a manner as to ease the
Job of extending the project in the future. Specifically, several areas that enhance the extensibility of the
Ontology Editor are:
* The method used for creating menu and toolbar items which allows for new menus items and
toolbar buttons with a simple entry into the OntologyEditor.properties file. The entry specifies the
Action class that can be implemented to handle the new functionality.
¢ The DrawObj class and its immediate specializations provide a framework for creating new
drawable objects.
* The Model/View method of separating data structures from their user interface will allow the
reuse of the data structures when integrating other data extraction processes into the Ontology
Editor.
Two items from the Object Relationship Model were not implemented initially because they are
not specifically needed for ontologies. They are association and aggregation. In order to see how easily the

project could be extended, we had David Lewis implement the association relationship. He was able to

59

create a new derivation of DrawObj and integrate it into the ORM editor within a few hours, Most of which
time he said was spent on creating the paint () method for drawing the new drawable object.
All of the above helps substantiate the claim that the Ontology Editor has been made extensible

and that future development work on this project will benefit from the groundwork that has been laid,

5.3 Maintainability

Maintainability has been a primary goal of this project. We have accomplished this goal by the
following actions:
® Striving for readability in the code
o Descriptive naming of classes, methods and variables
o Commenting code where appropriate
© Resisting overly long methods
* Creation of an elegant design that can be readily followed
¢ Providing coding documentation through the use of javadoc
Towards the end of the project, David Lewis was assigned to help with the final coding stages. He
was able to come into the project on the tail end and quickly come up to speed on the design and structure

of the classes. His ability to become productive so quickly is evidence of the maintainability of the project.

5.4 Features

The project was composed of three main areas: An ORM Editor, a data frame editor and a text
viewer for debugging. Each area has been completed according to the requirements analysis.

In conclusion, this project represents a key tool in the data extraction process. The Integrated
Ontology Development Environment now provides support for editing ontologies and dataframes, and the
ability to debug the data frames. As an integrated tool, this project now allows for the graphical creation of
application ontologies without a detailed knowledge of its underlying textual syntax. The Integrated
Ontology Development Environment, together with the other projects that are providing tools for the data

extraction model can be a great asset for accessing the unstructured data residing on the WWW today.

60

T TR = R PRRET = 70 TSI . B T 11 1o

I g s

BIBLIOGRAPHY

[C98] Carter, Eric. Allegro. http:/fosm'l.cs.byu.eduf~eric/allegr0.html.

[CIB99] Chandrasekaran, B., John R, Josephson, and Richard Benjamins. “What Are Ontologies, and Why
Do We Need Them?” IEEE Intelligent Systems (Fanuary/February 1999): 20-26.

[E+98] Embley, David W., et al. “A Conceptual-Modeling'Approach to Extracting Data from the Web,”
Proceedings of the 17" International Conference on Conceptual Modeling (November 1998); 78-
91.

[E+99] Embley, David W. et al, “Conceptual-Model-Based Data Extraction from Multiple-Record Web
Pages,” Data and Knowledge Engineering (November 1699).

[ECLS98] Embley, David W., Douglas M. Campbell, Stephen W. Liddle, and Randy D. Smith.
“Ontology-Based Extraction and Structuring of Information from Data-Rich Unstructured

Documents,” Proceedings of the Conference on Information and Knowledge Management
(November 1998}); 52-59.

[EIN99] Embley, David W. S. Jiang and Y K. Ng, “Record-boundary discovery in Web documents,”
Proceedings 1999 ACM SIGMOD International Conference on Management of Data (1999).

[EKW92] Embley, David W., Barry D. Kurtz, Scott N. Woodfield. Object-Oriented Systems Analysis: A
Model-Driven Approach. New Jersey: Yourdon Press, 1992,

[Embley80] Embley, David W. “Programming with data frames for everyday data items,” National
Computer Conference (1980): 301-305.

[Embley98] Embley, David W. Object Database Development: Concepts and Principles. Massachusetts:
Addison Wesley Longman Inc., 1998.

[FF99] Fikes, Richard, and Adam Farquhar. “Distributed Repositories of Highly Expressive Reusable
Ontologies,” IEEE Intelligent Systems {March/April 1999): 73-79,

[FFF99] Frank, Gleb, Adam Farquhar, and Richard Fikes. “Building a Large Knowledge Base from a
Structured Source,” IEEE Intelligent Systems (January/February 1999): 47-54.

[JOE99] Java Ontology Editor. http://www.engr.sc.edu/researcthIT/demos/java/joe/joeBeta.html.

[KPE82] Khan, Shams A., Michael R. Paige, and David W, Embley. “Reading Data Jtems without
Constraints on Form, Format or Completeness,” Proceedings: Advances in Information
Technology (May 27, 1982): 74-82.

[L98] Liddle, Stephen W. Pattern Editor, http://www.deg byu.edu.

[LGS8S99] Lopez, Mariano F., Asuncién Goémez-Pérez, Juan Pazos Sierra, and Algjandro Pazos Sierra,
“Building a Chemical Ontology Using Methentology and the Ontology Design Environment,”
IEEE Intelligent Systems (January/F ebruary 1999): 37-46.

[ORO99] ORO Matcher. http://www.oroing.com.

[OSM] Object-Oriented Systems Modeling Laboratory. http://osm7.cs.byu.edu.

61

[ST99] Studer, Rudi, V. Richard Benjamins, and Dieter Fensel. “Knowledge Engineering: Principles and
Methods,” Data & Knowledge Engineering 25 (1998): 161-197.

[VRMS99) Valente, Andre, Thomas Russ, Robert MacGregor and William Swartout. “Building and
(Re)Using an Ontology of Air Campaign Planning,” IEEE Intelligent Systems (Janvary/February
1999): 27-36.

62 j

