Extracting a Largest Redundancy-Free XML Storage Structure from an Acyclic Hypergraph in Polynomial Time

Wai Yin Mok^{*}, Joseph Fong[†] and David W. Embley[‡]

Abstract

Given a hypergraph and a set of embedded functional dependencies, we investigate the problem of determining the conditions under which we can efficiently generate redundancy-free XML storage structures with as few scheme trees as possible. Redundancy-free XML structures guarantee both economy in storage space and the absence of update anomalies, and having the least number of scheme trees requires the fewest number of joins to navigate among the data elements. We know that the general problem is intractable. The problem may still be intractable even when the hypergraph is acyclic and each hyperedge is in Boyce-Codd Normal Form (BCNF). As we show here, however, given an acyclic hypergraph with each hyperedge in BCNF, a polynomial-time algorithm exists that generates a largest possible redundancyfree XML storage structure. Successively generating largest possible scheme trees from among hyperedges not already included in generated scheme trees constitutes a reasonable heuristic for finding the fewest possible scheme trees. For many practical cases, this heuristic finds the set of redundancy-free XML storage structures with the fewest number of scheme trees. In addition to a correctness proof and a complexity analysis showing that the algorithm is polynomial, we also give experimental results over randomly generated but appropriately constrained hypergraphs showing empirically that the algorithm is indeed polynomial.

Keywords: XML data redundancy, large XML storage structures, XML-Schema generation, acyclic hypergraphs

1 Introduction

XML databases are emerging [4]. Two types of XML databases are native XML databases and XML-enabled databases. The fundamental unit of (logical) storage in native XML databases is an XML document [3]. Thus, designing XML documents for efficient retrieval and update has been a topic of recent research [8, 9, 10]. The fundamental unit of (logical) storage in XML-enabled

^{*}Department of Economics and Information Systems, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA, mokw@email.uah.edu. (Most of this research was conducted while W. Y. Mok was a Visiting Research Fellow at City University of Hong Kong.)

[†]Department of Computer Science, City University of Hong Kong, Hong Kong, China, csjfong@cityu.edu.hk.

[‡]Department of Computer Science, Brigham Young University, Provo, Utah 84602, USA, embley@cs.byu.edu.

databases is a relational table. This table-storage method requires various mapping rules to translate between XML document schemas and database schemas and employs middleware to transfer data between XML documents and databases [3, 17, 22]. A recent study shows that designing XML documents for efficient retrieval and update can also guarantee well-designed relational storage structures for XML-enabled databases [11]. Thus, for both native XML databases and XMLenabled databases, designing XML documents for efficient retrieval and update is an appropriate focus for study.

Similar to designing relational tables by normalizing relational schemas, designing XML documents for efficient retrieval and update is about normalizing XML storage schemas. Normalized XML storage schemas remove the possibility of redundancy with respect to constraints and typically make both retrieval and update more efficient. Thus, there has been a flurry of research work on normalization of XML documents [1, 5, 6, 13, 15, 21, 24, 25, 26].

This paper, which follows up on our previous work [6, 15], is another step in this direction. Like [15], instead of generating XML DTDs or XML Schema specifications directly, we first generate XML storage structures. These storage structures, called scheme trees here and elsewhere [16], are simply generic hierarchical structures. After obtaining a set of scheme trees, we can apply the mapping method in [1], or equivalently, those cited in [15], to generate a DTD or the basic structural components of an XML Schema document. These mappings simply represent scheme trees syntactically in these XML specification schemes in a one-to-one correspondence. Therefore, under these mappings, there is redundancy in a scheme-tree instance if and only if there is redundancy in an XML document. Hence, our discussion in this paper only needs to focus on scheme trees and scheme-tree instances, without concern for the mapping to DTDs or to XML Schemas.

In [15] we showed that generating a minimum number of redundancy-free scheme trees from a conceptual-model hypergraph is NP-hard. Here we consider special-case conditions in an effort to find an efficient algorithm. First, we limit ourselves to regular hypergraphs [2, 14], which are a special type of conceptual-model hypergraphs. Also, since it is known that checking whether relational schemas are in Boyce-Code Normal Form (BCNF) is intractable [12], we limit hypergraphs to those in which each hyperedge is in BCNF with respect to the given functional dependencies (FDs). Next, since cycles in hypergraphs introduce ambiguity and typically cause difficulties, we assume that hypergraphs are acyclic. Finally, we assume that the only multivalued dependencies (MVDs) are hypergraph-generated MVDs. Even with these assumptions, however, it is an open problem to find an algorithm that generates a minimum number of redundancy-free scheme trees in polynomial time. We therefore settle on a heuristic that resolves the issue for many practical cases and likely gives good results for all cases.

As the basis of our heuristic, we provide in this paper a polynomial-time algorithm that generates a largest scheme tree from an acyclic hypergraph and a set of FDs where each FD is embedded in some hyperedge and each hyperedge is in BCNF. As an approximation to generating a minimum number of redundancy-free scheme trees, we use this heuristic repeatedly on the remaining hyperedges not already included in generated scheme-tree storage structures. This heuristic always

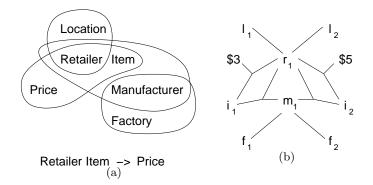


Figure 1: The Acyclic Hypergraph and Relationships of Example 1.

yields redundancy-free scheme trees and often, especially in practical cases, yields the fewest.

To illustrate our approach and to show some of the pitfalls involved, we present a motivating example. In this example, we rely on intuition for some undefined terms. Later in Section 2, we formally define these terms.

Example 1 Figure 1(a) shows an acyclic hypergraph and an FD, Retailer Item \rightarrow Price, embedded in one of the hyperedges. Figure 1(b) shows some possible relationships among instance values for the hyperedges in Figure 1(a). For example, two of the relationships are "retailer r_1 sells item i_1 for \$3" and "manufacturer m_1 has factory f_1 ." Figures 2(a), 2(b), and 2(c) show three possible sets of scheme trees and their associated instances taken from the relationships in Figure 1(b). In Figure 2(a), because there is only one scheme-tree instance, the data values are compactly stored. However, the instance data is redundant. Since manufacturer m_1 is necessarily stored twice, the dependent factories, which must be the same, are therefore redundantly stored more than once. In Figure 2(b), even though no data redundancy is present in any of the scheme-tree instances, there are more trees than necessary. The largest redundancy-free scheme tree for this example is the one on the left in Figure 2(c), which balances the requirements of data redundancy and compactness of data. Creating this scheme tree first followed by creating a scheme tree from the remaining hyperedge {Manufacturer, Factory} yields the fewest possible redundancy-free scheme trees. \Box

We give the details of our contribution of generating a largest possible scheme tree from an acyclic hypergraph in polynomial time as follows. We first lay the ground work by providing basic definitions in Section 2. Based on this foundation, we present the polynomial-time, scheme-tree generation algorithm in Section 3. Throughout Sections 2 and 3 we provide examples to motivate and illustrate definitions and algorithmic procedures. We present experimental data to verify our algorithm in Section 4 and formally prove our claims in Section 5. We make concluding remarks in Section 6.

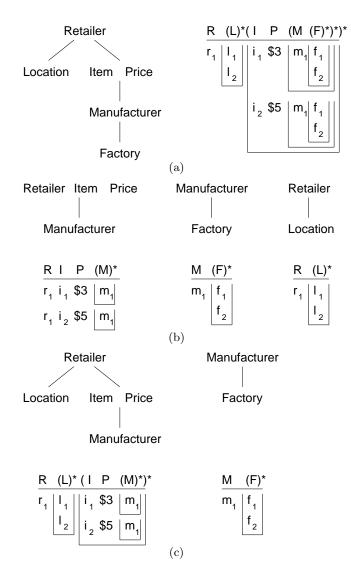


Figure 2: The Scheme Trees and Scheme-Tree Instances of Example 1.

2 Basic Definitions

Since we limit ourselves to regular hypergraphs [2, 14], we make the universal-relation-scheme assumption [20]. This is different from our previous work [15] for which we did not make such an assumption.

2.1 Acyclic Hypergraphs

To make this paper self-contained, we borrow some definitions from previous work. The first four definitions are from [2].

Definition 1 Let U be a set of attributes. A hypergraph $H = \{E_1, \ldots, E_n\}$ over U is a set of subsets of U where each subset E_i is called a hyperedge of H, or simply an edge of H if the context

is clear. \Box

Definition 2 Graham Reduction applies two operations to a hypergraph $H = \{E_1, \ldots, E_n\}$ $(n \ge 1)$ until neither can be applied. These two operations are: (Attribute Removal) If A is an attribute that appears in exactly one hyperedge E_i , then delete A from E_i . (Edge Removal) Delete a hyperedge E_i if there is a hyperedge E_j such that $i \ne j$ and $E_i \subseteq E_j$. \Box

Definition 3 A hypergraph is *acyclic* if Graham Reduction reduces it to the empty set. \Box

Definition 4 A hypergraph is *reduced* if none of its hyperedges is a subset of another hyperedge. \Box

By repeatedly applying the edge-removal step of Graham Reduction, it is easy to observe that a hypergraph is acyclic if and only if its reduced form is acyclic. All hypergraphs considered in this paper are assumed to be reduced.

We now introduce a procedure that makes use of Graham Reduction to create a data structure from a reduced acyclic hypergraph called a *join tree*.

Procedure CreateJoinTree

Input: a reduced acyclic hypergraph H.

Output: a join tree T for H, and a set of labels for H.

1. Initially, let T be a graph with no edges whose nodes are the unique hyperedges in H.

2. Apply Graham Reduction: while applying Graham Reduction, when a remaining hyperedge E'_i , which is the result of applying one or more attribute removals to an original hyperedge E_i , is removed because it is a subset of an original hyperedge E_j , create an edge $\{E_i, E_j\}$ for T and label the edge E'_i . In the process, E'_i becomes a label of H. (Since E'_i may be a subset of more than one hyperedge, more than one join tree is possible for a given reduced acyclic hypergraph.)

3. When the Graham Reduction is complete, the graph T will have become a join tree; thus return T. \Box

Example 2 Figure 3 shows a possible join tree created by Procedure CreateJoinTree for the acyclic hypergraph in Figure 1(a). In another join tree for the hypergraph in Figure 1(a), instead of the *Retailer* edge between {*Retailer*, *Location*} and {*Retailer*, *Item*, *Price*}, the join tree can have a *Retailer* edge between {*Retailer*, *Location*} and {*Retailer*, *Item*, *Manufacturer*}. \Box

2.2 Constraints

In this paper, FDs and hypergraph-generated MVDs are the only constraints we consider. These are typically the most common constraints encountered in practice. FDs have their standard definition. The definition of hypergraph-generated MVDs is from [2] and [7].

Figure 3: A Join Tree of the Acyclic Hypergraph in Figure 1(a).

Definition 5 Two hyperedges are *connected* if they have a nonempty intersection. A set S of hyperedges is *disconnected* if S can be partitioned into two nonempty subsets S_1 and S_2 such that no hyperedge in S_1 is connected to any hyperedge in S_2 . A set of hyperedges is *connected* if it is not disconnected. A *connected component* is a maximal connected set of hyperedges. A hypergraph H generates a number of MVDs of the form $X \to Y_1|Y_2|\cdots|Y_n$ where X and Y_1, \ldots, Y_n are disjoint sets of attributes and each Y_i is a maximal connected set of hyperedges constructed from the hyperedges of H after they have been reduced by the removal of the attributes in X, i.e., the maximal connected components of $\{E - X : E \text{ is a hyperedge of } H\} - \{\emptyset\}$. \Box

Example 3 Removing the attributes *Retailer* and *Item* from Figure 1(a) results in the hypergraphgenerated MVDs *Retailer Item* \rightarrow *Manufacturer Factory* | *Price* | *Location*. Removing *Manufacturer* and *Factory* results in the trivial MVD *Manufacturer Factory* \rightarrow *Retailer Item Price Location*.

2.3 Nested Normal Form (NNF)

To help achieve our goal, we make use of NNF [16] in this paper. We have proved in [16] that a scheme tree does not permit redundancy with respect to a set of MVDs and FDs if and only if it is in NNF. Thus, our goal in this paper is to extract a largest NNF scheme tree.

Definition 6 A scheme tree T over a set U of attributes is a rooted tree in which every node is a nonempty subset of U. Further, the intersection of every pair of nodes in T is empty. \Box

Definition 7 Let T be a scheme tree over a set U of attributes. Let dom(A) be the set of domain values of an attribute A in U. A scheme-tree instance over T is recursively defined as follows:

- 1. If T has only the root node $A_1 \cdots A_n$ $(n \ge 1)$, a scheme-tree instance over T is a (possibly empty) set of functions $\{t_1, \ldots, t_m\}$ such that each t_i $(1 \le i \le m)$ maps each A_j $(1 \le j \le n)$ to a value in $dom(A_j)$.
- 2. If T has more than one node, then let T_1, \ldots, T_n $(n \ge 1)$ be the subtrees of T such that the root node of each T_i is a child node of T's root node. Let $\{t_1, \ldots, t_m\}$ $(m \ge 0)$ be the set of functions associated with T's root node and let $t_j \oplus s_{j_i}$ mean that the function t_j associates with the scheme-tree instance s_{j_i} over T_i for t_j . Then, $\bigcup_{j=1}^m (\bigcup_{i=1}^n t_j \oplus s_{j_i})$ is a scheme-tree instance over T.

3. For each node N of T and for any two functions t_i and t_j of N, if $t_i(N) = t_j(N)$, then t_i and t_j are the same function. (In other words, each resulting scheme-tree instance of Conditions 1 and 2 must be in Partition Normal Form [19].) \Box

Although formally defined in Definition 7, scheme-tree instances are most easily understood when visualized and written as are the scheme-tree instances in Figure 2. In Figure 2, we nest attribute names in parentheses in a linear fashion according to their structure and place instance values in buckets (with the outermost bucket omitted).

