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Abstract

Given a hypergraph and a set of embedded functional dependencies, we investigate the

problem of determining the conditions under which we can efficiently generate redundancy-free

XML storage structures with as few scheme trees as possible. Redundancy-free XML structures

guarantee both economy in storage space and the absence of update anomalies, and having

the least number of scheme trees requires the fewest number of joins to navigate among the

data elements. We know that the general problem is intractable. The problem may still be

intractable even when the hypergraph is acyclic and each hyperedge is in Boyce-Codd Normal

Form (BCNF). As we show here, however, given an acyclic hypergraph with each hyperedge

in BCNF, a polynomial-time algorithm exists that generates a largest possible redundancy-

free XML storage structure. Successively generating largest possible scheme trees from among

hyperedges not already included in generated scheme trees constitutes a reasonable heuristic for

finding the fewest possible scheme trees. For many practical cases, this heuristic finds the set of

redundancy-free XML storage structures with the fewest number of scheme trees. In addition to

a correctness proof and a complexity analysis showing that the algorithm is polynomial, we also

give experimental results over randomly generated but appropriately constrained hypergraphs

showing empirically that the algorithm is indeed polynomial.

Keywords: XML data redundancy, large XML storage structures, XML-Schema generation,

acyclic hypergraphs

1 Introduction

XML databases are emerging [4]. Two types of XML databases are native XML databases and

XML-enabled databases. The fundamental unit of (logical) storage in native XML databases is an

XML document [3]. Thus, designing XML documents for efficient retrieval and update has been

a topic of recent research [8, 9, 10]. The fundamental unit of (logical) storage in XML-enabled
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databases is a relational table. This table-storage method requires various mapping rules to trans-

late between XML document schemas and database schemas and employs middleware to transfer

data between XML documents and databases [3, 17, 22]. A recent study shows that designing

XML documents for efficient retrieval and update can also guarantee well-designed relational stor-

age structures for XML-enabled databases [11]. Thus, for both native XML databases and XML-

enabled databases, designing XML documents for efficient retrieval and update is an appropriate

focus for study.

Similar to designing relational tables by normalizing relational schemas, designing XML doc-

uments for efficient retrieval and update is about normalizing XML storage schemas. Normalized

XML storage schemas remove the possibility of redundancy with respect to constraints and typi-

cally make both retrieval and update more efficient. Thus, there has been a flurry of research work

on normalization of XML documents [1, 5, 6, 13, 15, 21, 24, 25, 26].

This paper, which follows up on our previous work [6, 15], is another step in this direction. Like

[15], instead of generating XML DTDs or XML Schema specifications directly, we first generate

XML storage structures. These storage structures, called scheme trees here and elsewhere [16],

are simply generic hierarchical structures. After obtaining a set of scheme trees, we can apply the

mapping method in [1], or equivalently, those cited in [15], to generate a DTD or the basic struc-

tural components of an XML Schema document. These mappings simply represent scheme trees

syntactically in these XML specification schemes in a one-to-one correspondence. Therefore, under

these mappings, there is redundancy in a scheme-tree instance if and only if there is redundancy

in an XML document. Hence, our discussion in this paper only needs to focus on scheme trees and

scheme-tree instances, without concern for the mapping to DTDs or to XML Schemas.

In [15] we showed that generating a minimum number of redundancy-free scheme trees from

a conceptual-model hypergraph is NP-hard. Here we consider special-case conditions in an effort

to find an efficient algorithm. First, we limit ourselves to regular hypergraphs [2, 14], which are

a special type of conceptual-model hypergraphs. Also, since it is known that checking whether

relational schemas are in Boyce-Code Normal Form (BCNF) is intractable [12], we limit hypergraphs

to those in which each hyperedge is in BCNF with respect to the given functional dependencies

(FDs). Next, since cycles in hypergraphs introduce ambiguity and typically cause difficulties, we

assume that hypergraphs are acyclic. Finally, we assume that the only multivalued dependencies

(MVDs) are hypergraph-generated MVDs. Even with these assumptions, however, it is an open

problem to find an algorithm that generates a minimum number of redundancy-free scheme trees

in polynomial time. We therefore settle on a heuristic that resolves the issue for many practical

cases and likely gives good results for all cases.

As the basis of our heuristic, we provide in this paper a polynomial-time algorithm that gener-

ates a largest scheme tree from an acyclic hypergraph and a set of FDs where each FD is embedded

in some hyperedge and each hyperedge is in BCNF. As an approximation to generating a mini-

mum number of redundancy-free scheme trees, we use this heuristic repeatedly on the remaining

hyperedges not already included in generated scheme-tree storage structures. This heuristic always
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Figure 1: The Acyclic Hypergraph and Relationships of Example 1.

yields redundancy-free scheme trees and often, especially in practical cases, yields the fewest.

To illustrate our approach and to show some of the pitfalls involved, we present a motivating

example. In this example, we rely on intuition for some undefined terms. Later in Section 2, we

formally define these terms.

Example 1 Figure 1(a) shows an acyclic hypergraph and an FD, Retailer Item → Price, embedded

in one of the hyperedges. Figure 1(b) shows some possible relationships among instance values for

the hyperedges in Figure 1(a). For example, two of the relationships are “retailer r1 sells item i1

for $3” and “manufacturer m1 has factory f1.” Figures 2(a), 2(b), and 2(c) show three possible

sets of scheme trees and their associated instances taken from the relationships in Figure 1(b). In

Figure 2(a), because there is only one scheme-tree instance, the data values are compactly stored.

However, the instance data is redundant. Since manufacturer m1 is necessarily stored twice, the

dependent factories, which must be the same, are therefore redundantly stored more than once. In

Figure 2(b), even though no data redundancy is present in any of the scheme-tree instances, there

are more trees than necessary. The largest redundancy-free scheme tree for this example is the one

on the left in Figure 2(c), which balances the requirements of data redundancy and compactness

of data. Creating this scheme tree first followed by creating a scheme tree from the remaining

hyperedge {Manufacturer, Factory} yields the fewest possible redundancy-free scheme trees. 2

We give the details of our contribution of generating a largest possible scheme tree from an

acyclic hypergraph in polynomial time as follows. We first lay the ground work by providing basic

definitions in Section 2. Based on this foundation, we present the polynomial-time, scheme-tree

generation algorithm in Section 3. Throughout Sections 2 and 3 we provide examples to motivate

and illustrate definitions and algorithmic procedures. We present experimental data to verify our

algorithm in Section 4 and formally prove our claims in Section 5. We make concluding remarks

in Section 6.
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Figure 2: The Scheme Trees and Scheme-Tree Instances of Example 1.

2 Basic Definitions

Since we limit ourselves to regular hypergraphs [2, 14], we make the universal-relation-scheme

assumption [20]. This is different from our previous work [15] for which we did not make such an

assumption.

2.1 Acyclic Hypergraphs

To make this paper self-contained, we borrow some definitions from previous work. The first four

definitions are from [2].

Definition 1 Let U be a set of attributes. A hypergraph H = {E1, . . . , En} over U is a set of

subsets of U where each subset Ei is called a hyperedge of H, or simply an edge of H if the context

4



is clear. 2

Definition 2 Graham Reduction applies two operations to a hypergraph H = {E1, . . . , En} (n ≥

1) until neither can be applied. These two operations are: (Attribute Removal) If A is an attribute

that appears in exactly one hyperedge Ei, then delete A from Ei. (Edge Removal) Delete a

hyperedge Ei if there is a hyperedge Ej such that i 6= j and Ei ⊆ Ej. 2

Definition 3 A hypergraph is acyclic if Graham Reduction reduces it to the empty set. 2

Definition 4 A hypergraph is reduced if none of its hyperedges is a subset of another hyperedge.

2

By repeatedly applying the edge-removal step of Graham Reduction, it is easy to observe that

a hypergraph is acyclic if and only if its reduced form is acyclic. All hypergraphs considered in this

paper are assumed to be reduced.

We now introduce a procedure that makes use of Graham Reduction to create a data structure

from a reduced acyclic hypergraph called a join tree.

Procedure CreateJoinTree

Input: a reduced acyclic hypergraph H.

Output: a join tree T for H, and a set of labels for H.

1. Initially, let T be a graph with no edges whose nodes are the unique hyperedges in

H.

2. Apply Graham Reduction: while applying Graham Reduction, when a remaining

hyperedge E′
i, which is the result of applying one or more attribute removals to an

original hyperedge Ei, is removed because it is a subset of an original hyperedge Ej,

create an edge {Ei, Ej} for T and label the edge E′
i. In the process, E′

i becomes a label

of H. (Since E′
i may be a subset of more than one hyperedge, more than one join tree

is possible for a given reduced acyclic hypergraph.)

3. When the Graham Reduction is complete, the graph T will have become a join tree;

thus return T . 2

Example 2 Figure 3 shows a possible join tree created by Procedure CreateJoinTree for the

acyclic hypergraph in Figure 1(a). In another join tree for the hypergraph in Figure 1(a), instead

of the Retailer edge between {Retailer, Location} and {Retailer, Item, Price}, the join tree can

have a Retailer edge between {Retailer, Location} and {Retailer, Item, Manufacturer}. 2

2.2 Constraints

In this paper, FDs and hypergraph-generated MVDs are the only constraints we consider. These are

typically the most common constraints encountered in practice. FDs have their standard definition.

The definition of hypergraph-generated MVDs is from [2] and [7].
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Figure 3: A Join Tree of the Acyclic Hypergraph in Figure 1(a).

Definition 5 Two hyperedges are connected if they have a nonempty intersection. A set S of

hyperedges is disconnected if S can be partitioned into two nonempty subsets S1 and S2 such that

no hyperedge in S1 is connected to any hyperedge in S2. A set of hyperedges is connected if it is not

disconnected. A connected component is a maximal connected set of hyperedges. A hypergraph

H generates a number of MVDs of the form X →→ Y1|Y2| · · · |Yn where X and Y1, . . ., Yn are

disjoint sets of attributes and each Yi is a maximal connected set of hyperedges constructed from

the hyperedges of H after they have been reduced by the removal of the attributes in X, i.e., the

maximal connected components of {E −X : E is a hyperedge of H} − {∅}. 2

Example 3 Removing the attributes Retailer and Item from Figure 1(a) results in the hypergraph-

generated MVDs Retailer Item →→ Manufacturer Factory | Price | Location. Removing Manufac-

turer and Factory results in the trivial MVDManufacturer Factory →→ Retailer Item Price Location.

2

2.3 Nested Normal Form (NNF)

To help achieve our goal, we make use of NNF [16] in this paper. We have proved in [16] that a

scheme tree does not permit redundancy with respect to a set of MVDs and FDs if and only if it

is in NNF. Thus, our goal in this paper is to extract a largest NNF scheme tree.

Definition 6 A scheme tree T over a set U of attributes is a rooted tree in which every node is a

nonempty subset of U . Further, the intersection of every pair of nodes in T is empty. 2

Definition 7 Let T be a scheme tree over a set U of attributes. Let dom(A) be the set of domain

values of an attribute A in U . A scheme-tree instance over T is recursively defined as follows:

1. If T has only the root node A1 · · ·An (n ≥ 1), a scheme-tree instance over T is a (possibly

empty) set of functions {t1, . . . , tm} such that each ti (1 ≤ i ≤ m) maps each Aj (1 ≤ j ≤ n)

to a value in dom(Aj ).

2. If T has more than one node, then let T1, . . ., Tn (n ≥ 1) be the subtrees of T such that the

root node of each Ti is a child node of T ’s root node. Let {t1, . . . , tm} (m ≥ 0) be the set of

functions associated with T ’s root node and let tj ⊕ sji mean that the function tj associates

with the scheme-tree instance sji over Ti for tj . Then, ∪m
j=1(∪

n
i=1tj ⊕ sji) is a scheme-tree

instance over T .
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3. For each node N of T and for any two functions ti and tj of N , if ti(N) = tj(N), then ti and

tj are the same function. (In other words, each resulting scheme-tree instance of Conditions 1

and 2 must be in Partition Normal Form [19].) 2

Although formally defined in Definition 7, scheme-tree instances are most easily understood when

visualized and written as are the scheme-tree instances in Figure 2. In Figure 2, we nest attribute

names in parentheses in a linear fashion according to their structure and place instance values in

buckets (with the outermost bucket omitted).