Let T be a scheme tree. We denote the set of attributes in T by Aset(T). Let N be a node in T. Notationally, Ancestor(N) denotes the union of attributes in all ancestors of N, including N. Similarly, Descendent(N) denotes the union of attributes in all descendants of N, including N. In a scheme tree T, each edge (V, W), where V is the parent of W, denotes an MVD $Ancestor(V) \rightarrow Descendent(W)$. Notationally, we use MVD(T) to denote the set of all MVDs represented by the edges in T. By construction, each MVD in MVD(T) is satisfied in the total unnesting of any scheme-tree instance for T. Since FDs are also of interest, we use FD(T) to denote the set of FDs that hold in T.

Example 4 Figures 2(a), 2(b), and 2(c) show three possible sets of scheme trees and their instances derived from the data in Figure 1(b). As in [16] we use a repeating-group $(...)^*$ to denote a nested scheme tree and a bucket to denote a nested scheme-tree instance. Let T be the left scheme tree in Figure 2(c). Each edge in T implies an MVD. Therefore, MVD(T) is equal to {Retailer \rightarrow Location, Retailer \rightarrow Item Price Manufacturer, Retailer Item Price \rightarrow Manufacturer}. In addition, FD(T) is equal to {Retailer Item \rightarrow Price} as declared in Figure 1(a). To show what we mean by total unnesting, the total unnesting of the left scheme-tree instance in Figure 2(c) is shown as follows:

R	L	Ι	P	M
r_1	l_1	i_1	\$3	m_1
r_1	l_1	i_2	\$5	m_1
r_1	l_2	i_1	\$3	m_1
r_1	l_2	i_2	\$5	m_1

The reader can easily verify that this flat relation satisfies every MVD in MVD(T). \Box

Definition 8 Let U be a set of attributes. Let M be a set of MVDs over U and F be a set of FDs over U. Let T be a scheme tree such that $Aset(T) \subseteq U$. T is in NNF with respect to $M \cup F$ if the following conditions are satisfied.

- 1. Let D be the set of MVDs and FDs that hold for T with respect to $M \cup F$. The set D is equivalent to $MVD(T) \cup FD(T)$ on Aset(T).
- 2. For each nontrivial FD $X \to A$ that holds for T with respect to $M \cup F$, $X \to Ancestor(N_A)$ also holds with respect to $M \cup F$, where N_A is the node in T that contains A. \Box

Example 5 All scheme trees in Figures 2(b) and 2(c) are in NNF. The scheme tree in Figure 2(a), however, is not in NNF. To see this, let T be the scheme tree in Figure 2(a). Then, $MVD(T) = \{Retailer \rightarrow Location, Retailer \rightarrow Item Price Manufacturer Factory, Retailer Item Price \rightarrow Manufacturer Factory, Retailer Item Price Manufacturer \rightarrow Factory \}, and <math>FD(T) = \{Retailer Item \rightarrow Price\}$. Now, observe that Manufacturer \rightarrow Factory is a hypergraph-generated MVD that holds in T (obtained by removing Manufacturer from the hypergraph in Figure 1(a)). Using the chase [14], it is easy to show that $MVD(T) \cup FD(T)$ does not imply Manufacturer \rightarrow Factory and therefore that T violates NNF's Condition 1. \Box

2.4 Syntactic Covers

Syntactic covers guarantee that every value and every relationship in an associated instance of a hypergraph can appear in a scheme-tree instance (e.g., that the values and relationships in the instance in Figure 1(b) can appear in the scheme tree instances in Figure 2.) Since we are generating storage structures, syntactic coverage is a necessary condition for any set of scheme trees generated for a hypergraph.

In the following, for any subset S of a hypergraph H, we use the notation \overline{S} to denote the set $\bigcup_{E_i \in S} E_i$. \overline{S} is simply the set of attributes in some set of hypergraph edges.

Definition 9 A path of a scheme tree T is a sequence of nodes from the root node of T to a leaf node of T. Let H be a hypergraph. An attribute $A \in \overline{H}$ appears in a scheme tree T if A is in a node of T. A hyperedge $E \in H$ appears in a scheme tree T if there is a path in T whose nodes collectively contain all of E's attributes.¹

Definition 10 A scheme tree T syntactically covers a set S of hyperedges if (1) $Aset(T) = \overline{S}$, and (2) every hyperedge in S appears in a path of T. A scheme-tree forest F syntactically covers a hypergraph H if there are subsets S_1, \ldots, S_n of hyperedges in H such that $\overline{S_1} \cup \cdots \cup \overline{S_n} = \overline{H}$ and there are scheme trees T_1, \ldots, T_n in F such that T_i syntactically covers S_i $(1 \le i \le n)$. \Box

Example 6 All three sets of scheme trees in Figures 2(a), 2(b) and 2(c) syntactically cover the hypergraph in Figure 1(a). As an example of failure to syntactically cover, consider the first scheme tree in the scheme-tree forest in Figure 2(c). If we remove *Price*, there is no place for *Price* values. Clearly, every attribute must appear in the scheme-tree forest. If we remove *Manufacturer*, although there is still a place for *Manufacturer* values in the second scheme tree in Figure 2(c), there is no

¹Note that the definition of syntactic coverage for this paper differs from the definition in [15]. In [15] the definition requires a hyperedge to appear in contiguous nodes in a path of a scheme tree while the definition here does not. Since we make the universal-relation-scheme assumption [20] in this paper and we did not for [15], we can relax the condition of syntactic coverage in [15]. For example, consider a reduced, acyclic hypergraph $H = \{AV_1, ABV_2, ABCV_3, ACV_4\}$ and an embedded FD $AC \rightarrow B$. A NNF scheme tree T for H has A as the root node, A's child nodes are B and V_1 , B's child nodes are C and V_2 , and C's child nodes are V_3 and V_4 . The hyperedge ACV_4 does not appear in contiguous nodes in any path in T. Nevertheless, T is in NNF and T syntactically covers the entire hypergraph under the definition of syntactic coverage of this paper.

place for the triples that belong to the edge {*Retailer*, *Item*, *Price*}. Clearly, every edge must appear in a path of some scheme tree. \Box

3 Extracting a Largest NNF Scheme Tree

This section presents the main algorithm of this paper, which extracts a largest NNF scheme tree from a reduced acyclic hypergraph and a set of embedded FDs such that each hyperedge is in BCNF. The algorithm calls several procedures, which will be explained in detail in the following sections.

3.1 The Main Algorithm

In presenting Procedure Main—the main algorithm of this paper, some undefined terms are necessary to state the purpose of each step. These terms, however, will be defined in the following sections.

Procedure Main

Input: a reduced acyclic hypergraph H and a set F of embedded FDs such that each hyperedge in H is in BCNF. Without loss of generality, F is assumed to be left-reduced and has not any redundant FDs [14].

Output: a largest NNF scheme tree.

- 1. Call Procedure MergeHyperedges to merge functionally equivalent hyperedges in H.
- 2. Call Procedure CreateJoinTree to create a join tree J from H.

3. Call Procedure ConstructHasseDiagramOf \succeq to create a partial order and its Hasse diagram from the labels of J.

4. Call Procedure MoveLabelsToCenterNodes to modify J.

5. Call Procedure ExtractLargestNNFSkeleton to extract a largest NNF skeleton T from the Hasse diagram.

6. Call Procedure AttachHyperedges to attach T's hyperedges to T. \Box

Note that each of the letters H, F, J, and T in Procedure Main means the same thing when it appears in any procedure called by Procedure Main.

3.2 Procedure MergeHyperedges

Two distinct hyperedges E_i and E_j are functionally equivalent if $E_i \to E_j$ and $E_j \to E_i$. Theorem 1 of Section 5.1 states that there is no loss of generality to assume that no two distinct functionally equivalent hyperedges exist. Hence, Procedure MergeHyperedges merges functionally equivalent hyperedges together to reduce the number of input hyperedges. After calling this procedure, we can safely assume that no two distinct functionally equivalent hyperedges exist.

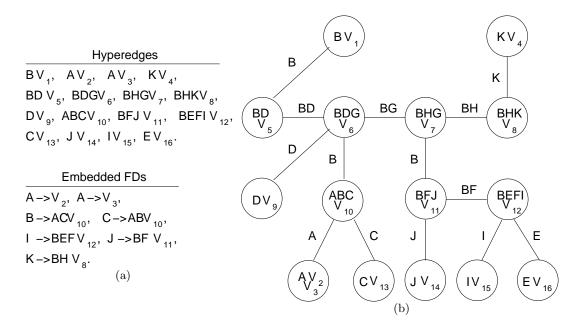


Figure 4: Merging Functionally Equivalent Hyperedges and Creating a Join Tree.

Procedure MergeHyperedges

- 1. Call Algorithm 4.4 on page 66 in [14] to compute E^+ for each hyperedge $E \in H$.
- 2. Put hyperedges E_i and E_j in the same set if $E_i^+ = E_j^+$.
- 3. For each set S with two or more hyperedges, do:

Merge all hyperedges in S together to form a new hyperedge and add it to H. Remove each hyperedge in S from H. \Box

Example 7 Consider inputting the FDs and hyperedges in Figure 4(a) to our algorithm.² The hyperedges AV_2 and AV_3 are functionally equivalent because $AV_2^+ = AV_3^+ = AV_2V_3$. Thus, Procedure MergeHyperedges merges AV_2 and AV_3 together to form a new hyperedge AV_2V_3 and removes AV_2 and AV_3 from H. A join tree created by Procedure CreateJoinTree in Section 2.1 for the resulting acyclic hypergraph is shown in Figure 4(b). \Box

3.3 Procedure ConstructHasseDiagramOf≻

We now define a partial order on the labels of the input reduced acyclic hypergraph. Later we derive a largest NNF scheme tree from the Hasse diagram of this partial order.

Definition 11 Let H be a reduced acyclic hypergraph and F be a set of embedded FDs. Two distinct labels L_i and L_j of H are functionally equivalent if $L_i \to L_j$ and $L_j \to L_i$. Let C_1, \ldots, C_n be the equivalence classes³ of labels of H such that all the labels in each equivalence class C_i are

 $^{{}^{2}}V_{1}, \ldots, V_{16}$ are attributes that appear in exactly one hyperedge. Attributes that appear in exactly one hyperedge are not essential for our algorithm.

 $^{^{3}\}mathrm{An}$ equivalence class is a set, not a multiset.

pairwise functionally equivalent. We define \succeq to be a partial order on C_1, \ldots, C_n in which $C_i \succeq C_j$ if $L_i \to L_j$ where $L_i \in C_i$ and $L_j \in C_j$. \Box

Lemma 6 of Section 5.3 states that the multiset of labels in any join tree for an acyclic hypergraph is the same. Therefore, the partial order \succeq and its derived Hasse diagram are unique for the input reduced acyclic hypergraph and the embedded FDs.

Procedure ConstructHasseDiagramOf≻

- 1. Call Algorithm 4.4 on page 66 in [14] to compute L^+ for each label L of J.
- 2. Put labels L_i and L_j in the same equivalence class if $L_i^+ = L_j^+$.
- 3. For two equivalence classes C_i and C_j , $C_i \succeq C_j$ if $L_i^+ \supseteq L_j^+$ where $L_i \in C_i$ and
- $L_j \in C_j$.
- 4. Generate the Hasse diagram of $\succeq.\ \square$

Example 8 The labels *B* and *C* in Figure 4(b) are in the same equivalence class because they are functionally equivalent. On the other hand, each of the other labels in Figure 4(b) is in a different equivalence class. The Hasse diagram of \succeq is shown in Figure 5(a), in which $\{BD\} \succeq \{B, C\}$, $\{BD\} \succeq \{D\}$, and $\{B, C\} \succeq \{A\}$, and so on. \Box

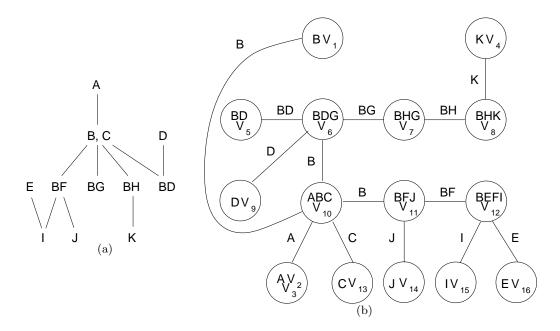


Figure 5: Constructing the Hasse diagram of \succeq and Moving Labels to Center Nodes.

3.4 Procedure MoveLabelsToCenterNodes

Lemma 7 of Section 5.3 states that all distinct labels of any equivalence class are incident with a unique common node in a join tree. We call such a node the *center node* of the equivalence class.

Procedure MoveLabelsToCenterNodes makes all labels in a join tree that appear in an equivalence class incident with the equivalence class's center node.

Procedure MoveLabelsToCenterNodes

1. For each equivalence class C that has a label L such that L is a key of a node E in J, do:

Designate E as C's center node. For each edge $\{E_i, E_j\}$ in J such that $E_i \cap E_j$ is a label in C, do: Remove $\{E_i, E_j\}$ from J. If E_i becomes disconnected from E, then establish an edge $\{E_i, E\}$ with the label $E_i \cap E_j$. Else

establish an edge $\{E_j, E\}$ with the label $E_i \cap E_j$.

2. For each equivalence class C that has not a label L such that L is a key of a node in J, do:

Arbitrarily choose one node E of an edge in J whose label is in C. Designate E as C's center node. Repeat the inner for-loop in Step 1. \Box

Example 9 Since $B \to C$ and $C \to B$, we have the equivalence class $\{B, C\}$. The center node for $\{B, C\}$ is $ABCV_{10}$ in Figure 4(b). For the equivalence class $\{BH\}$, its center node is either $BHGV_7$ or $BHKV_8$. The result of applying Procedure MoveLabelsToCenterNodes on the join tree in Figure 4(b) is shown in Figure 5(b). \Box

3.5 Procedure ExtractLargestNNFSkeleton

Theorem 2 of Section 5.2 states that if an NNF scheme tree syntactically covers some hyperedges, the hyperedges must be the nodes in a connected subtree of a join tree. Additionally, Theorem 3 of Section 5.3 states that to satisfy NNF, this connected subtree cannot have any critical node. Based on these two theorems, creating a largest NNF scheme tree that contains the greatest number of hyperedges is the same as creating a largest NNF scheme tree that syntactically covers the nodes in a connected subtree of a join tree where (1) the number of nodes in the connected subtree is the greatest, and (2) the connected subtree has no critical nodes. To accomplish this goal, we first find a largest NNF skeleton in the Hasse diagram of \succeq that contains the greatest number of labels. Then, we attach the hyperedges with which these labels are incident to this skeleton to make it a largest NNF scheme tree. The definitions of these concepts now follow.

Definition 12 A connected subtree of a join tree T is inductively defined as follows: (1) A single node in T is a connected subtree of T. (2) If N' is a node in a connected subtree T' of T and N is a node in T such that $\{N, N'\}$ is an edge in T, then T' augmented with the node N and the edge $\{N, N'\}$ is a connected subtree of T. Let T' be a connected subtree of a join tree. The notation $\overline{T'}$ denotes the union of all the hyperedges that are nodes in T'. \Box **Definition 13** Let H be an acyclic hypergraph and F be a set of embedded FDs in H. Let J be a join tree for H and S be a connected subtree of J. A label L of H belongs to S if there is an edge E in S such that E's label is L. A node N in S is *critical* with respect to S if there are two labels L_i and L_j belonging to S such that $L_i \nleftrightarrow L_j$, $L_j \nleftrightarrow L_i$, and $(L_i \cup L_j) \subseteq N$. \Box

Definition 14 Let J be a join tree. Any tree rooted at any equivalence class in the Hasse diagram of the partial order \succeq on J's labels is a *skeleton*. Let K be a skeleton. K's *induced set of edges* is the set $\{E \text{ is an edge in } J : E$'s label appears in an equivalence class in $K\}$. An *NNF skeleton* is a skeleton whose induced set of edges constitutes a connected subtree of J that has not any critical node. \Box

Definition 15 Let C_i and C_k be two equivalence classes of labels such that C_i is a parent node of C_k in the Hasse diagram of \succeq . C_k is a *nontrivial child* of C_i , or $C_k \succeq C_i$ *nontrivially*, if for each $L_i \in C_i$ and for each $L_k \in C_k$, $L_i \not\subseteq L_k$. On the other hand, if there are labels $L_i \in C_i$ and $L_k \in C_k$ such that $L_i \subset L_k$, then C_k is a *trivial child* of C_i , or $C_k \succeq C_i$ *trivially*. \Box

Theorem 4 of Section 5.4 proves that Procedure ExtractLargestNNFSkeleton indeed outputs NNF skeletons.

Procedure ExtractLargestNNFSkeleton

- 1. For each equivalence class C of labels in the Hasse diagram of \succeq , do: Associate with C an integer variable labelCnt and set C.labelCnt = 0. Associate with C a set of edges in J called myEdges where $C.myEdges = \{E \text{ is an edge in } J : E$'s label appears in $C\}$.
- 2. For each root node R in the Hasse diagram of \succeq , do:

Call Procedure CalculateLabelCnt(R).

- 3. Select a root node R in the Hasse diagram of \succeq with the greatest *labelCnt*.
- 4. Return the NNF skeleton rooted at R. \Box

Procedure CalculateLabelCnt(C: an equivalence class in the Hasse diagram of \succeq)

1. If C.labelCnt = 0, then
For each nontrivial child D of C, do: Call Procedure CalculateLabelCnt(D). C.labelCnt = C.labelCnt + D.labelCnt.
For each trivial child D of C, do: Call Procedure CalculateLabelCnt(D).
While there is an unmarked trivial child of C, do: Set maxD to an unmarked trivial child of C with the greatest labelCnt. Mark maxD.
For any other unmarked trivial child D of C, do: If the path between D's center node and maxD's center node in J does not contain any edge in C.myEdges, then Remove D as a trivial child of C. For each marked trivial child D of C, do: C.labelCnt = C.labelCnt + D.labelCnt. $C.labelCnt = C.labelCnt + \text{the size of } C.myEdges. \square$

Example 10 Steps 1, 3, and 4 of Procedure ExtractLargestNNFSkeleton are straightforward. Let us focus on Step 2. As an overview, Procedure CalculateLabelCnt constructs the largest NNF skeleton with the input equivalence class C as the root from the Hasse diagram of \succeq . In addition, it also calculates the number of labels included in it. Although Procedure CalculateLabelCnt keeps all C's nontrivial children, it might not do the same for C's trivial children. To avoid critical nodes, if D_1 and D_2 are two trivial children of C in the Hasse diagram of \succeq such that the path between D_1 's center node and D_2 's center node does not have a label in C, Procedure CalculateLabelCnt cannot keep both D_1 and D_2 as trivial children of C. At least one of them must be removed; otherwise, there will be a critical node. This argument not only applies to C, but also to C's children and their children and so on in the Hasse diagram of \succeq .

Because Procedure CalculateLabelCnt recursively calls itself, tracing through it is difficult. Hence, we just point out the results for some input equivalence classes. Figure 6(a) shows the results for the inputs $\{BF\}$, $\{BH\}$, $\{BG\}$, and $\{BD\}$. Since $\{BF\}$ only has two nontrivial children in Figure 5(a), Procedure CalculateLabelCnt keeps both of them. To calculate $\{BF\}$. labelCnt, note that there is one BF label, one I label and one J label in Figure 5(b). Therefore, $\{BF\}$.labelCnt = 3. The results for $\{BH\}$, $\{BG\}$, and $\{BD\}$ can be similarly obtained. The situation is more complicated for the input $\{B, C\}$ because $\{B, C\}$ has four trivial children in Figure 5(a). First, Procedure CalculateLabelCnt keeps the trivial child with the greatest *labelCnt*, namely $\{BF\}$. Because the path between $\{BF\}$'s center node and the center node of $\{BH\}$, $\{BG\}$, or $\{BD\}$ has a label B, Procedure CalculateLabelCnt will not remove any of $\{BH\}$, $\{BG\}$, and $\{BD\}$ for $\{BF\}$. Next, Procedure CalculateLabelCnt keeps the trivial child with the second greatest labelCnt, namely $\{BH\}$. However, the path between $\{BH\}$'s center node and the center node of $\{BG\}$, or $\{BD\}$ does not have a label B nor a label C. Therefore, Procedure CalculateLabelCnt removes $\{BG\}$ and $\{BD\}$ for $\{BH\}$. As a result, Procedure CalculateLabelCnt only keeps $\{BF\}$ and $\{BH\}$ as trivial children of $\{B, C\}$, as shown in Figure 6(b). To calculate $\{B, C\}$. labelCnt, note that there are three B labels and one C label in Figure 5(b). Thus, $\{B, C\}$. labelCnt = $\{BF\}$. label Cnt + $\{BH\}$. label Cnt + 4 = 3 + 2 + 4 = 9. Finally, there is only one A label in Figure 5(b). Thus, $\{A\}$. $labelCnt = \{B, C\}$. labelCnt + 1 = 9 + 1 = 10, as Figure 6(b) shows. $\{E\}$.labelCnt and $\{D\}$.labelCnt can be calculated similarly. \Box

3.6 Procedure AttachHyperedges

The last step of our algorithm attaches the hyperedges of a largest NNF skeleton to itself.

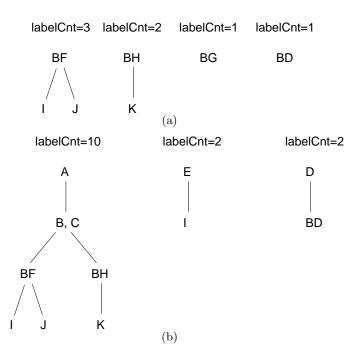


Figure 6: Calculating *labelCnt* for each Equivalence Class in the Hasse diagram of \succeq .

Procedure AttachHyperedges

- 1. Let S be T's induced set of edges in J.
- 2. For each node E in S, do:

Find the lowest node N in T such that N contains a label L where $L \subseteq E$.

Let $N_E = \{A \in E : A \text{ does not appear in any label in any equivalence class of } T\}$. If $N_E \neq \emptyset$, then

Add N_E as a child node to N in T.

3. For each node N in T, do:

Merge all labels in N together.

4. For each child node N in T, do:

If an attribute $A \in N$ is also in N's parent node, then Remove A from N. \Box

Example 11 Figure 7(a) shows how Procedure AttachHyperedges turns an NNF skeleton into an NNF scheme tree. As an example, the lowest node N is $\{K\}$, not $\{BH\}$, for the hyperedge $BHKV_8$. Thus, V_8 is added as a child node to $\{K\}$. Then, Procedure AttachHyperedges merges all labels together in every node and removes every redundant attribute. Figure 7(b) shows the connected subtree defined by the set S from which the NNF scheme tree in Figure 7(a) is constructed. \Box

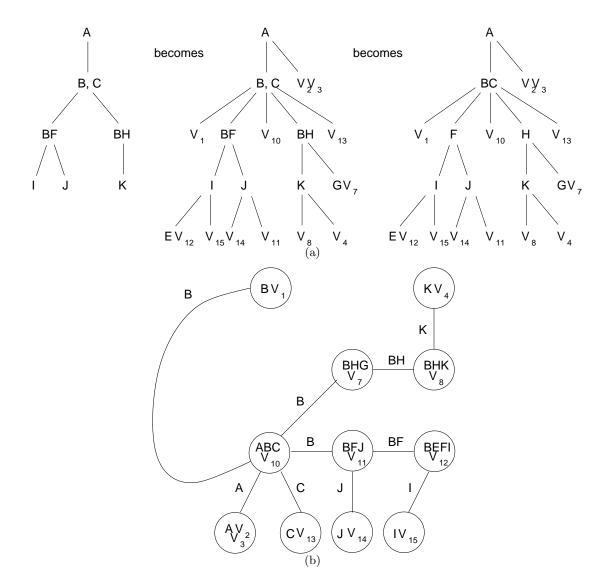


Figure 7: Turning an NNF Skeleton to an NNF Scheme Tree.

4 Experimental Evaluation

As Theorem 5 of Section 5.5 asserts, the algorithms that underlie Procedure MergeHyperedges and Procedure CreateJoinTree have been well-studied in the literature and have been proved to run in time polynomial in the size of the input. In addition, Theorem 5 also shows that Procedure AttachHyperedges runs in time linear with respect to the size of the input. Thus, in our experiments, we focus on Procedure ConstructHasseDiagramOf≻, Procedure MoveLabelsToCenterNodes, and Procedure ExtractLargestNNFSkeleton. We have implemented these procedures in a Visual Basic 2008 program, which first randomly generates join trees and equivalence classes of labels and then extracts largest NNF skeletons from them. The computer used in our experiments is a Dell desktop PC with an E6300 Intel Core 2 CPU running at 1.86 and 1.87 GHz with 2045 MBs of memory. The operating system is Windows Vista Business Edition.

Figure 8 shows the time taken by the simulation program, measured in milliseconds (ms), when there are 2500, 5000, 7500, and 10000 hyperedges. Although the definition of a join tree does not require a root node, having a root node in a join tree makes our implementation much easier. As a result, the terms "parent nodes" and "child nodes" are applicable to our join trees. In our experiments, each internal node of a join tree randomly has 1 or any number up to maxFanout child nodes, where maxFanout is a variable that is set to 1, 3, 5, 10, 15, 20, 25, 50, 100 or 200. By increasing the value of maxFanout, more labels are clustered into an equivalence class of labels. This in turn reduces their number. Fewer equivalence classes of labels results in fewer comparisons needed to construct the partial order \succeq . Thus, the program takes less time to complete. However, Figure 8 also shows that the time needed to complete the program levels off as the value of maxFanout increases. One of the reasons for this phenomenon is that overhead operations take more time as the value of maxFanout increases, which cancels out the advantage of increasing maxFanout.

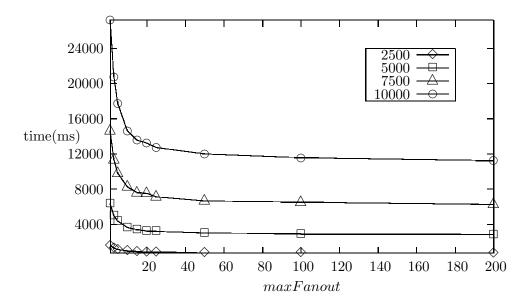


Figure 8: Plotting time against maxFanout.

Another observation about Figure 8 is that for each of the 10 values of maxFanout, doubling the number of hyperedges quadruples the time needed to find a largest NNF skeleton. This gives a hint that these three procedures as a whole run in time polynomial in the size of the input.

Figure 9 provides further evidence for this claim. For each of the 10 values of maxFanout, we plot n^2 /time against n, where n is the number of hyperedges. In all four values of n, the ratio between n^2 and time (i.e., n^2 /time) is relatively stable for a fixed value of maxFanout. Since our join trees and equivalence classes of labels are randomly generated, the results in Figure 9 suggest that given that all other conditions remain the same, on average Procedure ConstructHasseDiagramOf \succeq , Procedure MoveLabelsToCenterNodes, and Procedure ExtractLargestNNFSkeleton considered as

a whole run in quadratic time in the size of the input.