Let T be a scheme tree. We denote the set of attributes in T by Aset(T ). Let N be a node in

T . Notationally, Ancestor(N ) denotes the union of attributes in all ancestors of N , including N .

Similarly, Descendent(N ) denotes the union of attributes in all descendants of N , including N . In

a scheme tree T , each edge (V,W ), where V is the parent of W , denotes an MVD Ancestor(V )

→→ Descendent(W ). Notationally, we use MVD(T ) to denote the set of all MVDs represented by

the edges in T . By construction, each MVD in MVD(T ) is satisfied in the total unnesting of any

scheme-tree instance for T . Since FDs are also of interest, we use FD(T ) to denote the set of FDs

that hold in T .

Example 4 Figures 2(a), 2(b), and 2(c) show three possible sets of scheme trees and their instances

derived from the data in Figure 1(b). As in [16] we use a repeating-group (. . .)* to denote a nested

scheme tree and a bucket to denote a nested scheme-tree instance. Let T be the left scheme tree in

Figure 2(c). Each edge in T implies an MVD. Therefore, MVD(T ) is equal to {Retailer →→ Location,

Retailer →→ Item Price Manufacturer, Retailer Item Price →→ Manufacturer}. In addition, FD(T )

is equal to {Retailer Item → Price} as declared in Figure 1(a). To show what we mean by total

unnesting, the total unnesting of the left scheme-tree instance in Figure 2(c) is shown as follows:

R L I P M

r1 l1 i1 $3 m1

r1 l1 i2 $5 m1

r1 l2 i1 $3 m1

r1 l2 i2 $5 m1

The reader can easily verify that this flat relation satisfies every MVD in MVD(T ). 2

Definition 8 Let U be a set of attributes. Let M be a set of MVDs over U and F be a set of FDs

over U . Let T be a scheme tree such that Aset(T ) ⊆ U . T is in NNF with respect to M ∪F if the

following conditions are satisfied.

1. Let D be the set of MVDs and FDs that hold for T with respect to M ∪ F . The set D is

equivalent to MVD(T ) ∪ FD(T ) on Aset(T ).

2. For each nontrivial FD X → A that holds for T with respect to M ∪ F , X → Ancestor(NA)

also holds with respect to M ∪ F , where NA is the node in T that contains A. 2
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Example 5 All scheme trees in Figures 2(b) and 2(c) are in NNF. The scheme tree in Figure 2(a),

however, is not in NNF. To see this, let T be the scheme tree in Figure 2(a). Then, MVD(T )

= {Retailer →→ Location, Retailer →→ Item Price Manufacturer Factory, Retailer Item Price →→

Manufacturer Factory, Retailer Item Price Manufacturer →→ Factory}, and FD(T ) = {Retailer

Item → Price}. Now, observe that Manufacturer →→ Factory is a hypergraph-generated MVD that

holds in T (obtained by removing Manufacturer from the hypergraph in Figure 1(a)). Using the

chase [14], it is easy to show that MVD(T ) ∪ FD(T ) does not imply Manufacturer →→ Factory

and therefore that T violates NNF’s Condition 1. 2

2.4 Syntactic Covers

Syntactic covers guarantee that every value and every relationship in an associated instance of

a hypergraph can appear in a scheme-tree instance (e.g., that the values and relationships in the

instance in Figure 1(b) can appear in the scheme tree instances in Figure 2.) Since we are generating

storage structures, syntactic coverage is a necessary condition for any set of scheme trees generated

for a hypergraph.

In the following, for any subset S of a hypergraph H, we use the notation S to denote the set

∪Ei∈SEi. S is simply the set of attributes in some set of hypergraph edges.

Definition 9 A path of a scheme tree T is a sequence of nodes from the root node of T to a leaf

node of T . Let H be a hypergraph. An attribute A ∈ H appears in a scheme tree T if A is in a

node of T . A hyperedge E ∈ H appears in a scheme tree T if there is a path in T whose nodes

collectively contain all of E’s attributes.1 2

Definition 10 A scheme tree T syntactically covers a set S of hyperedges if (1) Aset(T ) = S,

and (2) every hyperedge in S appears in a path of T . A scheme-tree forest F syntactically covers

a hypergraph H if there are subsets S1, . . . , Sn of hyperedges in H such that S1 ∪ · · · ∪ Sn = H

and there are scheme trees T1, . . . , Tn in F such that Ti syntactically covers Si (1 ≤ i ≤ n). 2

Example 6 All three sets of scheme trees in Figures 2(a), 2(b) and 2(c) syntactically cover the

hypergraph in Figure 1(a). As an example of failure to syntactically cover, consider the first scheme

tree in the scheme-tree forest in Figure 2(c). If we remove Price, there is no place for Price values.

Clearly, every attribute must appear in the scheme-tree forest. If we removeManufacturer, although

there is still a place for Manufacturer values in the second scheme tree in Figure 2(c), there is no

1Note that the definition of syntactic coverage for this paper differs from the definition in [15]. In [15] the definition
requires a hyperedge to appear in contiguous nodes in a path of a scheme tree while the definition here does not.
Since we make the universal-relation-scheme assumption [20] in this paper and we did not for [15], we can relax
the condition of syntactic coverage in [15]. For example, consider a reduced, acyclic hypergraph H = {AV1, ABV2,
ABCV3, ACV4} and an embedded FD AC → B. A NNF scheme tree T for H has A as the root node, A’s child
nodes are B and V1, B’s child nodes are C and V2, and C’s child nodes are V3 and V4. The hyperedge ACV4 does
not appear in contiguous nodes in any path in T . Nevertheless, T is in NNF and T syntactically covers the entire
hypergraph under the definition of syntactic coverage of this paper.
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place for the triples that belong to the edge {Retailer, Item, Price}. Clearly, every edge must

appear in a path of some scheme tree. 2

3 Extracting a Largest NNF Scheme Tree

This section presents the main algorithm of this paper, which extracts a largest NNF scheme tree

from a reduced acyclic hypergraph and a set of embedded FDs such that each hyperedge is in

BCNF. The algorithm calls several procedures, which will be explained in detail in the following

sections.

3.1 The Main Algorithm

In presenting Procedure Main—the main algorithm of this paper, some undefined terms are nec-

essary to state the purpose of each step. These terms, however, will be defined in the following

sections.

Procedure Main

Input: a reduced acyclic hypergraph H and a set F of embedded FDs such that each

hyperedge in H is in BCNF. Without loss of generality, F is assumed to be left-reduced

and has not any redundant FDs [14].

Output: a largest NNF scheme tree.

1. Call Procedure MergeHyperedges to merge functionally equivalent hyperedges in H.

2. Call Procedure CreateJoinTree to create a join tree J from H.

3. Call Procedure ConstructHasseDiagramOf� to create a partial order and its Hasse

diagram from the labels of J .

4. Call Procedure MoveLabelsToCenterNodes to modify J .

5. Call Procedure ExtractLargestNNFSkeleton to extract a largest NNF skeleton T

from the Hasse diagram.

6. Call Procedure AttachHyperedges to attach T ’s hyperedges to T . 2

Note that each of the letters H, F , J , and T in Procedure Main means the same thing when it

appears in any procedure called by Procedure Main.

3.2 Procedure MergeHyperedges

Two distinct hyperedges Ei and Ej are functionally equivalent if Ei → Ej and Ej → Ei. Theorem 1

of Section 5.1 states that there is no loss of generality to assume that no two distinct functionally

equivalent hyperedges exist. Hence, Procedure MergeHyperedges merges functionally equivalent

hyperedges together to reduce the number of input hyperedges. After calling this procedure, we

can safely assume that no two distinct functionally equivalent hyperedges exist.

9
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Figure 4: Merging Functionally Equivalent Hyperedges and Creating a Join Tree.

Procedure MergeHyperedges

1. Call Algorithm 4.4 on page 66 in [14] to compute E+ for each hyperedge E ∈ H.

2. Put hyperedges Ei and Ej in the same set if E+
i = E+

j .

3. For each set S with two or more hyperedges, do:

Merge all hyperedges in S together to form a new hyperedge and add it to H.

Remove each hyperedge in S from H. 2

Example 7 Consider inputting the FDs and hyperedges in Figure 4(a) to our algorithm.2 The

hyperedges AV2 and AV3 are functionally equivalent because AV +
2 = AV +

3 = AV2V3. Thus, Proce-

dure MergeHyperedgesmerges AV2 and AV3 together to form a new hyperedge AV2V3 and removes

AV2 and AV3 from H. A join tree created by Procedure CreateJoinTree in Section 2.1 for the

resulting acyclic hypergraph is shown in Figure 4(b). 2

3.3 Procedure ConstructHasseDiagramOf�

We now define a partial order on the labels of the input reduced acyclic hypergraph. Later we

derive a largest NNF scheme tree from the Hasse diagram of this partial order.

Definition 11 Let H be a reduced acyclic hypergraph and F be a set of embedded FDs. Two

distinct labels Li and Lj of H are functionally equivalent if Li → Lj and Lj → Li. Let C1, . . . , Cn

be the equivalence classes3 of labels of H such that all the labels in each equivalence class Ci are

2
V1, . . . , V16 are attributes that appear in exactly one hyperedge. Attributes that appear in exactly one hyperedge

are not essential for our algorithm.
3An equivalence class is a set, not a multiset.
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pairwise functionally equivalent. We define � to be a partial order on C1, . . . , Cn in which Ci � Cj

if Li → Lj where Li ∈ Ci and Lj ∈ Cj . 2

Lemma 6 of Section 5.3 states that the multiset of labels in any join tree for an acyclic hyper-

graph is the same. Therefore, the partial order � and its derived Hasse diagram are unique for the

input reduced acyclic hypergraph and the embedded FDs.

Procedure ConstructHasseDiagramOf�

1. Call Algorithm 4.4 on page 66 in [14] to compute L+ for each label L of J .

2. Put labels Li and Lj in the same equivalence class if L+
i = L+

j .

3. For two equivalence classes Ci and Cj, Ci � Cj if L+
i ⊇ L+

j where Li ∈ Ci and

Lj ∈ Cj.

4. Generate the Hasse diagram of �. 2

Example 8 The labels B and C in Figure 4(b) are in the same equivalence class because they are

functionally equivalent. On the other hand, each of the other labels in Figure 4(b) is in a different

equivalence class. The Hasse diagram of � is shown in Figure 5(a), in which {BD} � {B,C},

{BD} � {D}, and {B,C} � {A}, and so on. 2
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Figure 5: Constructing the Hasse diagram of � and Moving Labels to Center Nodes.

3.4 Procedure MoveLabelsToCenterNodes

Lemma 7 of Section 5.3 states that all distinct labels of any equivalence class are incident with a

unique common node in a join tree. We call such a node the center node of the equivalence class.

11



Procedure MoveLabelsToCenterNodesmakes all labels in a join tree that appear in an equivalence

class incident with the equivalence class’s center node.

Procedure MoveLabelsToCenterNodes

1. For each equivalence class C that has a label L such that L is a key of a node E in

J , do:

Designate E as C’s center node.

For each edge {Ei, Ej} in J such that Ei ∩ Ej is a label in C, do:

Remove {Ei, Ej} from J .

If Ei becomes disconnected from E, then

establish an edge {Ei, E} with the label Ei ∩ Ej .

Else

establish an edge {Ej , E} with the label Ei ∩Ej .

2. For each equivalence class C that has not a label L such that L is a key of a node in

J , do:

Arbitrarily choose one node E of an edge in J whose label is in C.

Designate E as C’s center node.