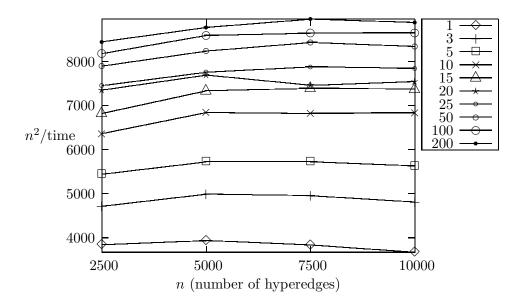


Figure 9: Plotting n^2 /time against n (number of hyperedges).

5 Proofs for Claims

5.1 Acyclic Hypergraphs and Functionally Equivalent Hyperedges

Theorem 1, the main result of this section, states that there is no loss of generality to assume that no two distinct functionally equivalent hyperedges exist. However, before we can prove Theorem 1, we need to prove several lemmas.

Lemma 1 In a join tree T for a reduced, acyclic hypergraph, for any two distinct hyperedges E_i and E_j and for every attribute A in $E_i \cap E_j$, the label of each edge along the unique path between E_i and E_j in T contains A. **Proof.** See [2]. \Box

Let J be a join tree for an acyclic hypergraph H and $\{E_i, E_j\}$ be an edge in J. We use J_i to denote the connected subtree of J that contains the node E_i if the edge $\{E_i, E_j\}$ were removed from J. Likewise, J_j denotes the connected subtree of J that contains the node E_j if the edge $\{E_i, E_j\}$ were removed from J. To demonstrate how to obtain J_i and J_j from J, we may imagine cutting along the curved dashed lines in Figure 10. Let F be a set of embedded FDs in H. An FD $X \to Y \in F$ is *inside* of J_i if $XY \subseteq \overline{J_i}$,⁴ otherwise, $X \to Y$ is *outside* of J_i . Note that it is possible for an FD to be inside of both J_i and J_j because $\overline{J_i}$ and $\overline{J_j}$ are not disjoint. Let W^+ be the closure of a set W of attributes. In the following, we say an FD $X \to Y \in F$ is used in the

⁴Recall that the notation \overline{J}_i denotes the union of all the hyperedges that are nodes in J_i .

derivation of W^+ if $X \to Y$ is used in the second step of this process: (1) $W^+ := W$ initially; (2) $W^+ := W^+ \cup Y$ if $X \subseteq W^+$ and $Y - W^+ \neq \emptyset$.

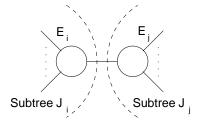


Figure 10: The Connected Subtrees J_i and J_j of Lemma 2.

Lemma 2 Let J be a join tree for a reduced, acyclic hypergraph H and $\{E_i, E_j\}$ be an edge in J. Let F be a set of embedded FDs in H. For any set W of attributes such that $W \subseteq \overline{J}_i$, if $X \to Y \in F$ is an FD that is outside of J_i and is used in the derivation of W^+ , then there is a subset E'_i of E_i such that $E'_i \to Y$.

Proof. Let $X_1 \to Y_1 \in F$ be the first FD that is outside of J_i and is used in the derivation of W^+ . Since the FDs used before $X_1 \to Y_1$ for generating W^+ are all inside of J_i , $X_1 \subseteq \overline{J}_i$. Since $X_1 \to Y_1$ is outside of J_i and $X_1 \subseteq \overline{J}_i$, by Lemma 1, it must be that $X_1 \subseteq E_i$. Thus, the basis is established. Assume the lemma is true for k ($k \ge 1$) or less FDs in F that are outside of J_i and are used in the derivation of W^+ . Now, consider another FD $X_{k+1} \to Y_{k+1} \in F$ that is outside of J_i and is used in the derivation of W^+ . We first partition X_{k+1} into two sets: $X_{k+1} \cap \overline{J}_i$ and $X_{k+1} - \overline{J}_i$. Since $X_{k+1} \to Y_{k+1}$ is outside of J_i , by Lemma 1, $X_{k+1} \cap \overline{J}_i$ is a subset of E_i . Now, consider an attribute A in $X_{k+1} - \overline{J}_i$. Since $A \in X_{k+1}$ and $X_{k+1} \to Y_{k+1}$ is used in generating W^+ , $A \in W^+$. Then, before applying $X_{k+1} \to Y_{k+1}$ it must be that A has been added to W^+ by an FD in F that is outside of J_i . By the induction hypothesis, there is a subset E'_A of E_i such that $E'_A \to A$. Hence, by forming the union of every E'_A for each A in $X_{k+1} - \overline{J}_i$ and $X_{k+1} \cap \overline{J}_i$, there is a subset E'_i of E_i such that $E'_i \to Y_{k+1}$. \Box

Similar to what we have done for Lemma 2, we define some terms for Lemma 3. Let J be a join tree for an acyclic hypergraph H and J' be a connected subtree of J. Let F be a set of embedded FDs in H. An FD $X \to Y \in F$ is *inside* of J' if $XY \subseteq \overline{J'}$; otherwise, $X \to Y$ is *outside* of J'. Notationally, we let F^+ be the closure of F, $F^+[E]$ be the set $\{X \to Y \in F^+ : E \in H \text{ and} XY \subseteq E\}$ and $F^+[J']$ be the set $\bigcup_{E \in S} F^+[E]$ where S is the set $\{E \in H : E \text{ is a node in } J'\}$.

Lemma 3 Let J be a join tree for a reduced, acyclic hypergraph H and J' be a connected subtree of J. Let F be a set of embedded FDs in H. For any set W of attributes such that $W \subseteq \overline{J'}$, $F^+[J']$ is sufficient to derive $W^+ \cap \overline{J'}$.

Proof. Since J' is a connected subtree of J, removing the nodes (hyperedges) in J' from J will partition the remaining nodes in J into one or more connected subtrees J_1, J_2, \ldots, J_p $(p \ge 1)$. Two of them are shown in Figure 11, in which the dashed lines outline the boundaries of J_i, J_j and

J'. In addition, for each J_i $(1 \le i \le p)$, there is a node called E_i in J' that connects directly to a node in J_i .

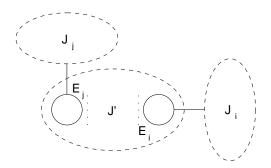


Figure 11: The Connected Subtrees J', J_i and J_j of Lemma 3.

If we only need the FDs in F that are inside of J' to derive $W^+ \cap \overline{J'}$, this lemma is vacuously true. Hence, suppose we need some FDs in F that are outside of J' to generate $W^+ \cap \overline{J'}$. We now describe a procedure that derives $W^+ \cap \overline{J'}$ by using the FDs in $F^+[J']$. Thus, we demonstrate that $F^+[J']$ is sufficient to derive $W^+ \cap \overline{J'}$. Without loss of generality, we assume the right-hand side of each FD in F is a single attribute. For this procedure, we declare F', a set of FDs, that is continually a subset of $F^+[J']$. F' is initially set to $\{X \to A \in F : X \to A \text{ is inside of } J'\}$. We then apply the FDs in F' to generate W^+ until no more attribute can be added. Assume n $(n \ge 0)$ such FDs are applied in this order:

$$X_1 \to A_1 \in F',$$

$$X_2 \to A_2 \in F',$$

$$\vdots$$

$$X_n \to A_n \in F'.$$

Because these *n* FDs are all in F', $A_1 \in \overline{J'}$, $A_2 \in \overline{J'}$, ..., and $A_n \in \overline{J'}$. At this point, we have to apply some FDs in F - F' in order to continue to add attributes. Assume $m \ (m \ge 2)$ such FDs are applied in this order:

$$X_{n+1} \to A_{n+1} \in F - F',$$

$$\vdots$$

$$X_{n+m-1} \to A_{n+m-1} \in F - F',$$

$$X_{n+m} \to A_{n+m} \in F - F'.$$

Without loss of generality, we assume that these m FDs are selected in such a way that $A_{n+1}, \ldots, A_{n+m-1}$ must all be added to W^+ before A_{n+m} can be added to W^+ , and also $A_{n+1} \notin \overline{J'}, \ldots, A_{n+m-1} \notin \overline{J'}$, and $A_{n+m} \in \overline{J'}$. Since $(\overline{J_i} - \overline{J'}) \cap (\overline{J_j} - \overline{J'}) = \emptyset$ when $i \neq j$ $(1 \leq i, j \leq p)$, our assumption implies that the FDs $X_{n+1} \to A_{n+1}, \ldots, X_{n+m-1} \to A_{n+m-1}, X_{n+m} \to A_{n+m}$ are all inside of the same connected subtree J_i . Note that since $A_{n+m} \in \overline{J'}$ and $X_{n+m} \to A_{n+m}$ is outside of J', by Lemma 1, $A_{n+m} \in E_i$.

By Lemma 2, for each $X_j \to A_j$ $(n+1 \le j \le n+m)$, there is a subset E_{i_j} of E_i such that $E_{i_j} \to A_j$. We now show by induction that F' implies $W \to E_{i_j}$ $(n+1 \le j \le n+m)$. For the FD $X_{n+1} \to A_{n+1}$, since $X_{n+1} \to A_{n+1}$ is outside of J' and $X_{n+1} \subseteq WA_1 \cdots A_n \subseteq \overline{J'}$, by Lemma 1, $X_{n+1} \subseteq E_i$. Thus, X_{n+1} is the subset of E_i that we want; and obviously F' implies $W \to X_{n+1}$. Hence, the basis is established. Now, consider an FD $X_k \to A_k$ for some k where $n+1 < k \le n+m$. With respect to the order of applying the FDs, $X_k \subseteq WA_1 \cdots A_nA_{n+1} \cdots A_{k-1}$. We now partition X_k into two sets: $X_k \cap \overline{J'}$ and $X_k - \overline{J'}$. Since $A_{n+1}, A_{n+2}, \ldots, A_{k-1}$ are not in $\overline{J'}$, therefore the argument for $X_k \cap \overline{J'}$ is the same as that for X_{n+1} . That is, $X_k \cap \overline{J'} \subseteq WA_1 \cdots A_n \subseteq \overline{J'}$, $X_k \cap \overline{J'} \subseteq E_i$ and F' implies $W \to X_k \cap \overline{J'}$. Now, consider an attribute $A \in X_k - \overline{J'}$. Since $A \in X_k$ and $A \notin \overline{J'}$, A must be added to W^+ by an FD before $X_k \to A_k$ in the above order. By Lemma 2, there is a subset E_A of E_i such that $E_A \to A$; and by the induction hypothesis, F' implies $W \to E_A$. Thus, if we let S be the union of every E_A for each attribute $A \in X_k - \overline{J'}$, then $S \cup (X_k \cap \overline{J'})$ is a subset of E_i , F' implies $W \to S \cup (X_k \cap \overline{J'})$, $S \cup (X_k \cap \overline{J'}) \to X_k$ and $S \cup (X_k \cap \overline{J'}) \to Y_k$. This means $S \cup (X_k \cap \overline{J'})$ is the subset of E_i that we want⁵ and our induction step is complete. Now, by setting k = n + m, we have F' implies $W \to E_{i_{n+m}}$ where $E_{i_{n+m}} \subseteq E_i$ and $E_{i_{n+m}} \to A_{n+m}$. Since $A_{n+m} \in E_i, E_{i_{n+m}} \to A_{n+m} \in F^+[E_i] \subseteq F^+[J']$. As the last step, we add $E_{i_{n+m}} \to A_{n+m}$ to F'. Thus, $X_{n+m} \to A_{n+m}$ is not essential for adding A_{n+m} to $W^+ \cap \overline{J'}$ and hence can be excluded.

We now have excluded one FD in F - F' that can contribute to $W^+ \cap \overline{J'}$. Execute this procedure repeatedly will exclude all FDs in F - F' that can contribute to $W^+ \cap \overline{J'}$. Eventually this procedure will halt since F is finite. Thus, the proof is complete. \Box

Lemma 4 Let J be a join tree for a reduced, acyclic hypergraph H and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF. Let E_i and E_j be two distinct nodes in J such that $E_i \to E_j$. Let P be the unique path between E_i and E_j in J. There exists a node E_k on P such that $E_k \neq E_j$, E_k contains a key of E_j as a subset, and $E_i \to E_k$.

Proof. Figure 12 shows the path P, in which we designate E_a as the neighboring node of E_j . Let P' be the subpath of P from E_i to E_a , including E_i and E_a . If $E_j \subseteq \overline{P'}$, then by Lemma 1, $E_j \subseteq E_a$. This means H is not reduced—a contradiction. Hence, $E_j \not\subseteq \overline{P'}$. Since P is a connected subtree of J, by Lemma 3, $F^+[P]$ implies the FD $E_i \to E_j$. Thus, $F^+[P]$ implies $E_i \to K$ for every key K of E_j . If $\overline{P'}$ does not contain any key of E_j as a subset, $\overline{P'}^+ = \overline{P'}$ where $\overline{P'}^+$ is the closure of $\overline{P'}$ under $F^+[P]$. Since $E_i \subseteq \overline{P'}$, $E_i^+ \subseteq \overline{P''}^+$. However, $E_j \not\subseteq \overline{P'}(=\overline{P'}^+)$ implies $E_j \not\subseteq E_i^+$ —a contradiction. Thus, $\overline{P'}$ contains a key \hat{K} of E_j as a subset. By Lemma 1, $\hat{K} \subseteq E_a$. Therefore, there exists a node E_b on P such that each of the nodes in between of E_a and E_b on P, including E_a and E_b , contains \hat{K} as a subset; and every node to the left of E_b in Figure 12, if there is any, does not contain any key of E_j . We are left to show $E_i \to E_b$. If E_i and E_b are the same node, we are done. Assume $E_i \neq E_b$. This implies there is an attribute $A \in (\hat{K} - E_i)$ that does not appear in any node to the left of E_b on P. Let P'' be the subpath of P from E_i to E_b , including E_i and E_b . Since $E_i \to K$ for every key K of E_j , $E_i \to \hat{K}$. Since P'' is a connected subtree of J, by Lemma 3, $F^+[P'']$ implies the FD $E_i \to \hat{K}$. Because A does not appear in any node to the left of the the top A does not appear in any node to the left of $E_b \to F$.

⁵That is, $S \cup (X_k \cap \overline{J'})$ is E_{i_k} .

of E_b , it follows that $E_i \to K$ where $K \to A$ is a nontrivial FD in $F^+[E_b]$. Since E_b is in BCNF, $K \to E_b$ and thus $E_i \to E_b$. \Box

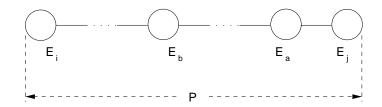


Figure 12: The Path P between E_i and E_j of Lemma 4.

Lemma 5 Let J be a join tree for a reduced, acyclic hypergraph H and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF. Let P be the unique path between two distinct nodes E_i and E_j in J where $E_i \to E_j$ and for any other node E_k on P such that $E_k \neq E_i$ and $E_k \neq E_j$, $E_i \neq E_k$. If E_j is not already a neighboring node of E_i , we can rearrange the nodes on P so that E_j becomes a neighboring node of E_i .

Proof. If E_j is already a neighboring node of E_i , then we are done. Therefore, let us assume E_j is not a neighboring node of E_i . Like Lemma 4, Figure 12 shows the path P between E_i and E_j where E_a is the designated neighboring node of E_j on P. As indicated in Figure 13, we show that the edge $\{E_a, E_j\}$ can be removed, and we can add an edge between E_i and E_j . By so doing, we obtain another join tree for H. We now begin our argument. Since $E_i \nleftrightarrow E_k$ for any other node E_k on P where $E_k \neq E_i$ and $E_k \neq E_j$, by Lemma 4, E_i contains a key K of E_j as a subset. Let L be the label of the edge $\{E_a, E_j\}$. By Lemma 1, $K \subseteq L$. If $K \subset L$, then since E_a is in BCNF, $K \to E_a$. This means $E_i \to E_a$ —a contradiction. Thus, L = K. In addition, if E_i contains an attribute $A \in (E_j - K)$, then by Lemma 1, $A \in E_a$ —a contradiction. Thus, we conclude that $E_a \cap E_j = E_i \cap E_j = K$. As such, we can remove the edge $\{E_a, E_j\}$ and add an edge between E_i and E_i , as Figure 13 shows. \Box

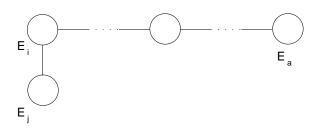


Figure 13: The Rearranged Path of Lemma 5.

Theorem 1 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF. Let C be a set of hyperedges in H such that for any E_i and

 E_j in $C, E_i \to E_j$ and $E_j \to E_i$ under F. The hypergraph $(H - C) \cup \{\overline{C}\}$ is equivalent to H, and is also acyclic, and each of its hyperedges is in BCNF as well.

Proof. We first consider a simple case, which will be used later in the proof. Suppose J is a join tree for H, and $\{E_i, E_j\}$ is an edge in J such that $E_i \to E_j$ and $E_j \to E_i$ under F. If we create a new node $E_i \cup E_j$ and add it to J, and remove E_i and E_j from J, and at the same time make every edge that was incident with E_i or E_j to be incident with this new node, we obtain a join tree for the hypergraph $H' = (H - \{E_i, E_j\}) \cup \{E_i \cup E_j\}$. Hence, H' is acyclic. To show that H' is equivalent to H, observe that because $\{E_i, E_j\}$ is an edge in $J, E_i \to E_j$ and $E_j \to E_i$, then by Lemma 4, E_i includes a key of E_j and E_j includes a key of E_i . As such, every key of E_i implies the key of E_i that is included in E_i . Likewise, every key of E_i implies the key of E_i that is included in E_i . Therefore, every key of E_i is equivalent to every key of E_j . This means H and H' are equivalent. Now suppose $X \to A$ is a nontrivial FD that holds in $E_i \cup E_j$. By Lemma 3, $X \to A$ is implied by $F^+[E_i] \cup F^+[E_j]$. Since both E_i and E_j are in BCNF, if X does not include any key of E_i or E_j , $X = X^+$ and $F^+[E_i] \cup F^+[E_i]$ does not imply $X \to A$ —a contradiction. Therefore, X includes at least one key of E_i or E_j . Since every key of E_i is equivalent to every key of E_j , then $X \to E_i$ and $X \to E_j$, which implies $X \to (E_i \cup E_j)$. Thus, $E_i \cup E_j$ is in BCNF. By repeatedly applying the procedure specified in the proof for Lemma 5 and merging two functionally equivalent nodes that are neighbors, as in the case we just discussed, we can reduce the number of pairs of functionally equivalent nodes to zero. The proof is then complete. \Box

5.2 NNF and Connected Subtrees

Theorem 2, the main result of this section, states that if we want to construct an NNF scheme tree that syntactically covers some hyperedges, the hyperedges must be the nodes in a connected subtree of a join tree. Otherwise, there will be a violation of NNF.

Theorem 2 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent. Let T be an NNF scheme tree that is a syntactic cover of a set S of hyperedges in H. The hyperedges in S are precisely the nodes of a connected subtree of a join tree for H (i.e., there exists a join tree J for H such that for any two hyperedges E_p and E_q in S, the path between E_p and E_q in J only includes S's hyperedges).

Proof. Let us assume that S's hyperedges are not the nodes of a connected subtree of any join tree for H. This assumption implies that S contains two distinct hyperedges E_p and E_q in H such that the path between E_p and E_q in any join tree for H includes some hyperedges in H - S. Let J be a join tree for H such that the path P between E_p and E_q in J is the shortest among all the possible paths between E_p and E_q . Figure 14 shows the path P and a subpath P' of P, where the endpoints of P', namely E_i and E_j , are the only hyperedges on P' that are in S. Since E_i and E_j are the only nodes on P' that are in S, removing $E_i \cap E_j$ from S will generate at least two connected components C_i and C_j where $(E_i - E_j) \subseteq C_i$ and $(E_j - E_i) \subseteq C_j$. That is, C_i and C_j are two connected components of the hypergraph $\{E - (E_i \cap E_j) : E \text{ is a hyperedge of } S\} - \{\emptyset\}$. This means S generates the nontrivial MVDs $(E_i \cap E_j) \twoheadrightarrow C_i$ and $(E_i \cap E_j) \twoheadrightarrow C_j$. Since T is an NNF scheme tree that syntactically covers S and S generates these two MVDs on Aset(T), by NNF's Condition 1, $MVD(T) \cup FD(T)$ implies both of these MVDs on Aset(T). Nevertheless, if $H \cup F$ does not imply neither of them, then T violates NNF's Condition 1 because $MVD(T) \cup FD(T)$ implies some MVDs on Aset(T) that do not follow from $H \cup F$. This will give us a contradiction, which means our assumption is wrong.

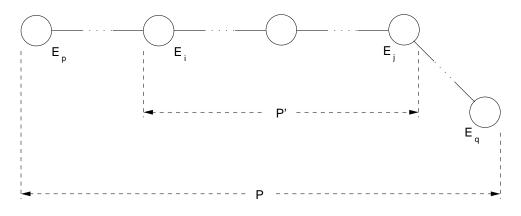


Figure 14: The Subpath P' of Theorem 2.

To show $H \cup F$ does not imply neither $(E_i \cap E_j) \twoheadrightarrow C_i$ nor $(E_i \cap E_j) \twoheadrightarrow C_j$, we first establish several claims. First, we claim that $E_i \cap E_j$ is a proper subset of every label on the path P' in Figure 14. Assume not; we derive a contradiction as follows. By Lemma 1, $E_i \cap E_j$ is a subset of every label on P'. Let $\{E'_i, E'_i\}$ be an edge on P' such that its label is equal to $E_i \cap E_j$ (i.e., $E'_i \cap E'_j$ $= E_i \cap E_j$, and as Figure 15 shows, E'_i and E'_j are chosen in such a way that E'_i is closer to E_i and E'_{j} is closer to E_{j} . By our assumption, P' includes at least one hyperedge in H - S as a node. Then, $E_i \neq E'_i$ or $E'_i \neq E_j$. Since $(E'_i \cap E'_j) \subseteq E_i$, if $E_i \neq E'_i$, then we can remove the edge $\{E'_i, E'_i\}$ E'_i from J and add an edge between E_i and E'_i to obtain another join tree for H with a shorter path between E_i and E_j , and thus a shorter path for E_p and E_q —a contradiction. We will obtain a similar contradiction if $E'_{i} \neq E_{j}$. Therefore, $E_{i} \cap E_{j}$ is a proper subset of every label on P'. Our second claim is that $(E_i \cap E_j) \not\rightarrow A$ for any $A \in (\overline{P'} - (E_i \cap E_j))$. Assume not, then let E be a node on P' that contains an attribute A such that $(E_i \cap E_j) \to A$ is nontrivial. Let E' be a neighboring node of E on P'. By our first claim, $(E_i \cap E_j) \subset (E \cap E')$. Therefore, $A \in E$ and $(E_i \cap E_j) \subset E$. Since E is in BCNF and $(E_i \cap E_j) \to A$ is nontrivial in $F^+[E], (E_i \cap E_j) \to E$. Similarly, because E' is in BCNF and $(E_i \cap E_j) \subset (E \cap E'), (E_i \cap E_j) \to E'$. Thus, E and E' share a key of $E_i \cap E_j$ as a common key and therefore E and E' are functionally equivalent—a contradiction.

Now, consider removing $(E_i \cap E_j)^+$, the closure of $E_i \cap E_j$ under F, from H. By our second claim, removing $(E_i \cap E_j)^+$ from the nodes on P' does not remove any more attributes than removing $E_i \cap E_j$ from the nodes on P'. By our first claim, all the nodes on P' remain connected after removing $E_i \cap E_j$ from the nodes on P'. Thus, $E_i - E_j$ and $E_j - E_i$ are both contained as subsets

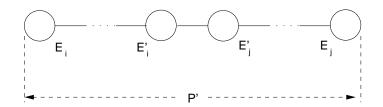


Figure 15: The Edge $\{E'_i, E'_i\}$ of Theorem 2.

in the same connected component of the hypergraph $\{E - (E_i \cap E_j)^+ : E \text{ is a hyperedge of } H\} - \{\emptyset\}$. Therefore, $H \cup F$ implies neither $(E_i \cap E_j) \twoheadrightarrow C_i$ nor $(E_i \cap E_j) \twoheadrightarrow C_j$ on Aset(T) and the proof is complete. \Box

5.3 NNF and Critical Nodes

Theorem 3, the main result of this section, ties critical nodes and connected subtrees together. It states that there exists an NNF scheme tree that syntactically covers the nodes in a connected subtree S of a join tree if and only if S does not have a critical node with respect to S.

Lemma 6 All join trees for a reduced, acyclic hypergraph have the same multiset of labels.

Proof. Let H be an acyclic hypergraph. If H has only one hyperedge, the join tree for H has a single node and no label. The empty set of labels is vacuously unique. Assume this lemma is true if H has k ($k \ge 1$) or less hyperedges. Consider the case that H has k + 1 hyperedges. Since H is acyclic, H has a join tree J. Arbitrarily choose a leaf node E_L in J. Since E_L is a leaf node, removing E_L from J results in a join tree for the acyclic hypergraph $H - \{E_L\}$. Since $H - \{E_L\}$ is acyclic and has k hyperedges, by the induction hypothesis, $H - \{E_L\}$ has a unique multiset of labels. Consider the edge that connects E_L to another node in J. That edge has the label $E_L \cap (\cup_{E \in (H - \{E_L\})} E)$, which is determined only by E_L and $H - \{E_L\}$ and not by J. Thus, reattaching E_L back to J gives us a unique multiset of labels for H. \Box

Lemma 7 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent. For any two distinct and functionally equivalent labels L_i and L_j of H, there is a unique hyperedge $E \in H$ such that $(L_i \cup L_j) \subseteq E$. Further, L_i and L_j are keys of E and there is a connected subtree like the one in Figure 16(b) in any join tree for H.

Proof. Suppose that H has no hyperedge that includes $L_i \cup L_j$ as a subset. Let J be a join tree for H. Since L_i and L_j are labels of H, there are two nodes E_i and E_j in J such that $L_i \subseteq E_i$ and $L_j \subseteq E_j$. By our assumption, $L_j \not\subseteq E_i$ and $L_i \not\subseteq E_j$. Without loss of generality, E_i and E_j are chosen in such a way that the path P between them in J is the shortest among all possible paths in J. As such, except E_j , no node on P includes L_j as a subset. Similarly, except E_i , no node on P includes L_i as a subset. Let E_a be the neighboring node of E_j on P, as Figure 16(a) shows. (It is possible that E_a and E_i are the same node.) Since $L_j \not\subseteq E_a$, there is an attribute $A \in L_j$ such that $A \notin E_a$. Additionally, A is not in any node to the left of E_a in Figure 16(a); otherwise by Lemma 1, $A \in E_a$ —a contradiction.

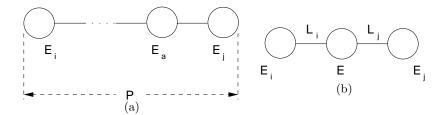


Figure 16: The Path P between E_i and E_j and the Connected Subtree of Lemmas 7 and 8.