Repeat the inner for-loop in Step 1. 2

Example 9 Since B → C and C → B, we have the equivalence class {B, C}. The center node

for {B, C} is ABCV10 in Figure 4(b). For the equivalence class {BH}, its center node is either

BHGV7 or BHKV8. The result of applying Procedure MoveLabelsToCenterNodes on the join tree

in Figure 4(b) is shown in Figure 5(b). 2

3.5 Procedure ExtractLargestNNFSkeleton

Theorem 2 of Section 5.2 states that if an NNF scheme tree syntactically covers some hyperedges,

the hyperedges must be the nodes in a connected subtree of a join tree. Additionally, Theorem 3 of

Section 5.3 states that to satisfy NNF, this connected subtree cannot have any critical node. Based

on these two theorems, creating a largest NNF scheme tree that contains the greatest number of

hyperedges is the same as creating a largest NNF scheme tree that syntactically covers the nodes

in a connected subtree of a join tree where (1) the number of nodes in the connected subtree is

the greatest, and (2) the connected subtree has no critical nodes. To accomplish this goal, we first

find a largest NNF skeleton in the Hasse diagram of � that contains the greatest number of labels.

Then, we attach the hyperedges with which these labels are incident to this skeleton to make it a

largest NNF scheme tree. The definitions of these concepts now follow.

Definition 12 A connected subtree of a join tree T is inductively defined as follows: (1) A single

node in T is a connected subtree of T . (2) If N ′ is a node in a connected subtree T ′ of T and N is

a node in T such that {N , N ′} is an edge in T , then T ′ augmented with the node N and the edge

{N , N ′} is a connected subtree of T . Let T ′ be a connected subtree of a join tree. The notation T ′

denotes the union of all the hyperedges that are nodes in T ′. 2
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Definition 13 Let H be an acyclic hypergraph and F be a set of embedded FDs in H. Let J be

a join tree for H and S be a connected subtree of J . A label L of H belongs to S if there is an

edge E in S such that E’s label is L. A node N in S is critical with respect to S if there are two

labels Li and Lj belonging to S such that Li 6→ Lj, Lj 6→ Li, and (Li ∪ Lj) ⊆ N . 2

Definition 14 Let J be a join tree. Any tree rooted at any equivalence class in the Hasse diagram

of the partial order � on J ’s labels is a skeleton. Let K be a skeleton. K’s induced set of edges is

the set {E is an edge in J : E’s label appears in an equivalence class in K}. An NNF skeleton is a

skeleton whose induced set of edges constitutes a connected subtree of J that has not any critical

node. 2

Definition 15 Let Ci and Ck be two equivalence classes of labels such that Ci is a parent node of

Ck in the Hasse diagram of �. Ck is a nontrivial child of Ci, or Ck � Ci nontrivially, if for each

Li ∈ Ci and for each Lk ∈ Ck, Li 6⊆ Lk. On the other hand, if there are labels Li ∈ Ci and Lk ∈ Ck

such that Li ⊂ Lk, then Ck is a trivial child of Ci, or Ck � Ci trivially. 2

Theorem 4 of Section 5.4 proves that Procedure ExtractLargestNNFSkeleton indeed outputs

NNF skeletons.

Procedure ExtractLargestNNFSkeleton

1. For each equivalence class C of labels in the Hasse diagram of �, do:

Associate with C an integer variable labelCnt and set C.labelCnt = 0.

Associate with C a set of edges in J called myEdges where C.myEdges =

{E is an edge in J : E’s label appears in C}.

2. For each root node R in the Hasse diagram of �, do:

Call Procedure CalculateLabelCnt(R).

3. Select a root node R in the Hasse diagram of � with the greatest labelCnt.

4. Return the NNF skeleton rooted at R. 2

Procedure CalculateLabelCnt(C: an equivalence class in the Hasse diagram of �)

1. If C.labelCnt = 0, then

For each nontrivial child D of C, do:

Call Procedure CalculateLabelCnt(D).

C.labelCnt = C.labelCnt + D.labelCnt.

For each trivial child D of C, do:

Call Procedure CalculateLabelCnt(D).

While there is an unmarked trivial child of C, do:

Set maxD to an unmarked trivial child of C with the greatest labelCnt.

Mark maxD.

For any other unmarked trivial child D of C, do:

If the path between D’s center node and maxD ’s center node
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in J does not contain any edge in C.myEdges, then

Remove D as a trivial child of C.

For each marked trivial child D of C, do:

C.labelCnt = C.labelCnt + D.labelCnt.

C.labelCnt = C.labelCnt + the size of C.myEdges. 2

Example 10 Steps 1, 3, and 4 of Procedure ExtractLargestNNFSkeleton are straightforward.

Let us focus on Step 2. As an overview, Procedure CalculateLabelCnt constructs the largest NNF

skeleton with the input equivalence class C as the root from the Hasse diagram of �. In addition, it

also calculates the number of labels included in it. Although Procedure CalculateLabelCnt keeps

all C’s nontrivial children, it might not do the same for C’s trivial children. To avoid critical nodes,

if D1 and D2 are two trivial children of C in the Hasse diagram of � such that the path between

D1’s center node and D2’s center node does not have a label in C, Procedure CalculateLabelCnt

cannot keep both D1 and D2 as trivial children of C. At least one of them must be removed;

otherwise, there will be a critical node. This argument not only applies to C, but also to C’s

children and their children and so on in the Hasse diagram of �.

Because Procedure CalculateLabelCnt recursively calls itself, tracing through it is difficult.

Hence, we just point out the results for some input equivalence classes. Figure 6(a) shows the results

for the inputs {BF}, {BH}, {BG}, and {BD}. Since {BF} only has two nontrivial children in

Figure 5(a), Procedure CalculateLabelCnt keeps both of them. To calculate {BF}.labelCnt, note

that there is one BF label, one I label and one J label in Figure 5(b). Therefore, {BF}.labelCnt

= 3. The results for {BH}, {BG}, and {BD} can be similarly obtained. The situation is more

complicated for the input {B, C} because {B, C} has four trivial children in Figure 5(a). First,

Procedure CalculateLabelCnt keeps the trivial child with the greatest labelCnt, namely {BF}.

Because the path between {BF}’s center node and the center node of {BH}, {BG}, or {BD}

has a label B, Procedure CalculateLabelCnt will not remove any of {BH}, {BG}, and {BD}

for {BF}. Next, Procedure CalculateLabelCnt keeps the trivial child with the second greatest

labelCnt, namely {BH}. However, the path between {BH}’s center node and the center node of

{BG}, or {BD} does not have a label B nor a label C. Therefore, Procedure CalculateLabelCnt

removes {BG} and {BD} for {BH}. As a result, Procedure CalculateLabelCnt only keeps {BF}

and {BH} as trivial children of {B, C}, as shown in Figure 6(b). To calculate {B, C}.labelCnt,

note that there are three B labels and one C label in Figure 5(b). Thus, {B, C}.labelCnt =

{BF}.labelCnt + {BH}.labelCnt + 4 = 3 + 2 + 4 = 9. Finally, there is only one A label in

Figure 5(b). Thus, {A}.labelCnt = {B, C}.labelCnt + 1 = 9 + 1 = 10, as Figure 6(b) shows.

{E}.labelCnt and {D}.labelCnt can be calculated similarly. 2

3.6 Procedure AttachHyperedges

The last step of our algorithm attaches the hyperedges of a largest NNF skeleton to itself.
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Figure 6: Calculating labelCnt for each Equivalence Class in the Hasse diagram of �.

Procedure AttachHyperedges

1. Let S be T ’s induced set of edges in J .

2. For each node E in S, do:

Find the lowest node N in T such that N contains a label L where L ⊆ E.

Let NE = {A ∈ E : A does not appear in any label in any equivalence class of T}.

If NE 6= ∅, then

Add NE as a child node to N in T .

3. For each node N in T , do:

Merge all labels in N together.

4. For each child node N in T , do:

If an attribute A ∈ N is also in N ’s parent node, then

Remove A from N . 2

Example 11 Figure 7(a) shows how Procedure AttachHyperedges turns an NNF skeleton into an

NNF scheme tree. As an example, the lowest nodeN is {K}, not {BH}, for the hyperedge BHKV8.

Thus, V8 is added as a child node to {K}. Then, Procedure AttachHyperedges merges all labels

together in every node and removes every redundant attribute. Figure 7(b) shows the connected

subtree defined by the set S from which the NNF scheme tree in Figure 7(a) is constructed. 2
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Figure 7: Turning an NNF Skeleton to an NNF Scheme Tree.

4 Experimental Evaluation

As Theorem 5 of Section 5.5 asserts, the algorithms that underlie Procedure MergeHyperedges

and Procedure CreateJoinTree have been well-studied in the literature and have been proved to

run in time polynomial in the size of the input. In addition, Theorem 5 also shows that Proce-

dure AttachHyperedges runs in time linear with respect to the size of the input. Thus, in our experi-

ments, we focus on Procedure ConstructHasseDiagramOf�, Procedure MoveLabelsToCenterNodes,

and Procedure ExtractLargestNNFSkeleton. We have implemented these procedures in a Visual

Basic 2008 program, which first randomly generates join trees and equivalence classes of labels and

then extracts largest NNF skeletons from them. The computer used in our experiments is a Dell

desktop PC with an E6300 Intel Core 2 CPU running at 1.86 and 1.87 GHz with 2045 MBs of
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memory. The operating system is Windows Vista Business Edition.

Figure 8 shows the time taken by the simulation program, measured in milliseconds (ms), when

there are 2500, 5000, 7500, and 10000 hyperedges. Although the definition of a join tree does

not require a root node, having a root node in a join tree makes our implementation much easier.

As a result, the terms “parent nodes” and “child nodes” are applicable to our join trees. In our

experiments, each internal node of a join tree randomly has 1 or any number up to maxFanout

child nodes, where maxFanout is a variable that is set to 1, 3, 5, 10, 15, 20, 25, 50, 100 or

200. By increasing the value of maxFanout, more labels are clustered into an equivalence class

of labels. This in turn reduces their number. Fewer equivalence classes of labels results in fewer

comparisons needed to construct the partial order �. Thus, the program takes less time to complete.

However, Figure 8 also shows that the time needed to complete the program levels off as the value

of maxFanout increases. One of the reasons for this phenomenon is that overhead operations take

more time as the value of maxFanout increases, which cancels out the advantage of increasing

maxFanout.
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Figure 8: Plotting time against maxFanout.

Another observation about Figure 8 is that for each of the 10 values of maxFanout, doubling

the number of hyperedges quadruples the time needed to find a largest NNF skeleton. This gives

a hint that these three procedures as a whole run in time polynomial in the size of the input.

Figure 9 provides further evidence for this claim. For each of the 10 values of maxFanout, we

plot n2/time against n, where n is the number of hyperedges. In all four values of n, the ratio be-

tween n2 and time (i.e., n2/time) is relatively stable for a fixed value of maxFanout. Since our join

trees and equivalence classes of labels are randomly generated, the results in Figure 9 suggest that

given that all other conditions remain the same, on average Procedure ConstructHasseDiagramOf�,

Procedure MoveLabelsToCenterNodes, and Procedure ExtractLargestNNFSkeleton considered as
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a whole run in quadratic time in the size of the input.
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Figure 9: Plotting n2/time against n (number of hyperedges).

5 Proofs for Claims

5.1 Acyclic Hypergraphs and Functionally Equivalent Hyperedges

Theorem 1, the main result of this section, states that there is no loss of generality to assume that

no two distinct functionally equivalent hyperedges exist. However, before we can prove Theorem 1,

we need to prove several lemmas.

Lemma 1 In a join tree T for a reduced, acyclic hypergraph, for any two distinct hyperedges Ei

and Ej and for every attribute A in Ei ∩Ej , the label of each edge along the unique path between

Ei and Ej in T contains A.

Proof. See [2]. 2

Let J be a join tree for an acyclic hypergraph H and {Ei, Ej} be an edge in J . We use Ji to

denote the connected subtree of J that contains the node Ei if the edge {Ei, Ej} were removed

from J . Likewise, Jj denotes the connected subtree of J that contains the node Ej if the edge

{Ei, Ej} were removed from J . To demonstrate how to obtain Ji and Jj from J , we may imagine

cutting along the curved dashed lines in Figure 10. Let F be a set of embedded FDs in H. An

FD X → Y ∈ F is inside of Ji if XY ⊆ J i;
4 otherwise, X → Y is outside of Ji. Note that it is

possible for an FD to be inside of both Ji and Jj because J i and J j are not disjoint. Let W+ be

the closure of a set W of attributes. In the following, we say an FD X → Y ∈ F is used in the

4Recall that the notation J i denotes the union of all the hyperedges that are nodes in Ji.
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derivation of W+ if X → Y is used in the second step of this process: (1) W+ := W initially; (2)

W+ := W+ ∪ Y if X ⊆ W+ and Y −W+ 6= ∅.

jE
i

J
i

Subtree J
j

Subtree

E

Figure 10: The Connected Subtrees Ji and Jj of Lemma 2.