Since P is a connected subtree of J, by Lemma 3, $F^+[P]$ implies the FD $L_i \to L_j$. With respect to Figure 16(a), let P' be the subpath of P from E_i to E_a , including E_i and E_a . Since $F^+[P]$ implies $L_i \to L_j$ and $A \in (E_j - \overline{P'})$, it must be that $F^+[P]$ implies $L_i \to K$ where $K \to A$ is a nontrivial FD in $F^+[E_j]$. Since E_j is in BCNF, $K \to E_j$. This implies $L_i \to E_j$, which results in $E_i \to E_j$ because $L_i \subseteq E_i$. Similarly, we can show that $E_j \to E_i$. Thus, E_i and E_j are functionally equivalent—a contradiction.

To show that there is only one hyperedge $E \in H$ that includes $L_i \cup L_j$ as a subset, assume there are two distinct hyperedges E_i and E_j such that $(L_i \cup L_j) \subseteq E_i$ and $(L_i \cup L_j) \subseteq E_j$. Since $L_i \to L_j$ is nontrivial and E_i and E_j are both in BCNF, $L_i \to E_i$ and $L_i \to E_j$. This means E_i and E_j share a key of L_i as a common key. Thus, E_i and E_j are two functionally equivalent hyperedges in H—a contradiction.

We now show that there is a connected subtree like the one in Figure 16(b) in any join tree for H. Observe that since L_i and L_j are labels of H, there are two other hyperedges E_p and E_q in H such that E_p includes L_i but not L_j as a subset and E_q includes L_j but not L_i as a subset. Let E_i be the neighboring node of E on the path between E_p and E. By Lemma 1, $L_i \subseteq (E_i \cap E)$. Since $L_i \to L_j$ is nontrivial, $(L_i \cup L_j) \subseteq E$, and E is in BCNF, $L_i \to E$. Assume $L_i \subset (E_i \cap E)$. Since E_i is also in BCNF and $L_i \to E$, $L_i \to E_i$ as well. This means E_i and E are functionally equivalent—a contradiction. Therefore, the label of the edge $\{E_i, E\}$ is L_i , as Figure 16(b) shows. In addition, if there exists a proper subset L'_i of L_i such that $L'_i \to L_i$, we will reach the same contradiction because $L_i \to E$. Therefore, L_i is a key of E. The same results can be similarly established for L_j and thus the proof is now complete. \Box

Lemma 8 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent. Let C_i and C_j be two distinct equivalence classes of labels of H such that C_j is a parent node of C_i in the Hasse diagram of the partial order \succeq of H. Suppose that for each $L_i \in C_i$ and for each $L_j \in C_j, L_j \not\subseteq L_i$. There exists a pair of labels $(L_i, L_j) \in C_i \times C_j$ and a unique hyperedge $E \in H$ such that $(L_i \cup L_j) \subseteq E$. Further, L_i is a key of E and there is a connected subtree like the one in Figure 16(b) in any join tree for H. **Proof.** Let J be a join tree for H. Assume there is no node in J that includes $L_i \cup L_j$ as a subset for every pair of labels $(L_i, L_j) \in C_i \times C_j$. Choose two nodes E_i and E_j in J such that the path P between E_i and E_j is the shortest under the requirements that $L_i \subseteq E_i, L_j \subseteq E_j$, and $(L_i, L_j) \in C_i \times C_j$. By our assumption, except E_j , no node on P includes L_j as a subset. Similarly, except E_i , no node on P includes L_i as a subset. Let E_a be the neighboring node of E_j on P, as Figure 16(a) shows. (It is possible that E_a and E_i are the same node.) Since $L_j \not\subseteq E_a$, there is an attribute $A \in L_j$ such that $A \notin E_a$. Additionally, A is not in any node to the left of E_a in Figure 16(a); otherwise by Lemma 1, $A \in E_a$ —a contradiction.

Since P is a connected subtree of J, by Lemma 3, $F^+[P]$ implies the FD $L_i \to L_j$. With respect to Figure 16(a), let P' be the subpath of P from E_i to E_a , including E_i and E_a . Since $F^+[P]$ implies $L_i \to L_j$ and $A \in (E_j - \overline{P'})$, it must be that $F^+[P]$ implies $L_i \to K$ where $K \to A$ is a nontrivial FD in $F^+[E_j]$. Since E_j is in BCNF, $K \to E_j$. This implies $L_i \to E_j$, which means $L_i \to K$ for any key K of E_j . If $\overline{P'}$ does not include a key of E_j as a subset, then $\overline{P'}^+ = \overline{P'}$ under $F^+[P]$. However, since $L_i \subseteq \overline{P'}$ and $L_j \not\subseteq \overline{P'}$, then $F^+[P]$ does not imply $L_i \to L_j$ —a contradiction. Therefore, $\overline{P'}$ includes a key \hat{K} of E_j as a subset. Thus, by Lemma 1, $\hat{K} \subseteq (E_a \cap E_j)$. If $\hat{K} \subset (E_a \cap E_j)$, then because E_a is in BCNF, E_a and E_j share \hat{K} as a common key, which means E_a and E_j are functionally equivalent—a contradiction. Thus, $\hat{K} = E_a \cap E_j$. Observe that $L_j \not\rightarrow \hat{K}$; otherwise, $\hat{K} \in C_j$ and therefore E_i and E_a should have been chosen in the first place—a contradiction. Thus, $L_i \to \hat{K}$ where \hat{K} is the label of the edge $\{E_a, E_j\}$ in Figure 16(a). In turn, $\hat{K} \to L_j$ and $L_j \not\rightarrow \hat{K}$. This means C_j is not a parent node of C_i in the Hasse diagram of the partial order \succeq of H—a contradiction. Therefore, there is a pair of labels $(L_i, L_j) \in C_i \times C_j$ and a hyperedge $E \in H$ such that $(L_i \cup L_j) \subseteq E$.

To show that E is unique, we may reuse the third paragraph of the proof for Lemma 7. To show that L_i is a key of E and there is a connected subtree like the one in Figure 16(b) in any join tree for H, we may reuse the fourth paragraph of the proof for Lemma 7 for the label L_i . For the label L_j , observe that if the label of the edge $\{E, E_j\}$ is not L_j , then it must be a proper superset of L_j . Since E and E_j are both in BCNF, if $L_j \to (E \cap E_j)$, then E and E_j are functionally equivalent—a contradiction. Therefore, $L_j \not\rightarrow (E \cap E_j)$. Since L_i is a key of E, $L_i \to (E \cap E_j)$. This implies C_j is not a parent node of C_i in the Hasse diagram of the partial order \succeq of H—a contradiction. Thus, the label of the edge $\{E, E_j\}$ is L_j . The proof is now complete. \Box

Lemma 9 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent. Let J be a join tree for H and S be a connected subtree of J. If there is a node in S that is critical with respect to S, then there does not exist an NNF scheme tree that syntactically covers the set of nodes in S.

Proof. Suppose T is an NNF scheme tree that syntactically covers the set of nodes in S. Let E be such a critical node in S and L_i and L_j be two labels belonged to S such that $L_i \nleftrightarrow L_j$, $L_j \nleftrightarrow L_i$, and $(L_i \cup L_j) \subseteq E$. Since $L_i \nleftrightarrow L_j$ and $L_j \nleftrightarrow L_i$, E must be on the path between L_i and L_j , as Figure 17 shows. With respect to Figure 17, $L_i \twoheadrightarrow C_i$ is a hypergraph-generated MVD where

 $C_i \supseteq (E_i - L_i) \neq \emptyset$ and C_i is a connected component of the hypergraph $\{E - L_i : E \text{ is a hyperedge} \text{ of } S\} - \{\emptyset\}$. Similarly, $L_j \twoheadrightarrow C_j$ is a hypergraph-generated MVD where $C_j \supseteq (E_j - L_j) \neq \emptyset$ and C_j is a connected component of the hypergraph $\{E - L_j : E \text{ is a hyperedge of } S\} - \{\emptyset\}$.

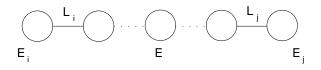


Figure 17: The Labels L_i , L_j , and the Critical Node E of Lemma 9.

Since T syntactically covers the set of nodes in S, $L_i \to C_i$ holds for T. Therefore, we need to test it against NNF's Condition 1, which stipulates that MVD(T) and FD(T) must imply $L_i \to C_i$. By Lemma 4.5 in [16] and Lemma 3 of this paper, MVD(T) and FD(T) imply $L_i \to C_i$ if and only if MVD(T) implies $L_i^+ \to C_i$ where L_i^+ is the closure of L_i under $F^+[S]$. Proposition 4.1 in [18] states that MVD(T) is equivalent to the join dependency (JD) $\bowtie \{\overline{P_1}, \ldots, \overline{P_n}\}$ where $\overline{P_k}$ denotes the union of the nodes in the path P_k of T and P_1, \ldots, P_n are all the paths in T. In addition, $L_i^+ \to C_i$ is equivalent to the JD $\bowtie \{L_i^+C_i, L_i^+(\overline{S} - L_i^+C_i)\}$. (Note that $\overline{S} = Aset(T)$, the set of attributes of T.) Therefore, MVD(T) implies $L_i^+ \to C_i$ if and only if for every path P_k in $T, \overline{P_k} \subseteq L_i^+C_i$ or $\overline{P_k} \subseteq L_i^+(\overline{S} - L_i^+C_i)$ (see Chapter 8 in [14]). Likewise, MVD(T) implies $L_j^+ \to C_j$ if and only if for every path P_k in $T, \overline{P_k} \subseteq L_i^+C_j$ or $\overline{P_k} \subseteq L_i^+(\overline{S} - L_i^+C_j)$.

We are now ready to derive a contradiction. We assume E_i , E, and E_j each appears in (not necessarily distinct) paths P_i , P, and P_j in T respectively. Since $L_i \nleftrightarrow L_j$, there is an attribute $A_j \in L_j$ such that $A_j \notin L_i^+$. Similarly, since $L_j \nleftrightarrow L_i$, there is an attribute $A_i \in L_i$ such that $A_i \notin L_j^+$. By Lemma 1, $A_j \notin C_i$; otherwise $A_j \in L_i$ —a contradiction. Likewise, $A_i \notin C_j$; otherwise $A_i \in L_j$ —a contradiction. Therefore, $A_i \notin L_j^+C_j$ and $A_j \notin L_i^+C_i$. Since $A_i \in L_i$, $A_j \in L_j$ and $(L_i \cup L_j) \subseteq E$, A_i and A_j both appear in P—the path in which E appears. Let N_i and N_j be the (not necessarily distinct) nodes in P that contain A_i and A_j respectively. Since $L_i \nleftrightarrow A_j$ and $L_j \nleftrightarrow A_i$, $L_i \nleftrightarrow N_j$ and $L_j \nleftrightarrow N_i$. Now, there are four cases to consider.

(I) $L_i \nleftrightarrow E_i, L_j \nleftrightarrow E_j$: By NNF's Condition 1, $\overline{P_i} \subseteq L_i^+C_i$ or $\overline{P_i} \subseteq L_i^+(\overline{S} - L_i^+C_i)$. Since $L_i \nleftrightarrow E_i$, there is an attribute $A \in E_i$ such that $A \notin L_i^+$. Since $(E_i - L_i) \subseteq C_i, A \in C_i$ and thus $A \notin \overline{S} - L_i^+C_i$. Hence, $A \notin L_i^+(\overline{S} - L_i^+C_i)$. Since E_i appears in $P_i, A \in \overline{P_i}$. Thus, it must be that $\overline{P_i} \subseteq L_i^+C_i$. Likewise, $L_j \nleftrightarrow E_j$ implies $\overline{P_j} \subseteq L_j^+C_j$. Since E_i and E both contain A_i, P_i and P share N_i as a common node. However, the node N_j must not be a node in P_i ; otherwise $A_j \in \overline{P_i}$ and $A_j \notin L_i^+C_i$ imply $\overline{P_i} \not\subseteq L_i^+C_i$ —a contradiction. Hence, $N_j \neq N_i$ and N_j must be lower than N_i in P; otherwise N_j is a node in P_i —a contradiction. This, however, means that N_i is a node in P_j because P and P_j share N_j as a common node. This implies $A_i \in \overline{P_j}$. Nevertheless, $A_i \in \overline{P_j}$ and $A_i \notin L_j^+C_j$ imply $\overline{P_j} \not\subseteq L_i^+C_j$ —a contradiction.

(II) $L_i \nleftrightarrow E_i, L_j \to E_j$: Since $L_j \to E_j, L_j$ is a key of E_j ; otherwise E_j and its neighboring node in Figure 17 are functionally equivalent—a contradiction. Thus, with respect to Figure 17, for every $A \in (E_j - L_j), A$ does not appear in any node to the left of E_j ; otherwise, by Lemma 1, $A \in L_j$, which means L_j is not a key of E_j —a contradiction. Therefore, $A \notin C_i$ for any $A \in (E_j - L_j)$ and if $L_i \to A$ for some $A \in (E_j - L_j)$, it must be that $L_i \to K$ where $K \to A$ is nontrivial in $F^+[E_j]$. Because E_j is in BCNF, $K \to E_j$. This implies $L_i \to E_j$, which means $L_i \to L_j$ —a contradiction. Hence, for any $A \in (E_j - L_j)$, $A \notin L_i^+ C_i$.

Like in the previous case, $L_i \nleftrightarrow E_i$ implies N_i is a node in P_j . For any $A \in (E_j - L_j)$, let N be the node in P_j that contains A. Like A_j , because $A \notin L_i^+ C_i$ for any $A \in (E_j - L_j)$ and N_i is a node in P_j , $N \neq N_i$ and N must be lower than N_i in P_j . Thus, for each $A \in (E_j - L_j)$, $L_j \nleftrightarrow Ancestor(N)$ because $N_i \subseteq Ancestor(N)$ and $L_j \nleftrightarrow N_i$. Therefore, since $L_j \to A$ nontrivially for each $A \in (E_j - L_j)$, T violates NNF's Condition 2—a contradiction.

(III) $L_i \to E_i, L_j \nrightarrow E_j$: This case is symmetrical to the previous case.