Lemma 2 Let J be a join tree for a reduced, acyclic hypergraph H and {Ei, Ej} be an edge in

J . Let F be a set of embedded FDs in H. For any set W of attributes such that W ⊆ J i, if

X → Y ∈ F is an FD that is outside of Ji and is used in the derivation of W+, then there is a

subset E′
i of Ei such that E′

i → Y .

Proof. Let X1 → Y1 ∈ F be the first FD that is outside of Ji and is used in the derivation of W+.

Since the FDs used before X1 → Y1 for generating W+ are all inside of Ji, X1 ⊆ J i. Since X1 → Y1

is outside of Ji and X1 ⊆ J i, by Lemma 1, it must be that X1 ⊆ Ei. Thus, the basis is established.

Assume the lemma is true for k (k ≥ 1) or less FDs in F that are outside of Ji and are used in the

derivation of W+. Now, consider another FD Xk+1 → Yk+1 ∈ F that is outside of Ji and is used

in the derivation of W+. We first partition Xk+1 into two sets: Xk+1 ∩ J i and Xk+1 − J i. Since

Xk+1 → Yk+1 is outside of Ji, by Lemma 1, Xk+1∩J i is a subset of Ei. Now, consider an attribute

A in Xk+1 − J i. Since A ∈ Xk+1 and Xk+1 → Yk+1 is used in generating W+, A ∈ W+. Then,

before applying Xk+1 → Yk+1 it must be that A has been added to W+ by an FD in F that is

outside of Ji. By the induction hypothesis, there is a subset E′
A of Ei such that E′

A → A. Hence,

by forming the union of every E′
A for each A in Xk+1 − J i and Xk+1 ∩ J i, there is a subset E′

i of

Ei such that E′
i → Yk+1. 2

Similar to what we have done for Lemma 2, we define some terms for Lemma 3. Let J be

a join tree for an acyclic hypergraph H and J ′ be a connected subtree of J . Let F be a set of

embedded FDs in H. An FD X → Y ∈ F is inside of J ′ if XY ⊆ J ′; otherwise, X → Y is outside

of J ′. Notationally, we let F+ be the closure of F , F+[E] be the set {X → Y ∈ F+ : E ∈ H and

XY ⊆ E} and F+[J ′] be the set ∪E∈SF
+[E] where S is the set {E ∈ H : E is a node in J ′}.

Lemma 3 Let J be a join tree for a reduced, acyclic hypergraph H and J ′ be a connected subtree

of J . Let F be a set of embedded FDs in H. For any set W of attributes such that W ⊆ J ′, F+[J ′]

is sufficient to derive W+ ∩ J ′.

Proof. Since J ′ is a connected subtree of J , removing the nodes (hyperedges) in J ′ from J will

partition the remaining nodes in J into one or more connected subtrees J1, J2, . . . , Jp (p ≥ 1).

Two of them are shown in Figure 11, in which the dashed lines outline the boundaries of Ji, Jj and
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J ′. In addition, for each Ji (1 ≤ i ≤ p), there is a node called Ei in J ′ that connects directly to a

node in Ji.

J’ J
i

J
j

E
j

E
i

Figure 11: The Connected Subtrees J ′, Ji and Jj of Lemma 3.

If we only need the FDs in F that are inside of J ′ to derive W+ ∩ J ′, this lemma is vacuously

true. Hence, suppose we need some FDs in F that are outside of J ′ to generate W+ ∩ J ′. We

now describe a procedure that derives W+ ∩ J ′ by using the FDs in F+[J ′]. Thus, we demonstrate

that F+[J ′] is sufficient to derive W+ ∩ J ′. Without loss of generality, we assume the right-hand

side of each FD in F is a single attribute. For this procedure, we declare F ′, a set of FDs, that is

continually a subset of F+[J ′]. F ′ is initially set to {X → A ∈ F : X → A is inside of J ′}. We

then apply the FDs in F ′ to generate W+ until no more attribute can be added. Assume n (n ≥ 0)

such FDs are applied in this order:

X1 → A1 ∈ F ′,

X2 → A2 ∈ F ′,
...

Xn → An ∈ F ′.

Because these n FDs are all in F ′, A1 ∈ J ′, A2 ∈ J ′, . . . , and An ∈ J ′. At this point, we have to

apply some FDs in F − F ′ in order to continue to add attributes. Assume m (m ≥ 2) such FDs

are applied in this order:

Xn+1 → An+1 ∈ F − F ′,
...

Xn+m−1 → An+m−1 ∈ F − F ′,

Xn+m → An+m ∈ F − F ′.

Without loss of generality, we assume that these m FDs are selected in such a way that An+1, . . . ,

An+m−1 must all be added to W+ before An+m can be added to W+, and also An+1 6∈ J ′, . . . ,

An+m−1 6∈ J ′, and An+m ∈ J ′. Since (Ji − J ′) ∩ (Jj − J ′) = ∅ when i 6= j (1 ≤ i, j ≤ p), our

assumption implies that the FDs Xn+1 → An+1, . . . , Xn+m−1 → An+m−1, Xn+m → An+m are all

inside of the same connected subtree Ji. Note that since An+m ∈ J ′ and Xn+m → An+m is outside

of J ′, by Lemma 1, An+m ∈ Ei.
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By Lemma 2, for each Xj → Aj (n + 1 ≤ j ≤ n + m), there is a subset Eij of Ei such that

Eij → Aj. We now show by induction that F ′ implies W → Eij (n+ 1 ≤ j ≤ n+m). For the FD

Xn+1 → An+1, since Xn+1 → An+1 is outside of J ′ and Xn+1 ⊆ WA1 · · ·An ⊆ J ′, by Lemma 1,

Xn+1 ⊆ Ei. Thus, Xn+1 is the subset of Ei that we want; and obviously F ′ implies W → Xn+1.

Hence, the basis is established. Now, consider an FD Xk → Ak for some k where n+1 < k ≤ n+m.

With respect to the order of applying the FDs, Xk ⊆ WA1 · · ·AnAn+1 · · ·Ak−1. We now partition

Xk into two sets: Xk ∩ J ′ and Xk − J ′. Since An+1, An+2, . . . , Ak−1 are not in J ′, therefore

the argument for Xk ∩ J ′ is the same as that for Xn+1. That is, Xk ∩ J ′ ⊆ WA1 · · ·An ⊆ J ′,

Xk ∩ J ′ ⊆ Ei and F ′ implies W → Xk ∩ J ′. Now, consider an attribute A ∈ Xk − J ′. Since A ∈ Xk

and A 6∈ J ′, A must be added to W+ by an FD before Xk → Ak in the above order. By Lemma 2,

there is a subset EA of Ei such that EA → A; and by the induction hypothesis, F ′ implies W → EA.

Thus, if we let S be the union of every EA for each attribute A ∈ Xk − J ′, then S ∪ (Xk ∩ J ′) is a

subset of Ei, F
′ implies W → S ∪ (Xk ∩ J ′), S ∪ (Xk ∩ J ′) → Xk and S ∪ (Xk ∩ J ′) → Yk. This

means S ∪ (Xk ∩ J ′) is the subset of Ei that we want5 and our induction step is complete. Now, by

setting k = n+m, we have F ′ implies W → Ein+m
where Ein+m

⊆ Ei and Ein+m
→ An+m. Since

An+m ∈ Ei, Ein+m
→ An+m ∈ F+[Ei] ⊆ F+[J ′]. As the last step, we add Ein+m

→ An+m to F ′.

Thus, Xn+m → An+m is not essential for adding An+m to W+ ∩ J ′ and hence can be excluded.

We now have excluded one FD in F−F ′ that can contribute to W+∩J ′. Execute this procedure

repeatedly will exclude all FDs in F −F ′ that can contribute to W+∩J ′. Eventually this procedure

will halt since F is finite. Thus, the proof is complete. 2

Lemma 4 Let J be a join tree for a reduced, acyclic hypergraph H and F be a set of embedded

FDs in H such that each hyperedge of H is in BCNF. Let Ei and Ej be two distinct nodes in J

such that Ei → Ej . Let P be the unique path between Ei and Ej in J . There exists a node Ek on

P such that Ek 6= Ej , Ek contains a key of Ej as a subset, and Ei → Ek.

Proof. Figure 12 shows the path P , in which we designate Ea as the neighboring node of Ej .

Let P ′ be the subpath of P from Ei to Ea, including Ei and Ea. If Ej ⊆ P ′, then by Lemma 1,

Ej ⊆ Ea. This means H is not reduced—a contradiction. Hence, Ej 6⊆ P ′. Since P is a connected

subtree of J , by Lemma 3, F+[P ] implies the FD Ei → Ej . Thus, F
+[P ] implies Ei → K for every

key K of Ej . If P ′ does not contain any key of Ej as a subset, P ′+ = P ′ where P ′+ is the closure

of P ′ under F+[P ]. Since Ei ⊆ P ′, E+
i ⊆ P ′+. However, Ej 6⊆ P ′(= P ′+) implies Ej 6⊆ E+

i —a

contradiction. Thus, P ′ contains a key K̂ of Ej as a subset. By Lemma 1, K̂ ⊆ Ea. Therefore,

there exists a node Eb on P such that each of the nodes in between of Ea and Eb on P , including

Ea and Eb, contains K̂ as a subset; and every node to the left of Eb in Figure 12, if there is any,

does not contain any key of Ej . We are left to show Ei → Eb. If Ei and Eb are the same node,

we are done. Assume Ei 6= Eb. This implies there is an attribute A ∈ (K̂ − Ei) that does not

appear in any node to the left of Eb on P . Let P ′′ be the subpath of P from Ei to Eb, including

Ei and Eb. Since Ei → K for every key K of Ej, Ei → K̂. Since P ′′ is a connected subtree of J ,

by Lemma 3, F+[P ′′] implies the FD Ei → K̂. Because A does not appear in any node to the left

5That is, S ∪ (Xk ∩ J ′) is Eik .
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of Eb, it follows that Ei → K where K → A is a nontrivial FD in F+[Eb]. Since Eb is in BCNF,

K → Eb and thus Ei → Eb. 2

P

i
E

b
E

a
E

j
E

Figure 12: The Path P between Ei and Ej of Lemma 4.

Lemma 5 Let J be a join tree for a reduced, acyclic hypergraph H and F be a set of embedded

FDs in H such that each hyperedge of H is in BCNF. Let P be the unique path between two

distinct nodes Ei and Ej in J where Ei → Ej and for any other node Ek on P such that Ek 6= Ei

and Ek 6= Ej , Ei 6→ Ek. If Ej is not already a neighboring node of Ei, we can rearrange the nodes

on P so that Ej becomes a neighboring node of Ei.

Proof. If Ej is already a neighboring node of Ei, then we are done. Therefore, let us assume Ej

is not a neighboring node of Ei. Like Lemma 4, Figure 12 shows the path P between Ei and Ej

where Ea is the designated neighboring node of Ej on P . As indicated in Figure 13, we show that

the edge {Ea, Ej} can be removed, and we can add an edge between Ei and Ej . By so doing, we

obtain another join tree for H. We now begin our argument. Since Ei 6→ Ek for any other node

Ek on P where Ek 6= Ei and Ek 6= Ej , by Lemma 4, Ei contains a key K of Ej as a subset. Let

L be the label of the edge {Ea, Ej}. By Lemma 1, K ⊆ L. If K ⊂ L, then since Ea is in BCNF,

K → Ea. This means Ei → Ea—a contradiction. Thus, L = K. In addition, if Ei contains an

attribute A ∈ (Ej − K), then by Lemma 1, A ∈ Ea—a contradiction. Thus, we conclude that

Ea ∩ Ej = Ei ∩ Ej = K. As such, we can remove the edge {Ea, Ej} and add an edge between Ei

and Ej, as Figure 13 shows. 2

a

E
i

E
j

E

Figure 13: The Rearranged Path of Lemma 5.

Theorem 1 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such

that each hyperedge of H is in BCNF. Let C be a set of hyperedges in H such that for any Ei and
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Ej in C, Ei → Ej and Ej → Ei under F . The hypergraph (H − C) ∪ {C} is equivalent to H, and

is also acyclic, and each of its hyperedges is in BCNF as well.

Proof. We first consider a simple case, which will be used later in the proof. Suppose J is a join

tree for H, and {Ei, Ej} is an edge in J such that Ei → Ej and Ej → Ei under F . If we create a

new node Ei∪Ej and add it to J , and remove Ei and Ej from J , and at the same time make every

edge that was incident with Ei or Ej to be incident with this new node, we obtain a join tree for the

hypergraph H ′ = (H − {Ei, Ej}) ∪ {Ei ∪Ej}. Hence, H
′ is acyclic. To show that H ′ is equivalent

to H, observe that because {Ei, Ej} is an edge in J , Ei → Ej and Ej → Ei, then by Lemma 4,

Ei includes a key of Ej and Ej includes a key of Ei. As such, every key of Ei implies the key of

Ej that is included in Ei. Likewise, every key of Ej implies the key of Ei that is included in Ej .

Therefore, every key of Ei is equivalent to every key of Ej. This means H and H ′ are equivalent.

Now suppose X → A is a nontrivial FD that holds in Ei ∪Ej. By Lemma 3, X → A is implied by

F+[Ei] ∪ F+[Ej ]. Since both Ei and Ej are in BCNF, if X does not include any key of Ei or Ej ,

X = X+ and F+[Ei] ∪ F+[Ej] does not imply X → A—a contradiction. Therefore, X includes at

least one key of Ei or Ej . Since every key of Ei is equivalent to every key of Ej, then X → Ei and

X → Ej, which implies X → (Ei ∪ Ej). Thus, Ei ∪ Ej is in BCNF. By repeatedly applying the

procedure specified in the proof for Lemma 5 and merging two functionally equivalent nodes that

are neighbors, as in the case we just discussed, we can reduce the number of pairs of functionally

equivalent nodes to zero. The proof is then complete. 2

5.2 NNF and Connected Subtrees

Theorem 2, the main result of this section, states that if we want to construct an NNF scheme

tree that syntactically covers some hyperedges, the hyperedges must be the nodes in a connected

subtree of a join tree. Otherwise, there will be a violation of NNF.

Theorem 2 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally

equivalent. Let T be an NNF scheme tree that is a syntactic cover of a set S of hyperedges in H.

The hyperedges in S are precisely the nodes of a connected subtree of a join tree for H (i.e., there

exists a join tree J for H such that for any two hyperedges Ep and Eq in S, the path between Ep

and Eq in J only includes S’s hyperedges).

Proof. Let us assume that S’s hyperedges are not the nodes of a connected subtree of any join

tree for H. This assumption implies that S contains two distinct hyperedges Ep and Eq in H such

that the path between Ep and Eq in any join tree for H includes some hyperedges in H − S. Let

J be a join tree for H such that the path P between Ep and Eq in J is the shortest among all the

possible paths between Ep and Eq. Figure 14 shows the path P and a subpath P ′ of P , where the

endpoints of P ′, namely Ei and Ej , are the only hyperedges on P ′ that are in S. Since Ei and

Ej are the only nodes on P ′ that are in S, removing Ei ∩ Ej from S will generate at least two

connected components Ci and Cj where (Ei−Ej) ⊆ Ci and (Ej−Ei) ⊆ Cj. That is, Ci and Cj are
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two connected components of the hypergraph {E− (Ei ∩Ej) : E is a hyperedge of S} − {∅}. This

means S generates the nontrivial MVDs (Ei ∩Ej) →→ Ci and (Ei ∩Ej) →→ Cj . Since T is an NNF

scheme tree that syntactically covers S and S generates these two MVDs on Aset(T ), by NNF’s

Condition 1, MVD(T ) ∪ FD(T ) implies both of these MVDs on Aset(T ). Nevertheless, if H ∪ F

does not imply neither of them, then T violates NNF’s Condition 1 because MVD(T ) ∪ FD(T )

implies some MVDs on Aset(T ) that do not follow from H ∪ F . This will give us a contradiction,

which means our assumption is wrong.

P

i
E

p
E

j

E
q

P’

E

Figure 14: The Subpath P ′ of Theorem 2.

To show H ∪ F does not imply neither (Ei ∩ Ej) →→ Ci nor (Ei ∩ Ej) →→ Cj , we first establish

several claims. First, we claim that Ei ∩ Ej is a proper subset of every label on the path P ′ in

Figure 14. Assume not; we derive a contradiction as follows. By Lemma 1, Ei ∩ Ej is a subset of

every label on P ′. Let {E′
i, E

′
j} be an edge on P ′ such that its label is equal to Ei∩Ej (i.e., E

′
i∩E′

j

= Ei ∩ Ej), and as Figure 15 shows, E′
i and E′

j are chosen in such a way that E′
i is closer to Ei

and E′
j is closer to Ej . By our assumption, P ′ includes at least one hyperedge in H − S as a node.

Then, Ei 6= E′
i or E′

j 6= Ej. Since (E′
i ∩ E′

j) ⊆ Ei, if Ei 6= E′
i, then we can remove the edge {E′

i,

E′
j} from J and add an edge between Ei and E′

j to obtain another join tree for H with a shorter

path between Ei and Ej , and thus a shorter path for Ep and Eq—a contradiction. We will obtain

a similar contradiction if E′
j 6= Ej . Therefore, Ei ∩Ej is a proper subset of every label on P ′. Our

second claim is that (Ei∩Ej) 6→ A for any A ∈ (P ′− (Ei∩Ej)). Assume not, then let E be a node

on P ′ that contains an attribute A such that (Ei ∩Ej) → A is nontrivial. Let E′ be a neighboring

node of E on P ′. By our first claim, (Ei ∩ Ej) ⊂ (E ∩ E′). Therefore, A ∈ E and (Ei ∩ Ej) ⊂ E.

Since E is in BCNF and (Ei ∩ Ej) → A is nontrivial in F+[E], (Ei ∩ Ej) → E. Similarly, because

E′ is in BCNF and (Ei ∩ Ej) ⊂ (E ∩ E′), (Ei ∩ Ej) → E′. Thus, E and E′ share a key of Ei ∩ Ej

as a common key and therefore E and E′ are functionally equivalent—a contradiction.

Now, consider removing (Ei∩Ej)
+, the closure of Ei∩Ej under F , fromH. By our second claim,

removing (Ei ∩ Ej)
+ from the nodes on P ′ does not remove any more attributes than removing

Ei ∩ Ej from the nodes on P ′. By our first claim, all the nodes on P ′ remain connected after

removing Ei ∩Ej from the nodes on P ′. Thus, Ei −Ej and Ej −Ei are both contained as subsets
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Figure 15: The Edge {E′
i, E

′
j} of Theorem 2.

in the same connected component of the hypergraph {E − (Ei ∩Ej)
+ : E is a hyperedge of H} −

{∅}. Therefore, H ∪ F implies neither (Ei ∩ Ej) →→ Ci nor (Ei ∩ Ej) →→ Cj on Aset(T ) and the

proof is complete. 2

5.3 NNF and Critical Nodes

Theorem 3, the main result of this section, ties critical nodes and connected subtrees together. It

states that there exists an NNF scheme tree that syntactically covers the nodes in a connected

subtree S of a join tree if and only if S does not have a critical node with respect to S.

Lemma 6 All join trees for a reduced, acyclic hypergraph have the same multiset of labels.

Proof. Let H be an acyclic hypergraph. If H has only one hyperedge, the join tree for H has

a single node and no label. The empty set of labels is vacuously unique. Assume this lemma

is true if H has k (k ≥ 1) or less hyperedges. Consider the case that H has k + 1 hyperedges.

Since H is acyclic, H has a join tree J . Arbitrarily choose a leaf node EL in J . Since EL is a

leaf node, removing EL from J results in a join tree for the acyclic hypergraph H − {EL}. Since

H − {EL} is acyclic and has k hyperedges, by the induction hypothesis, H − {EL} has a unique

multiset of labels. Consider the edge that connects EL to another node in J . That edge has the

label EL ∩ (∪E∈(H−{EL})E), which is determined only by EL and H − {EL} and not by J . Thus,

reattaching EL back to J gives us a unique multiset of labels for H. 2

Lemma 7 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that

each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent.

For any two distinct and functionally equivalent labels Li and Lj of H, there is a unique hyperedge

E ∈ H such that (Li ∪Lj) ⊆ E. Further, Li and Lj are keys of E and there is a connected subtree

like the one in Figure 16(b) in any join tree for H.

Proof. Suppose that H has no hyperedge that includes Li ∪ Lj as a subset. Let J be a join tree

for H. Since Li and Lj are labels of H, there are two nodes Ei and Ej in J such that Li ⊆ Ei and

Lj ⊆ Ej . By our assumption, Lj 6⊆ Ei and Li 6⊆ Ej. Without loss of generality, Ei and Ej are

chosen in such a way that the path P between them in J is the shortest among all possible paths

in J . As such, except Ej , no node on P includes Lj as a subset. Similarly, except Ei, no node on

P includes Li as a subset. Let Ea be the neighboring node of Ej on P , as Figure 16(a) shows. (It

is possible that Ea and Ei are the same node.) Since Lj 6⊆ Ea, there is an attribute A ∈ Lj such
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that A 6∈ Ea. Additionally, A is not in any node to the left of Ea in Figure 16(a); otherwise by

Lemma 1, A ∈ Ea—a contradiction.

P

i
E

a
E

j
E

(a)

E

i
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j

E
i

E
j

L

(b)

Figure 16: The Path P between Ei and Ej and the Connected Subtree of Lemmas 7 and 8.

Since P is a connected subtree of J , by Lemma 3, F+[P ] implies the FD Li → Lj. With respect

to Figure 16(a), let P ′ be the subpath of P from Ei to Ea, including Ei and Ea. Since F+[P ]

implies Li → Lj and A ∈ (Ej − P ′), it must be that F+[P ] implies Li → K where K → A is a

nontrivial FD in F+[Ej ]. Since Ej is in BCNF, K → Ej . This implies Li → Ej , which results in

Ei → Ej because Li ⊆ Ei. Similarly, we can show that Ej → Ei. Thus, Ei and Ej are functionally

equivalent—a contradiction.

To show that there is only one hyperedge E ∈ H that includes Li∪Lj as a subset, assume there

are two distinct hyperedges Ei and Ej such that (Li ∪Lj) ⊆ Ei and (Li ∪Lj) ⊆ Ej . Since Li → Lj

is nontrivial and Ei and Ej are both in BCNF, Li → Ei and Li → Ej . This means Ei and Ej share

a key of Li as a common key. Thus, Ei and Ej are two functionally equivalent hyperedges in H—a

contradiction.

We now show that there is a connected subtree like the one in Figure 16(b) in any join tree for

H. Observe that since Li and Lj are labels of H, there are two other hyperedges Ep and Eq in H

such that Ep includes Li but not Lj as a subset and Eq includes Lj but not Li as a subset. Let Ei

be the neighboring node of E on the path between Ep and E. By Lemma 1, Li ⊆ (Ei ∩ E). Since

Li → Lj is nontrivial, (Li ∪Lj) ⊆ E, and E is in BCNF, Li → E. Assume Li ⊂ (Ei ∩E). Since Ei

is also in BCNF and Li → E, Li → Ei as well. This means Ei and E are functionally equivalent—a

contradiction. Therefore, the label of the edge {Ei, E} is Li, as Figure 16(b) shows. In addition,

if there exists a proper subset L′
i of Li such that L′

i → Li, we will reach the same contradiction

because Li → E. Therefore, Li is a key of E. The same results can be similarly established for Lj

and thus the proof is now complete. 2

Lemma 8 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that

each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent.