(IV) $L_i \to E_i, L_j \to E_j$: As we have already proved, $L_j \to E_j$ implies there is an attribute $A'_j \in (E_j - L_j)$ such that $L_i \not A'_j$. Likewise, $L_i \to E_i$ implies there is an attribute $A'_i \in (E_i - L_i)$ such that $L_j \not A'_i$. Let N'_i and N'_j be the nodes in T that contain A'_i and A'_j respectively. Since $L_i \not A'_j$ and $L_j \not A'_i$, $L_i \not N'_j$ and $L_j \not N'_i$. Without loss of generality, we assume $N_j = N_i$ or N_j is higher than N_i in P. As such, N_j is on both P_i and P_j . Since N_j is on P_i and $L_i \to A'_i$ nontrivially, N'_i must be higher than N_j in P_i because $L_i \not A_j$ otherwise T violates NNF's Condition 2—a contradiction. This implies N'_i is on both P_i and P_j . Further, since N'_i is on P_j and $L_j \to A'_j$ nontrivially, N'_j must be higher than N'_i in P_j because $L_j \not N'_i$. This also means N'_j is on both P_i and P_j . Thus, N_i, N_j, N'_i, N'_j , in this order, are all on the same path. However, this will make $N'_j \subseteq Ancestor(N'_i)$. We now have a violation of NNF's Condition 2 because $L_i \to A'_i$ nontrivially and $L_i \not Ancestor(N'_i)$ —a contradiction. \Box

Lemma 10 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent. Let J be a join tree for H and S be a connected subtree of J. If there is not a node in S that is critical with respect to S, then the Hasse diagram of the partial order \succeq on S's labels is a rooted tree.

Proof. For each pair of edges $\{E_i, E\}$ and $\{E, E_j\}$ in S, either $(E_i \cap E) \to (E \cap E_j)$ or $(E \cap E_j) \to (E_i \cap E)$; otherwise E, a node in S, is critical with respect to S—a contradiction. Therefore, if the Hasse diagram is not a rooted tree, it must have a "V-shape." For example, there are two V-shapes in Figure 5(a). We now show that a V-shape in the Hasse diagram implies it has a critical node with respect to S. By this, we obtain a contradiction. Assume such a V-shape is made up by three equivalence classes C_i , C_j and C_k of functionally equivalent labels in S such that C_i and C_j are two parent nodes of C_k in the Hasse diagram. We have the following cases to consider.

(I) $\forall L_i \in C_i \forall L_k \in C_k (L_i \not\subseteq L_k), \forall L_j \in C_j \forall L_k \in C_k (L_j \not\subseteq L_k)$: Since S is a connected subtree, S itself is also a join tree. By Lemma 8, there exists a pair of labels $(L_i, L_{k_i}) \in C_i \times C_k$ and a unique node $E_i \in S$ such that $(L_i \cup L_{k_i}) \subseteq E_i$. Further, L_{k_i} is a key of E_i . Likewise, there exists a pair of labels $(L_j, L_{k_j}) \in C_j \times C_k$ and a unique node $E_j \in S$ such that $(L_j \cup L_{k_j}) \subseteq E_j$. Further, L_{k_j} is a key of E_j . If $E_i \neq E_j$, then because L_{k_i} and L_{k_j} are functionally equivalent and L_{k_i} and L_{k_j} are keys of E_i and E_j respectively, E_i and E_j are functionally equivalent—a contradiction. Hence, $E_i = E_j$ and E_i is a critical node.

(II) $\forall L_i \in C_i \forall L_k \in C_k (L_i \not\subseteq L_k), \exists L_j \in C_j \exists L_{k_j} \in C_k (L_j \subset L_{k_j})$: By Lemma 8, there exists a pair of labels $(L_i, L_{k_i}) \in C_i \times C_k$ and a unique node $E_i \in S$ such that $(L_i \cup L_{k_i}) \subseteq E_i$. Further, L_{k_i} is a key of E_i . If $L_{k_j} = L_{k_i}$, then E_i is a critical node. Assume $L_{k_j} \neq L_{k_i}$. By Lemma 7, there is a node E_k of which L_{k_i} and L_{k_j} are keys. If $E_i \neq E_k$, then since L_{k_i} is a key for both of them, E_i and E_k are functionally equivalent—a contradiction. Hence, $E_i = E_k$ and thus $L_j \subset L_{k_j} \subset E_i$. Hence, E_i is a critical node.

(III) $\exists L_i \in C_i \exists L_{k_i} \in C_k (L_i \subset L_{k_i}), \forall L_j \in C_j \forall L_k \in C_k (L_j \not\subseteq L_k)$: This case is symmetrical to the previous case.

(IV) $\exists L_i \in C_i \exists L_{k_i} \in C_k (L_i \subset L_{k_i}), \exists L_j \in C_j \exists L_{k_j} \in C_k (L_j \subset L_{k_j})$: If $L_{k_i} = L_{k_j}$, then either one of the two nodes of an edge whose label is L_{k_i} is a critical node. If $L_{k_i} \neq L_{k_j}$, then by Lemma 7, there is a node E_k of which L_{k_i} and L_{k_j} are keys. Hence, E_k is a critical node. \Box

Lemma 11 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent. Let J be a join tree for H and S be a connected subtree of J. If there is not a node in S that is critical with respect to S, then there exists an NNF scheme tree that syntactically covers the hyperedges in S.

Proof. By Lemma 10, the Hasse diagram of the partial order \succeq on S's labels is a rooted tree T. Suppose Step 2 of Procedure AttachHyperedges finds two nodes N_i and N_j in different paths of T for a node E in S. Thus, there are labels $L_i \in N_i$ and $L_j \in N_j$ such that $(L_i \cup L_j) \subseteq E$. Since N_i and N_j are in different paths of T, $L_i \nleftrightarrow L_j$ and $L_j \nleftrightarrow L_i$. This implies E is critical—a contradiction. Hence, we may run Steps 2, 3 and 4 of Procedure AttachHyperedges on T to obtain a scheme tree T'.

We first prove by induction on the number n of nodes in T that every node in S appears in a path of T'. If n = 0, then T is empty. This implies S has zero or one node. In the former case, our claim is vacuously true. In the latter case, the only node of S becomes the only node of T'. If n = 1, T has a single node. Then, all the labels in that node are merged together to form the root node of T' and each node in S forms a path in T'. Therefore, our claim is also true when n = 1. Assume our claim is true if $n \leq k$ for some $k \geq 1$. Run Procedure MoveLabelsToCenterNodes on S. Let T_k be an NNF skeleton with k nodes. Consider a child node N_c of a node N_p in the Hasse diagram of \succeq where N_p is already a node in T_k . We obtain NNF skeleton T_{k+1} by adding N_c as a child node to N_p in T_k . If $N_c \succeq N_p$ nontrivially, then by Lemma 8 there are labels $L_p \in N_p$, $L_c \in N_c$, and a unique node E in S such that $(L_p \cup L_c) \subseteq E$. If $N_c \succeq N_p$ trivially, then there are labels $L_p \in N_p$, $L_c \in N_c$ such that $L_p \subset L_c$. Let E' be the node of an edge with the label L_p such that if that edge was removed from S, E' would separate from L_c . Observe that for each $L \in N_c$, $L \not\subseteq E'$. Thus, E' must be attached to N_p . By the induction hypothesis, $L_p \subseteq Ancestor(N_p)$ in T'. By Lemma 1, the intersection of a label in N_p and a label in N_c is a subset of L_p . Therefore, since N_c is a child node of N_p in T, every label in N_c is a subset of $Ancestor(N_c)$ in T'. This means that every node in S that is attached to N_c appears in a path of T'. The induction step is thus complete. Since we do not add any attribute to T that is not in any node in S, $Aset(T') = \overline{S}$. Hence, T' syntactically covers the set of nodes in S.

We are left to prove that T' is in NNF. Since S is a connected subtree of J, S itself is also a join tree. Thus, the set of MVDs generated by S is equivalent to $\bowtie \{E_1, \ldots, E_m\}$ where E_1, \ldots, E_m are the nodes in S [2]. Hence, to prove T' satisfies NNF's Condition 1, we need to show that MVD(T')and FD(T') are equivalent to $\bowtie \{E_1, \ldots, E_m\}$ and $F^+[S]$. We stated earlier that MVD(T') is equivalent to $\bowtie \{\overline{P_1}, \ldots, \overline{P_n}\}$ where P_1, \ldots, P_n are all the paths in T' (see the proof for Lemma 9). Also, observe that FD(T') is equivalent to $F^+[S]$. Thus, one direction of the equivalence is easily established because T' syntactically covers the set of nodes in S. For each path P in T', consider P's leaf node $N_E = \{A \in E : A \text{ does not appear in any label in any node of <math>T\}$ for some hyperedge $E \in S$. Let N_E 's parent node be N. Since E contains a label in $N, E \to Ancestor(N)$ in T'. Therefore, $\overline{P} \subseteq E^+$. By Chapter 8 in [14], T' satisfies NNF's Condition 1.

To prove T' satisfies NNF's Condition 2, observe that by Lemma 3 it is sufficient to only consider $F^+[S]$. Thus, let $X \to A$ be a nontrivial FD in $F^+[E]$ for some node E in S. Since E is in BCNF, $X \to E$. Assume E is attached to a node N in T. It is clear that $E \to Ancestor(N)$ in T' and thus $X \to E \cup Ancestor(N)$ in T'. It follows that T' satisfies NNF's Condition 2 as well. \Box

Theorem 3 Let H be a reduced, acyclic hypergraph and F be a set of embedded FDs in H such that each hyperedge of H is in BCNF and no two distinct hyperedges in H are functionally equivalent. Let J be a join tree for H and S be a connected subtree of J. There exists an NNF scheme tree that syntactically covers the hyperedges in S if and only if there is not a node in S that is critical with respect to S.

Proof. This theorem follows immediately from Lemmas 9, 10 and 11. \Box

5.4 Correctness

Theorem 4 Procedure Main of Section 3.1 generates a largest NNF scheme tree from its input.

Proof. Let T and J respectively be the input NNF skeleton and the input modified join tree of Procedure AttachHyperedges. We first show that the set S defined in Step 1 of Procedure AttachHyperedges constitutes a connected subtree of J and it does not have a critical node. By Lemmas 7 and 8, if $N_c \succeq N_p$ nontrivially for two nodes N_p and N_c in T where N_p is the parent of N_c , then the edges whose labels are in N_p and N_c clearly form a connected subtree of J. On the other hand, if $N_c \succeq N_p$ trivially, then there are labels $L_p \in N_p$ and $L_c \in N_c$ such that $L_p \subset L_c$. As such, we may make an edge with the label L_p to be incident with the center node of N_c in S. Thus, the edges whose labels are in N_p and N_c also form a connected subtree of J.

We now proceed to prove that S does not have a critical node. Assume not, let L_i and L_j be two labels in T such that $L_i \nleftrightarrow L_j$ and $L_j \nleftrightarrow L_i$; and let E be a node in S such that $(L_i \cup L_j) \subseteq E$. As such, E must be on the path between L_i and L_j in S, as Figure 17 shows. If there is at least one label L_k between L_i and L_j on that path such that $L_k \nleftrightarrow L_i$ and $L_k \nleftrightarrow L_j$, then the existence of E will lead to $L_k \to L_i$ or $L_k \to L_j$ —a contradiction. Let $L_i \in N_i$ and $L_j \in N_j$ and assume N_i and N_j are nodes in T that have different parents. Then, there is at least one label L_k between L_i and L_j in S such that $L_k \nleftrightarrow L_i$ and $L_k \nleftrightarrow L_j$ —a contradiction. Hence, N_i and N_j are child nodes of the same parent N_k in T. As such, $N_i \not\geq N_j$, $N_j \not\geq N_i$, $N_k \not\geq N_i$, and $N_k \not\geq N_j$. Since N_k is the parent of N_i and N_j in T, there are nodes E_i and E_j in S such that $(L_{k_i} \cup L_i) \subseteq E_i$ and $(L_{k_j} \cup L_j) \subseteq E_j$ where $L_{k_i}, L_{k_j} \in N_k$, $L_i \in N_i$ and $L_j \in N_j$. We now have the following cases to consider.

(I) $N_i \succeq N_k$ nontrivially and $N_j \succeq N_k$ nontrivially: Assume $E_i = E_j$. By Lemma 8, L_i and L_j are keys of E_i . This implies $N_i \succeq N_j$ and $N_j \succeq N_i$ —a contradiction. Hence, $E_i \neq E_j$. As such, there is a label $L_k \in N_k$ that is in between of L_i and L_j in S—a contradiction. Hence, there is no node in S that is critical.

(II) $N_i \succeq N_k$ nontrivially and $N_j \succeq N_k$ trivially: Assume $E_i = E_j$. By Lemma 8, L_i is a key of E_i . This implies $N_i \succeq N_j$ —a contradiction. Hence, $E_i \neq E_j$. We may now proceed like in the previous case from this point on.

(III) $N_i \succeq N_k$ trivially and $N_j \succeq N_k$ nontrivially: This case is symmetrical to the previous case.

(IV) $N_i \succeq N_k$ trivially and $N_j \succeq N_k$ trivially: Suppose there is a label $L_k \in N_k$ in between of N_i 's center node and N_j 's center node. Then, there is a label $L_k \in N_k$ in between of L_i and L_j in S—a contradiction. Hence, there is not a label $L_k \in N_k$ in between of N_i 's center node and N_j 's center node. However, in this case Procedure CalculateLabelCnt at best selects one of N_i and N_j or at worst selects none of N_i and N_j in constructing a largest NNF skeleton. Thus, S has no critical nodes.