Let Ci and Cj be two distinct equivalence classes of labels of H such that Cj is a parent node of

Ci in the Hasse diagram of the partial order � of H. Suppose that for each Li ∈ Ci and for each

Lj ∈ Cj, Lj 6⊆ Li. There exists a pair of labels (Li, Lj) ∈ Ci × Cj and a unique hyperedge E ∈ H

such that (Li ∪Lj) ⊆ E. Further, Li is a key of E and there is a connected subtree like the one in

Figure 16(b) in any join tree for H.
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Proof. Let J be a join tree for H. Assume there is no node in J that includes Li ∪ Lj as a

subset for every pair of labels (Li, Lj) ∈ Ci × Cj. Choose two nodes Ei and Ej in J such that

the path P between Ei and Ej is the shortest under the requirements that Li ⊆ Ei, Lj ⊆ Ej, and

(Li, Lj) ∈ Ci×Cj. By our assumption, except Ej , no node on P includes Lj as a subset. Similarly,

except Ei, no node on P includes Li as a subset. Let Ea be the neighboring node of Ej on P , as

Figure 16(a) shows. (It is possible that Ea and Ei are the same node.) Since Lj 6⊆ Ea, there is

an attribute A ∈ Lj such that A 6∈ Ea. Additionally, A is not in any node to the left of Ea in

Figure 16(a); otherwise by Lemma 1, A ∈ Ea—a contradiction.

Since P is a connected subtree of J , by Lemma 3, F+[P ] implies the FD Li → Lj. With respect

to Figure 16(a), let P ′ be the subpath of P from Ei to Ea, including Ei and Ea. Since F
+[P ] implies

Li → Lj and A ∈ (Ej − P ′), it must be that F+[P ] implies Li → K where K → A is a nontrivial

FD in F+[Ej]. Since Ej is in BCNF, K → Ej . This implies Li → Ej , which means Li → K for any

key K of Ej. If P ′ does not include a key of Ej as a subset, then P ′+ = P ′ under F+[P ]. However,

since Li ⊆ P ′ and Lj 6⊆ P ′, then F+[P ] does not imply Li → Lj—a contradiction. Therefore,

P ′ includes a key K̂ of Ej as a subset. Thus, by Lemma 1, K̂ ⊆ (Ea ∩ Ej). If K̂ ⊂ (Ea ∩ Ej),

then because Ea is in BCNF, Ea and Ej share K̂ as a common key, which means Ea and Ej are

functionally equivalent—a contradiction. Thus, K̂ = Ea ∩ Ej . Observe that Lj 6→ K̂; otherwise,

K̂ ∈ Cj and therefore Ei and Ea should have been chosen in the first place—a contradiction. Thus,

Li → K̂ where K̂ is the label of the edge {Ea, Ej} in Figure 16(a). In turn, K̂ → Lj and Lj 6→ K̂.

This means Cj is not a parent node of Ci in the Hasse diagram of the partial order � of H—a

contradiction. Therefore, there is a pair of labels (Li, Lj) ∈ Ci × Cj and a hyperedge E ∈ H such

that (Li ∪ Lj) ⊆ E.

To show that E is unique, we may reuse the third paragraph of the proof for Lemma 7. To show

that Li is a key of E and there is a connected subtree like the one in Figure 16(b) in any join tree

for H, we may reuse the fourth paragraph of the proof for Lemma 7 for the label Li. For the label

Lj, observe that if the label of the edge {E, Ej} is not Lj , then it must be a proper superset of Lj .

Since E and Ej are both in BCNF, if Lj → (E ∩Ej), then E and Ej are functionally equivalent—a

contradiction. Therefore, Lj 6→ (E ∩Ej). Since Li is a key of E, Li → (E ∩Ej). This implies Cj is

not a parent node of Ci in the Hasse diagram of the partial order � of H—a contradiction. Thus,

the label of the edge {E, Ej} is Lj. The proof is now complete. 2

Lemma 9 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that

each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent.

Let J be a join tree for H and S be a connected subtree of J . If there is a node in S that is critical

with respect to S, then there does not exist an NNF scheme tree that syntactically covers the set

of nodes in S.

Proof. Suppose T is an NNF scheme tree that syntactically covers the set of nodes in S. Let E be

such a critical node in S and Li and Lj be two labels belonged to S such that Li 6→ Lj, Lj 6→ Li,

and (Li ∪ Lj) ⊆ E. Since Li 6→ Lj and Lj 6→ Li, E must be on the path between Li and Lj ,

as Figure 17 shows. With respect to Figure 17, Li →→ Ci is a hypergraph-generated MVD where
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Ci ⊇ (Ei−Li) 6= ∅ and Ci is a connected component of the hypergraph {E−Li : E is a hyperedge

of S} − {∅}. Similarly, Lj →→ Cj is a hypergraph-generated MVD where Cj ⊇ (Ej − Lj) 6= ∅ and

Cj is a connected component of the hypergraph {E − Lj : E is a hyperedge of S} − {∅}.
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j

E
i
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j

L

Figure 17: The Labels Li, Lj , and the Critical Node E of Lemma 9.

Since T syntactically covers the set of nodes in S, Li →→ Ci holds for T . Therefore, we need to

test it against NNF’s Condition 1, which stipulates thatMVD(T ) and FD(T ) must imply Li →→ Ci.

By Lemma 4.5 in [16] and Lemma 3 of this paper, MVD(T ) and FD(T ) imply Li →→ Ci if and only

if MVD(T ) implies L+
i →→ Ci where L+

i is the closure of Li under F
+[S]. Proposition 4.1 in [18]

states that MVD(T ) is equivalent to the join dependency (JD) 1{P1, . . . , Pn} where Pk denotes

the union of the nodes in the path Pk of T and P1, . . . , Pn are all the paths in T . In addition,

L+
i →→ Ci is equivalent to the JD 1{L+

i Ci, L
+
i (S − L+

i Ci)}. (Note that S = Aset(T ), the set of

attributes of T .) Therefore, MVD(T ) implies L+
i →→ Ci if and only if for every path Pk in T , Pk

⊆ L+
i Ci or Pk ⊆ L+

i (S − L+
i Ci) (see Chapter 8 in [14]). Likewise, MVD(T ) implies L+

j →→ Cj if

and only if for every path Pk in T , Pk ⊆ L+
j Cj or Pk ⊆ L+

j (S − L+
j Cj).

We are now ready to derive a contradiction. We assume Ei, E, and Ej each appears in (not

necessarily distinct) paths Pi, P , and Pj in T respectively. Since Li 6→ Lj, there is an attribute

Aj ∈ Lj such that Aj 6∈ L+
i . Similarly, since Lj 6→ Li, there is an attribute Ai ∈ Li such that

Ai 6∈ L+
j . By Lemma 1, Aj 6∈ Ci; otherwise Aj ∈ Li—a contradiction. Likewise, Ai 6∈ Cj ; otherwise

Ai ∈ Lj—a contradiction. Therefore, Ai 6∈ L+
j Cj and Aj 6∈ L+

i Ci. Since Ai ∈ Li, Aj ∈ Lj and

(Li ∪ Lj) ⊆ E, Ai and Aj both appear in P—the path in which E appears. Let Ni and Nj be

the (not necessarily distinct) nodes in P that contain Ai and Aj respectively. Since Li 6→ Aj and

Lj 6→ Ai, Li 6→ Nj and Lj 6→ Ni. Now, there are four cases to consider.

(I) Li 6→ Ei, Lj 6→ Ej: By NNF’s Condition 1, Pi ⊆ L+
i Ci or Pi ⊆ L+

i (S − L+
i Ci). Since Li 6→ Ei,

there is an attribute A ∈ Ei such that A 6∈ L+
i . Since (Ei−Li) ⊆ Ci, A ∈ Ci and thus A 6∈ S−L+

i Ci.

Hence, A 6∈ L+
i (S − L+

i Ci). Since Ei appears in Pi, A ∈ Pi. Thus, it must be that Pi ⊆ L+
i Ci.

Likewise, Lj 6→ Ej implies Pj ⊆ L+
j Cj . Since Ei and E both contain Ai, Pi and P share Ni as a

common node. However, the node Nj must not be a node in Pi; otherwise Aj ∈ Pi and Aj 6∈ L+
i Ci

imply Pi 6⊆ L+
i Ci—a contradiction. Hence, Nj 6= Ni and Nj must be lower than Ni in P ; otherwise

Nj is a node in Pi—a contradiction. This, however, means that Ni is a node in Pj because P and

Pj share Nj as a common node. This implies Ai ∈ Pj . Nevertheless, Ai ∈ Pj and Ai 6∈ L+
j Cj imply

Pj 6⊆ L+
j Cj—a contradiction.

(II) Li 6→ Ei, Lj → Ej: Since Lj → Ej, Lj is a key of Ej; otherwise Ej and its neighboring node in

Figure 17 are functionally equivalent—a contradiction. Thus, with respect to Figure 17, for every

A ∈ (Ej − Lj), A does not appear in any node to the left of Ej; otherwise, by Lemma 1, A ∈ Lj ,
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which means Lj is not a key of Ej—a contradiction. Therefore, A 6∈ Ci for any A ∈ (Ej −Lj) and

if Li → A for some A ∈ (Ej − Lj), it must be that Li → K where K → A is nontrivial in F+[Ej].

Because Ej is in BCNF, K → Ej . This implies Li → Ej , which means Li → Lj—a contradiction.

Hence, for any A ∈ (Ej − Lj), A 6∈ L+
i Ci.

Like in the previous case, Li 6→ Ei implies Ni is a node in Pj . For any A ∈ (Ej − Lj), let

N be the node in Pj that contains A. Like Aj , because A 6∈ L+
i Ci for any A ∈ (Ej − Lj) and

Ni is a node in Pj , N 6= Ni and N must be lower than Ni in Pj . Thus, for each A ∈ (Ej − Lj),

Lj 6→ Ancestor(N ) because Ni ⊆ Ancestor(N ) and Lj 6→ Ni. Therefore, since Lj → A nontrivially

for each A ∈ (Ej − Lj), T violates NNF’s Condition 2—a contradiction.

(III) Li → Ei, Lj 6→ Ej : This case is symmetrical to the previous case.

(IV) Li → Ei, Lj → Ej : As we have already proved, Lj → Ej implies there is an attribute

A′
j ∈ (Ej − Lj) such that Li 6→ A′

j. Likewise, Li → Ei implies there is an attribute A′
i ∈ (Ei − Li)

such that Lj 6→ A′
i. Let N ′

i and N ′
j be the nodes in T that contain A′

i and A′
j respectively. Since

Li 6→ A′
j and Lj 6→ A′

i, Li 6→ N ′
j and Lj 6→ N ′

i . Without loss of generality, we assume Nj = Ni

or Nj is higher than Ni in P . As such, Nj is on both Pi and Pj. Since Nj is on Pi and Li → A′
i

nontrivially, N ′
i must be higher than Nj in Pi because Li 6→ Nj; otherwise T violates NNF’s

Condition 2—a contradiction. This implies N ′
i is on both Pi and Pj . Further, since N ′

i is on Pj

and Lj → A′
j nontrivially, N

′
j must be higher than N ′

i in Pj because Lj 6→ N ′
i . This also means N ′

j

is on both Pi and Pj . Thus, Ni, Nj , N
′
i , N

′
j , in this order, are all on the same path. However, this

will make N ′
j ⊆ Ancestor(N ′

i ). We now have a violation of NNF’s Condition 2 because Li → A′
i

nontrivially and Li 6→ Ancestor(N ′
i )—a contradiction. 2

Lemma 10 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally

equivalent. Let J be a join tree for H and S be a connected subtree of J . If there is not a node in

S that is critical with respect to S, then the Hasse diagram of the partial order � on S’s labels is

a rooted tree.

Proof. For each pair of edges {Ei, E} and {E, Ej} in S, either (Ei∩E) → (E∩Ej) or (E∩Ej) →

(Ei ∩E); otherwise E, a node in S, is critical with respect to S—a contradiction. Therefore, if the

Hasse diagram is not a rooted tree, it must have a “V-shape.” For example, there are two V-shapes

in Figure 5(a). We now show that a V-shape in the Hasse diagram implies it has a critical node

with respect to S. By this, we obtain a contradiction. Assume such a V-shape is made up by three

equivalence classes Ci, Cj and Ck of functionally equivalent labels in S such that Ci and Cj are

two parent nodes of Ck in the Hasse diagram. We have the following cases to consider.

(I) ∀Li ∈ Ci∀Lk ∈ Ck(Li 6⊆ Lk),∀Lj ∈ Cj∀Lk ∈ Ck(Lj 6⊆ Lk): Since S is a connected subtree, S

itself is also a join tree. By Lemma 8, there exists a pair of labels (Li, Lki) ∈ Ci ×Ck and a unique

node Ei ∈ S such that (Li ∪ Lki) ⊆ Ei. Further, Lki is a key of Ei. Likewise, there exists a pair

of labels (Lj , Lkj ) ∈ Cj × Ck and a unique node Ej ∈ S such that (Lj ∪ Lkj) ⊆ Ej. Further, Lkj

is a key of Ej. If Ei 6= Ej, then because Lki and Lkj are functionally equivalent and Lki and Lkj

are keys of Ei and Ej respectively, Ei and Ej are functionally equivalent—a contradiction. Hence,
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Ei = Ej and Ei is a critical node.

(II) ∀Li ∈ Ci∀Lk ∈ Ck(Li 6⊆ Lk),∃Lj ∈ Cj∃Lkj ∈ Ck(Lj ⊂ Lkj): By Lemma 8, there exists a pair

of labels (Li, Lki) ∈ Ci × Ck and a unique node Ei ∈ S such that (Li ∪ Lki) ⊆ Ei. Further, Lki

is a key of Ei. If Lkj = Lki , then Ei is a critical node. Assume Lkj 6= Lki . By Lemma 7, there

is a node Ek of which Lki and Lkj are keys. If Ei 6= Ek, then since Lki is a key for both of them,

Ei and Ek are functionally equivalent—a contradiction. Hence, Ei = Ek and thus Lj ⊂ Lkj ⊂ Ei.

Hence, Ei is a critical node.

(III) ∃Li ∈ Ci∃Lki ∈ Ck(Li ⊂ Lki),∀Lj ∈ Cj∀Lk ∈ Ck(Lj 6⊆ Lk): This case is symmetrical to the

previous case.

(IV) ∃Li ∈ Ci∃Lki ∈ Ck(Li ⊂ Lki),∃Lj ∈ Cj∃Lkj ∈ Ck(Lj ⊂ Lkj): If Lki = Lkj , then either one

of the two nodes of an edge whose label is Lki is a critical node. If Lki 6= Lkj , then by Lemma 7,

there is a node Ek of which Lki and Lkj are keys. Hence, Ek is a critical node. 2

Lemma 11 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally

equivalent. Let J be a join tree for H and S be a connected subtree of J . If there is not a node in

S that is critical with respect to S, then there exists an NNF scheme tree that syntactically covers

the hyperedges in S.

Proof. By Lemma 10, the Hasse diagram of the partial order � on S’s labels is a rooted tree

T . Suppose Step 2 of Procedure AttachHyperedges finds two nodes Ni and Nj in different paths

of T for a node E in S. Thus, there are labels Li ∈ Ni and Lj ∈ Nj such that (Li ∪ Lj) ⊆ E.

Since Ni and Nj are in different paths of T , Li 6→ Lj and Lj 6→ Li. This implies E is critical—a

contradiction. Hence, we may run Steps 2, 3 and 4 of Procedure AttachHyperedges on T to obtain

a scheme tree T ′.

We first prove by induction on the number n of nodes in T that every node in S appears in a

path of T ′. If n = 0, then T is empty. This implies S has zero or one node. In the former case,

our claim is vacuously true. In the latter case, the only node of S becomes the only node of T ′. If

n = 1, T has a single node. Then, all the labels in that node are merged together to form the root

node of T ′ and each node in S forms a path in T ′. Therefore, our claim is also true when n = 1.

Assume our claim is true if n ≤ k for some k ≥ 1. Run Procedure MoveLabelsToCenterNodes on

S. Let Tk be an NNF skeleton with k nodes. Consider a child node Nc of a node Np in the Hasse

diagram of � where Np is already a node in Tk. We obtain NNF skeleton Tk+1 by adding Nc as

a child node to Np in Tk. If Nc � Np nontrivially, then by Lemma 8 there are labels Lp ∈ Np,

Lc ∈ Nc, and a unique node E in S such that (Lp ∪ Lc) ⊆ E. If Nc � Np trivially, then there are

labels Lp ∈ Np, Lc ∈ Nc such that Lp ⊂ Lc. Let E
′ be the node of an edge with the label Lp such

that if that edge was removed from S, E′ would separate from Lc. Observe that for each L ∈ Nc,

L 6⊆ E′. Thus, E′ must be attached to Np. By the induction hypothesis, Lp ⊆ Ancestor(Np) in

T ′. By Lemma 1, the intersection of a label in Np and a label in Nc is a subset of Lp. Therefore,

since Nc is a child node of Np in T , every label in Nc is a subset of Ancestor(Nc) in T ′. This means

that every node in S that is attached to Nc appears in a path of T ′. The induction step is thus
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complete. Since we do not add any attribute to T that is not in any node in S, Aset(T ′) = S.

Hence, T ′ syntactically covers the set of nodes in S.

We are left to prove that T ′ is in NNF. Since S is a connected subtree of J , S itself is also a join

tree. Thus, the set of MVDs generated by S is equivalent to 1{E1, . . . , Em} where E1, . . . , Em are

the nodes in S [2]. Hence, to prove T ′ satisfies NNF’s Condition 1, we need to show that MVD(T ′)

and FD(T ′) are equivalent to 1{E1, . . . , Em} and F+[S]. We stated earlier that MVD(T ′) is

equivalent to 1{P1, . . . , Pn} where P1, . . . , Pn are all the paths in T ′ (see the proof for Lemma 9).

Also, observe that FD(T ′) is equivalent to F+[S]. Thus, one direction of the equivalence is easily

established because T ′ syntactically covers the set of nodes in S. For each path P in T ′, consider

P ’s leaf node NE = {A ∈ E : A does not appear in any label in any node of T} for some hyperedge

E ∈ S. Let NE ’s parent node be N . Since E contains a label in N , E → Ancestor(N ) in T ′.

Therefore, P ⊆ E+. By Chapter 8 in [14], T ′ satisfies NNF’s Condition 1.

To prove T ′ satisfies NNF’s Condition 2, observe that by Lemma 3 it is sufficient to only consider

F+[S]. Thus, let X → A be a nontrivial FD in F+[E] for some node E in S. Since E is in BCNF,

X → E. Assume E is attached to a node N in T . It is clear that E → Ancestor(N ) in T ′ and thus

X → E ∪ Ancestor(N ) in T ′. It follows that T ′ satisfies NNF’s Condition 2 as well. 2

Theorem 3 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H

such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally

equivalent. Let J be a join tree for H and S be a connected subtree of J . There exists an NNF

scheme tree that syntactically covers the hyperedges in S if and only if there is not a node in S

that is critical with respect to S.

Proof. This theorem follows immediately from Lemmas 9, 10 and 11. 2

5.4 Correctness

Theorem 4 Procedure Main of Section 3.1 generates a largest NNF scheme tree from its input.

Proof. Let T and J respectively be the input NNF skeleton and the input modified join tree

of Procedure AttachHyperedges. We first show that the set S defined in Step 1 of Proce-

dure AttachHyperedges constitutes a connected subtree of J and it does not have a critical node.

By Lemmas 7 and 8, if Nc � Np nontrivially for two nodes Np and Nc in T where Np is the parent

of Nc, then the edges whose labels are in Np and Nc clearly form a connected subtree of J . On the

other hand, if Nc � Np trivially, then there are labels Lp ∈ Np and Lc ∈ Nc such that Lp ⊂ Lc.

As such, we may make an edge with the label Lp to be incident with the center node of Nc in S.

Thus, the edges whose labels are in Np and Nc also form a connected subtree of J .

We now proceed to prove that S does not have a critical node. Assume not, let Li and Lj be

two labels in T such that Li 6→ Lj and Lj 6→ Li; and let E be a node in S such that (Li ∪Lj) ⊆ E.

As such, E must be on the path between Li and Lj in S, as Figure 17 shows. If there is at least

one label Lk between Li and Lj on that path such that Lk 6→ Li and Lk 6→ Lj, then the existence

of E will lead to Lk → Li or Lk → Lj—a contradiction. Let Li ∈ Ni and Lj ∈ Nj and assume Ni

31



and Nj are nodes in T that have different parents. Then, there is at least one label Lk between

Li and Lj in S such that Lk 6→ Li and Lk 6→ Lj—a contradiction. Hence, Ni and Nj are child

nodes of the same parent Nk in T . As such, Ni 6� Nj , Nj 6� Ni, Nk 6� Ni, and Nk 6� Nj . Since

Nk is the parent of Ni and Nj in T , there are nodes Ei and Ej in S such that (Lki ∪Li) ⊆ Ei and

(Lkj ∪ Lj) ⊆ Ej where Lki , Lkj ∈ Nk, Li ∈ Ni and Lj ∈ Nj. We now have the following cases to

consider.

(I) Ni � Nk nontrivially and Nj � Nk nontrivially: Assume Ei = Ej . By Lemma 8, Li and Lj are

keys of Ei. This implies Ni � Nj and Nj � Ni—a contradiction. Hence, Ei 6= Ej. As such, there

is a label Lk ∈ Nk that is in between of Li and Lj in S—a contradiction. Hence, there is no node

in S that is critical.

(II) Ni � Nk nontrivially and Nj � Nk trivially: Assume Ei = Ej . By Lemma 8, Li is a key of Ei.

This implies Ni � Nj—a contradiction. Hence, Ei 6= Ej. We may now proceed like in the previous

case from this point on.

(III) Ni � Nk trivially and Nj � Nk nontrivially: This case is symmetrical to the previous case.

(IV) Ni � Nk trivially and Nj � Nk trivially: Suppose there is a label Lk ∈ Nk in between of Ni’s

center node and Nj ’s center node. Then, there is a label Lk ∈ Nk in between of Li and Lj in S—a

contradiction. Hence, there is not a label Lk ∈ Nk in between of Ni’s center node and Nj ’s center

node. However, in this case Procedure CalculateLabelCnt at best selects one of Ni and Nj or at

worst selects none of Ni and Nj in constructing a largest NNF skeleton. Thus, S has no critical

nodes.

To prove that Procedure Main generates a largest NNF scheme tree, we show that if we add

one more node (hyperedge) in J to S, S will have a critical node. Now, suppose we add one more

equivalence class C of labels in the Hasse diagram of � to T . Because of Theorem 2, C must

be connected to an equivalence class CT already in T . Further, C cannot be a child node of CT

in the Hasse diagram of � (i.e., C 6� CT ); otherwise, Procedure CalculateLabelCnt has already

considered C in constructing T . Suppose CT 6� C. If the label of the edge between C’s center

node and CT ’s center node is in C, then CT ’s center node is a critical node. If the label of the

edge between C’s center node and CT ’s center node is in CT , then C’s center node is a critical

node. Now suppose CT � C. Observe that CT cannot be a root node in the Hasse diagram of �;

otherwise CT 6� C. Then, there is a V-shape in T , which means CT ’s center node is a critical node.

2

5.5 Complexity Analysis

In this section, we first present Theorem 5, which shows that Procedure Main runs in polynomial

time. In its proof, we demonstrate that Procedure ConstructHasseDiagramOf� has worst-case

complexity O(n3). However, our experiments strongly indicate that it has average-case complexity

O(n2). To reconcile these two results, Lemma 13 shows that if the size of each hyperedge is

bounded, then indeed Procedure ConstructHasseDiagramOf� has time complexity O(n2). Since

in most cases, including our experiments, the size of each hyperedge is bounded, these two analyses
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do not contradict each other.

Theorem 5 Procedure Main of Section 3.1 runs in polynomial time.

Proof. We now prove by a worst-case analysis that Procedure Main runs in polynomial time. We

first consider the two preparatory procedures: Procedures MergeHyperedges and CreateJoinTree.

Procedure MergeHyperedges uses Algorithm 4.4 on page 66 in [14] in its computation. This algo-

rithm has time complexity O(p), where p is the number of symbols required to represent the given

FDs. Thus, generating the closure E+ of one hyperedge E takes O(p) time. For q ≥ 1 hyperedges,

it takes O(pq) time to compute the q closures of the q hyperedges. Let n be the number of symbols

required to represent the input acyclic hypergraph and the set of embedded FDs. Consequently,

p and q are bounded by n. Hence, it takes O(n2) time to compute the q closures. Now, consider

merging two hyperedges when their closures are equal. Given q > 1 closures over r > 1 distinct at-

tributes, we compute the number of comparisons in the worst case that no pair of closures is equal.

First, we use a matrix with q rows and r columns to represent these q closures where cell(i, j)—the

cell at row i and column j—is equal to 1 if closure Ci has attribute Aj; otherwise, cell(i, j) is equal

to 0. Filling up this matrix obviously takes O(n) time. With this matrix, closure Ci is equal to

closure Cj if and only if cell(i, 1) = cell(j, 1), cell(i, 2) = cell(j, 2), . . . , and cell(i, r) = cell(j, r).

Thus, checking whether Ci = Cj takes r comparisons. Proving closure C1 is not equal to any other

closure therefore takes (q−1)r comparisons. For closure C2, it similarly takes (q−2)r comparisons.

The same reasoning applies to all the other closures. Hence, it takes (q − 1)r + (q − 2)r + · · · + r

= q(q − 1)r/2 comparisons to prove that no closure is equal to another closure. Since r is also

bounded by n, it thus takes O(n3) time to show that no pair of closures is equal. As stated in [23],

a straightforward implementation for Procedure CreateJoinTree runs in time quadratic in the size

of the input acyclic hypergraph. Hence, both Procedures MergeHyperedges and CreateJoinTree

run in polynomial time with respect to n.

Our experiments strongly indicate that Procedures ConstructHasseDiagramOf�, MoveLabels-

ToCenterNodes, and ExtractLargestNNFSkeleton considered as a whole run in time quadratic in

the number of hyperedges. However, since the test cases are generated randomly, this can only be

considered as an average-case complexity. For a worst-case analysis of them, let n be the number of

symbols required to represent the input acyclic hypergraph and the set of embedded FDs. Observe

that the number of labels is one less than the number of nodes (hyperedges) in any join tree. Hence,

sorting functionally equivalent labels in a join tree into equivalence classes is similar to merging

functionally equivalent hyperedges in an acyclic hypergraph. Further, for two distinct labels Li

and Lj, L
+
i ⊂ L+

j , L
+
j ⊂ L+

i , and L+
i = L+

j can all be tested successively in the same pass. Thus,

sorting labels into equivalence classes and generating the partial order � can be done at the same

time. Therefore, Procedure ConstructHasseDiagramOf� at most takes O(n3) time. Additionally,

as Procedure ConstructHasseDiagramOf� scans the label of each edge in a join tree, we associate

each equivalence class with a set of pointers pointing to the edges in the join tree whose labels are

in that equivalence class. As a result, Procedure MoveLabelsToCenterNodes does not have to find

the edges whose labels are in any equivalence class again. Because it at most reorganizes every edge
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in a join tree, Procedure MoveLabelsToCenterNodes therefore has time complexity O(n). The time

complexity of Procedure ExtractLargestNNFSkeleton clearly depends on the time complexity of

Procedure CalculateLabelCnt. This recursive procedure visits each equivalence class of labels in

the Hasse diagram of � once as it calculates its labelCnt. Hence, Procedure CalculateLabelCnt

runs in time linear in the number of equivalence classes, which again is bounded by n. Obviously,

any other step of Procedure ExtractLargestNNFSkeleton has time complexity O(n). Hence, it

has an overall time complexity O(n).

For Procedure AttachHyperedges, when it is given a NNF skeleton, it may follow the sets of

pointers associated with the equivalence classes in the skeleton to find the set S of Step 1. This

takes O(n) time. Attaching the hyperedges in S to the NNF skeleton also takes O(n) time. 2
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Figure 18: The FD Y → A and a part of the Join Tree of Lemma 12.

For the input set F of FDs to Procedure Main and a hyperedge E, in the following lemmas the

notation F [E] means the FDs in F that are embedded in E.

Lemma 12 For any proper subset X of E where E is a hyperedge, if X does not include the

left-hand side of any FD in F [E], X 6→ A for any attribute A ∈ (E − X). As a result, the only

keys of E are the left-hand sides of the embedded nontrivial FDs in F [E].

Proof. Suppose not. Initially, let us set X+ = X. Then, we add attributes to X+ by using the

nontrivial FDs in F . Without loss of generality, let A be the first attribute in E − X added to

X+. Further let B1, B2, . . . , Bn (n ≥ 0) be the attributes, in this order, added to X+ before A.

It follows that each Bi is not in E and thus Bi is added to X+ by an FD Yi → Bi in F − F [E].

Immediately before adding A to X+, the situation is that XB1B2 · · ·Bn ⊇ Y where Y → A is an

FD in F − F [E]. Let EA be the unique hyperedge that embeds Y → A. Since EA is not E, the

situation can be depicted as Figure 18, which also shows two subtrees TE and TA as a result of

cutting along the dotted lines. First, we show that each FD Yi → Bi can be safely assumed to be

embedded in a hyperedge in TE . For if not, suppose Yk → Bk is the first such an FD embedded in a

hyperedge Ek in TA, as shown in Figure 18. As such, it must be that XB1B2 · · ·Bk−1 ⊇ Yk. Then,

L ⊇ Yk, and thus EL ⊃ Yk. In addition, Lk = Yk; for if not, E
′
k and Ek are functionally equivalent.

Thus, we can remove the edge between E′
k and Ek and reestablish another edge between EL and

Ek with the label Yk. By repeating this process, each FD Yi → Bi can be safely assumed to be

embedded in a hyperedge in TE. Under this assumption, because XB1B2 · · ·Bn ⊇ Y , L ⊇ Y . In
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fact, L = Y ; otherwise EL and EA are functionally equivalent. Hence, A 6∈ L because A 6∈ Y . On

the other hand, A ∈ E and A ∈ EA imply A ∈ L—a contradiction. 2

Lemma 13 Procedure ConstructHasseDiagramOf� takes O(n2) time, where n is the length of

the input, if there is an upperbound b on the size of every hyperedge.

Proof. By Lemma 7, each label of an equivalence class is incident with the equivalence class’s

center node. By Lemma 8, for any two equivalence classes that are parent and child in the Hasse

diagram, their center nodes are connected by an edge with a label in the parent equivalence class.

Hence, a simple way to construct the Hasse diagram is as follows.

Let L be a label incident with a hyperedge E. If L includes the left-hand side of any nontrivial

FD embedded in E, then L functionally determines any other label incident with E. In fact, L must

equal the left-hand of that embedded FD; otherwise, E would be functionally equivalent to another

hyperedge. Because of Lemma 12, this process is sufficient to determine the labels in an equivalence

class and its nontrivial children as well. Given p nontrivial embedded FDs and q hyperedges, sorting

the labels into equivalence classes needs at most p(q − 1)b2 comparisons. During this process, we

can also discover the nontrivial children of an equivalence class as well. This all takes O(n2) time.

To find the trivial children of an equivalence class in the Hasse diagram, it suffices to find the proper

containment relationships of the q − 1 labels. This needs at most (q − 1)(q − 2)b2 comparisons,

which takes O(n2) time. 2

5.6 Performance Guarantee

This section shows that the heuristic that successively generating largest NNF scheme trees from

among hyperedges not already included in generated scheme trees produces at most twice as many

NNF scheme trees as the optimized solution. To simplify the discussion, this section assumes the

input is a join tree instead of an acyclic hypergraph. Without loss of generality, we further assume

the input join tree has the form of completing Procedure MoveLabelsToCenterNodes. For if not,

we may simply run Procedure MoveLabelsToCenterNodes on it.

For Lemma 14, the main result of this section, we let M be a potential exponential-time

algorithm that generates a minimum number of NNF scheme trees from an input join tree such

that each of its nodes is included in a generated NNF scheme tree. To avoid duplicating data, M

is assumed putting each node of the input join tree in exactly one generated NNF scheme tree. We

also let L be the heuristic that repeatedly calls the polynomial-time algorithm of this paper until

each remaining node of the input join tree is included in exactly one generated NNF scheme tree.

Lemma 14 Let l and m be the numbers of NNF scheme trees generated from a join tree J by L

and M respectively. l is less than or equal to 2m− 1.

Proof. We now demonstrate a method that constructs a join tree J that leads to the greatest l in

terms of m. Two observations underlie this method.

First, suppose M and L generate r identical NNF scheme trees, where l > m > r > 0, from

J . Because (l − r)/(m − r) − l/m > 0, (l − r)/(m − r) > l/m. By Theorem 2 and the fact that
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J has the form of completing Procedure MoveLabelsToCenterNodes, each generated NNF scheme

tree syntactically covers a connected subtree of J . In addition, because M puts each node of J

in a single NNF scheme tree, removing the nodes included in the r identical NNF scheme trees

will yield a join tree that will lead to a greater l/m ratio. Therefore, we assume M and L do not

generate any common NNF scheme tree from J .

Second, suppose J is disconnected. That is, J has n > 1 connected components. Let l1/m1,

. . . , ln/mn be the ratios for the connected components of J respectively. Assume lk/mk, where

1 ≤ k ≤ n, is the greatest. That is, lk/mk ≥ li/mi where 1 ≤ i ≤ n. This implies lkmi ≥ mkli

for 1 ≤ i ≤ n, which results in lk(m1 + · · · + mn) ≥ mk(l1 + · · · + ln). As a result, lk/mk ≥

(l1 + · · · + ln)/(m1 + · · · + mn). Hence, we only need to focus on the connected component of J

that has the greatest l/m ratio.

Following these two observations, we now describe a method that constructs the desired join

tree J . Let T1, . . . , Tm, m ≥ 1, be the NNF scheme trees generated by M from J . As noted

above, each Ti syntactically covers a connected subtree of J . Since J is connected, there are m− 1

edges connecting the m subtrees covered by T1, . . . , Tm. For a worst possible reorganization, let

E be one of these m− 1 edges. To produce more NNF scheme trees, E must be covered by a new

NNF scheme tree that is at least as large as the two Ti’s connected by E. That is, if the connected

subtrees of Tp and Tq is connected by E, then there is a new NNF scheme tree that covers E and

also it is at least as large as Tp and Tq. Additionally, both Tp and Tq cannot be empty after the

reorganization. Hence, L generates at most m+ (m− 1) = 2m− 1 NNF scheme trees. 2
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Figure 19: A join tree that demonstrates performance guarantee.

Example 12 Figure 19(a) shows a join tree with each label Ai, 1 ≤ i ≤ 9, is a distinct single

attribute. Attributes that are contained in exactly one node are irrelevant and thus are not shown
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in the figure. Additionally, we assume there are two FDs A2 → A1A3 and A8 → A7A9 associated

with the join tree. With these two FDs, at a minimum the join tree in Figure 19(a) can be covered

by four NNF scheme trees; and the connected subtrees covered by these NNF scheme trees are

circled by dotted lines. On the other hand, it is possible that L, our heuristic, makes a wrong guess

at every stage and produces seven NNF scheme trees instead, as shown in Figure 19(b). 2

We stress that for our heuristic to arrive at the worst-case scenario, it has to guess wrong at

every stage. Such a probability, however, is small. As an example, consider Figure 19(b). Our

heuristic must first produce the two three-node NNF scheme trees. Then it will generate the

two-node NNF scheme tree. Otherwise, it will not arrive at the worst-case scenario.

6 Concluding Remarks

In this paper we presented a polynomial-time algorithm to generate a largest redundancy-free XML

storage structure from an acyclic hypergraph and a set of embedded FDs where each hyperedge

is in BCNF. The algorithm generates a largest NNF scheme tree, which can then be mapped to

a redundancy-free XML storage structure. Besides reducing space requirements and overcoming

update anomalies, the algorithm also determines a largest set of hyperedges such that no join is

needed to navigate from one data item to another within the storage structure. Further, when

applied repeatedly on hyperedges not already included in generated scheme trees, the algorithm

always yields redundancy-free XML storage structures and often, especially in practical cases,

yields the fewest. This, then, also reduces the join cost to navigate from any data item within the

application to any other.
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