To prove that Procedure Main generates a largest NNF scheme tree, we show that if we add one more node (hyperedge) in J to S, S will have a critical node. Now, suppose we add one more equivalence class C of labels in the Hasse diagram of \succeq to T. Because of Theorem 2, C must be connected to an equivalence class C_T already in T. Further, C cannot be a child node of C_T in the Hasse diagram of \succeq (i.e., $C \not\succeq C_T$); otherwise, Procedure CalculateLabelCnt has already considered C in constructing T. Suppose $C_T \not\succeq C$. If the label of the edge between C's center node and C_T 's center node is in C, then C_T 's center node is a critical node. If the label of the edge between C's center node and C_T 's center node is in C_T , then C's center node is a critical node. Now suppose $C_T \succeq C$. Observe that C_T cannot be a root node in the Hasse diagram of \succeq ; otherwise $C_T \not\succeq C$. Then, there is a V-shape in T, which means C_T 's center node is a critical node. \Box

5.5 Complexity Analysis

In this section, we first present Theorem 5, which shows that Procedure Main runs in polynomial time. In its proof, we demonstrate that Procedure ConstructHasseDiagramOf \succeq has worst-case complexity $O(n^3)$. However, our experiments strongly indicate that it has average-case complexity $O(n^2)$. To reconcile these two results, Lemma 13 shows that if the size of each hyperedge is bounded, then indeed Procedure ConstructHasseDiagramOf \succeq has time complexity $O(n^2)$. Since in most cases, including our experiments, the size of each hyperedge is bounded, these two analyses

do not contradict each other.

Theorem 5 Procedure Main of Section 3.1 runs in polynomial time.

Proof. We now prove by a worst-case analysis that Procedure Main runs in polynomial time. We first consider the two preparatory procedures: Procedures MergeHyperedges and CreateJoinTree. Procedure MergeHyperedges uses Algorithm 4.4 on page 66 in [14] in its computation. This algorithm has time complexity O(p), where p is the number of symbols required to represent the given FDs. Thus, generating the closure E^+ of one hyperedge E takes O(p) time. For $q \ge 1$ hyperedges, it takes O(pq) time to compute the q closures of the q hyperedges. Let n be the number of symbols required to represent the input acyclic hypergraph and the set of embedded FDs. Consequently, p and q are bounded by n. Hence, it takes $O(n^2)$ time to compute the q closures. Now, consider merging two hyperedges when their closures are equal. Given q > 1 closures over r > 1 distinct attributes, we compute the number of comparisons in the worst case that no pair of closures is equal. First, we use a matrix with q rows and r columns to represent these q closures where cell(i, j)—the cell at row i and column j—is equal to 1 if closure C_i has attribute A_i ; otherwise, cell(i, j) is equal to 0. Filling up this matrix obviously takes O(n) time. With this matrix, closure C_i is equal to closure C_j if and only if cell(i, 1) = cell(j, 1), cell(i, 2) = cell(j, 2), ..., and cell(i, r) = cell(j, r). Thus, checking whether $C_i = C_j$ takes r comparisons. Proving closure C_1 is not equal to any other closure therefore takes (q-1)r comparisons. For closure C_2 , it similarly takes (q-2)r comparisons. The same reasoning applies to all the other closures. Hence, it takes $(q-1)r + (q-2)r + \cdots + r$ = q(q-1)r/2 comparisons to prove that no closure is equal to another closure. Since r is also bounded by n, it thus takes $O(n^3)$ time to show that no pair of closures is equal. As stated in [23], a straightforward implementation for Procedure CreateJoinTree runs in time quadratic in the size of the input acyclic hypergraph. Hence, both Procedures MergeHyperedges and CreateJoinTree run in polynomial time with respect to n.

Our experiments strongly indicate that Procedures ConstructHasseDiagramOf \succeq , MoveLabels-ToCenterNodes, and ExtractLargestNNFSkeleton considered as a whole run in time quadratic in the number of hyperedges. However, since the test cases are generated randomly, this can only be considered as an average-case complexity. For a worst-case analysis of them, let n be the number of symbols required to represent the input acyclic hypergraph and the set of embedded FDs. Observe that the number of labels is one less than the number of nodes (hyperedges) in any join tree. Hence, sorting functionally equivalent labels in a join tree into equivalence classes is similar to merging functionally equivalent hyperedges in an acyclic hypergraph. Further, for two distinct labels L_i and L_j , $L_i^+ \subset L_j^+$, $L_j^+ \subset L_i^+$, and $L_i^+ = L_j^+$ can all be tested successively in the same pass. Thus, sorting labels into equivalence classes and generating the partial order \succeq can be done at the same time. Therefore, Procedure ConstructHasseDiagramOf \succeq at most takes $O(n^3)$ time. Additionally, as Procedure ConstructHasseDiagramOf \succeq scans the label of each edge in a join tree, we associate each equivalence class. As a result, Procedure MoveLabelsToCenterNodes does not have to find the edges whose labels are in any equivalence class again. Because it at most reorganizes every edge

in a join tree, Procedure MoveLabelsToCenterNodes therefore has time complexity O(n). The time complexity of Procedure ExtractLargestNNFSkeleton clearly depends on the time complexity of Procedure CalculateLabelCnt. This recursive procedure visits each equivalence class of labels in the Hasse diagram of \succeq once as it calculates its *labelCnt*. Hence, Procedure CalculateLabelCnt runs in time linear in the number of equivalence classes, which again is bounded by n. Obviously, any other step of Procedure ExtractLargestNNFSkeleton has time complexity O(n). Hence, it has an overall time complexity O(n).

For Procedure AttachHyperedges, when it is given a NNF skeleton, it may follow the sets of pointers associated with the equivalence classes in the skeleton to find the set S of Step 1. This takes O(n) time. Attaching the hyperedges in S to the NNF skeleton also takes O(n) time. \Box

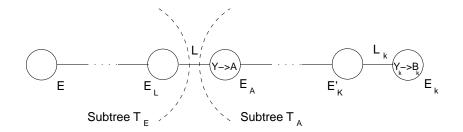


Figure 18: The FD $Y \rightarrow A$ and a part of the Join Tree of Lemma 12.

For the input set F of FDs to Procedure Main and a hyperedge E, in the following lemmas the notation F[E] means the FDs in F that are embedded in E.

Lemma 12 For any proper subset X of E where E is a hyperedge, if X does not include the left-hand side of any FD in F[E], $X \not\rightarrow A$ for any attribute $A \in (E - X)$. As a result, the only keys of E are the left-hand sides of the embedded nontrivial FDs in F[E].

Proof. Suppose not. Initially, let us set $X^+ = X$. Then, we add attributes to X^+ by using the nontrivial FDs in F. Without loss of generality, let A be the first attribute in E - X added to X^+ . Further let B_1, B_2, \ldots, B_n $(n \ge 0)$ be the attributes, in this order, added to X^+ before A. It follows that each B_i is not in E and thus B_i is added to X^+ by an FD $Y_i \to B_i$ in F - F[E]. Immediately before adding A to X^+ , the situation is that $XB_1B_2\cdots B_n \supseteq Y$ where $Y \to A$ is an FD in F - F[E]. Let E_A be the unique hyperedge that embeds $Y \to A$. Since E_A is not E, the situation can be depicted as Figure 18, which also shows two subtrees T_E and T_A as a result of cutting along the dotted lines. First, we show that each FD $Y_i \to B_i$ can be safely assumed to be embedded in a hyperedge in T_E . For if not, suppose $Y_k \to B_k$ is the first such an FD embedded in a hyperedge E_k in T_A , as shown in Figure 18. As such, it must be that $XB_1B_2\cdots B_{k-1} \supseteq Y_k$. Then, $L \supseteq Y_k$, and thus $E_L \supset Y_k$. In addition, $L_k = Y_k$; for if not, E'_k and E_k are functionally equivalent. Thus, we can remove the edge between E'_k and E_k and reestablish another edge between E_L and E_k with the label Y_k . By repeating this process, each FD $Y_i \to B_i$ can be safely assumed to be embedded in a hyperedge in T_E . Under this assumption, because $XB_1B_2\cdots B_n \supseteq Y$, $L \supseteq Y$. In

fact, L = Y; otherwise E_L and E_A are functionally equivalent. Hence, $A \notin L$ because $A \notin Y$. On the other hand, $A \in E$ and $A \in E_A$ imply $A \in L$ —a contradiction. \Box

Lemma 13 Procedure ConstructHasseDiagramOf \succeq takes $O(n^2)$ time, where n is the length of the input, if there is an upperbound b on the size of every hyperedge.

Proof. By Lemma 7, each label of an equivalence class is incident with the equivalence class's center node. By Lemma 8, for any two equivalence classes that are parent and child in the Hasse diagram, their center nodes are connected by an edge with a label in the parent equivalence class. Hence, a simple way to construct the Hasse diagram is as follows.

Let L be a label incident with a hyperedge E. If L includes the left-hand side of any nontrivial FD embedded in E, then L functionally determines any other label incident with E. In fact, L must equal the left-hand of that embedded FD; otherwise, E would be functionally equivalent to another hyperedge. Because of Lemma 12, this process is sufficient to determine the labels in an equivalence class and its nontrivial children as well. Given p nontrivial embedded FDs and q hyperedges, sorting the labels into equivalence classes needs at most $p(q-1)b^2$ comparisons. During this process, we can also discover the nontrivial children of an equivalence class as well. This all takes $O(n^2)$ time. To find the trivial children of an equivalence class in the Hasse diagram, it suffices to find the proper containment relationships of the q-1 labels. This needs at most $(q-1)(q-2)b^2$ comparisons, which takes $O(n^2)$ time. \Box

5.6 Performance Guarantee

This section shows that the heuristic that successively generating largest NNF scheme trees from among hyperedges not already included in generated scheme trees produces at most twice as many NNF scheme trees as the optimized solution. To simplify the discussion, this section assumes the input is a join tree instead of an acyclic hypergraph. Without loss of generality, we further assume the input join tree has the form of completing Procedure MoveLabelsToCenterNodes. For if not, we may simply run Procedure MoveLabelsToCenterNodes on it.

For Lemma 14, the main result of this section, we let \mathcal{M} be a potential exponential-time algorithm that generates a minimum number of NNF scheme trees from an input join tree such that each of its nodes is included in a generated NNF scheme tree. To avoid duplicating data, \mathcal{M} is assumed putting each node of the input join tree in exactly one generated NNF scheme tree. We also let \mathcal{L} be the heuristic that repeatedly calls the polynomial-time algorithm of this paper until each remaining node of the input join tree is included in exactly one generated NNF scheme tree.

Lemma 14 Let l and m be the numbers of NNF scheme trees generated from a join tree J by \mathcal{L} and \mathcal{M} respectively. l is less than or equal to 2m - 1.

Proof. We now demonstrate a method that constructs a join tree J that leads to the greatest l in terms of m. Two observations underlie this method.

First, suppose \mathcal{M} and \mathcal{L} generate r identical NNF scheme trees, where l > m > r > 0, from J. Because (l-r)/(m-r) - l/m > 0, (l-r)/(m-r) > l/m. By Theorem 2 and the fact that

J has the form of completing Procedure MoveLabelsToCenterNodes, each generated NNF scheme tree syntactically covers a connected subtree of J. In addition, because \mathcal{M} puts each node of Jin a single NNF scheme tree, removing the nodes included in the r identical NNF scheme trees will yield a join tree that will lead to a greater l/m ratio. Therefore, we assume \mathcal{M} and \mathcal{L} do not generate any common NNF scheme tree from J.

Second, suppose J is disconnected. That is, J has n > 1 connected components. Let l_1/m_1 , ..., l_n/m_n be the ratios for the connected components of J respectively. Assume l_k/m_k , where $1 \le k \le n$, is the greatest. That is, $l_k/m_k \ge l_i/m_i$ where $1 \le i \le n$. This implies $l_km_i \ge m_kl_i$ for $1 \le i \le n$, which results in $l_k(m_1 + \cdots + m_n) \ge m_k(l_1 + \cdots + l_n)$. As a result, $l_k/m_k \ge (l_1 + \cdots + l_n)/(m_1 + \cdots + m_n)$. Hence, we only need to focus on the connected component of J that has the greatest l/m ratio.

Following these two observations, we now describe a method that constructs the desired join tree J. Let $T_1, \ldots, T_m, m \ge 1$, be the NNF scheme trees generated by \mathcal{M} from J. As noted above, each T_i syntactically covers a connected subtree of J. Since J is connected, there are m-1edges connecting the m subtrees covered by T_1, \ldots, T_m . For a worst possible reorganization, let E be one of these m-1 edges. To produce more NNF scheme trees, E must be covered by a new NNF scheme tree that is at least as large as the two T_i 's connected by E. That is, if the connected subtrees of T_p and T_q is connected by E, then there is a new NNF scheme tree that covers E and also it is at least as large as T_p and T_q . Additionally, both T_p and T_q cannot be empty after the reorganization. Hence, \mathcal{L} generates at most m + (m-1) = 2m - 1 NNF scheme trees. \Box

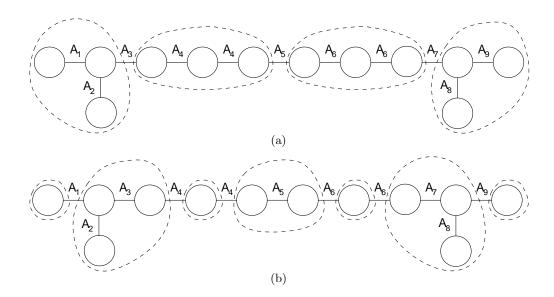


Figure 19: A join tree that demonstrates performance guarantee.

Example 12 Figure 19(a) shows a join tree with each label A_i , $1 \le i \le 9$, is a distinct single attribute. Attributes that are contained in exactly one node are irrelevant and thus are not shown

in the figure. Additionally, we assume there are two FDs $A_2 \rightarrow A_1A_3$ and $A_8 \rightarrow A_7A_9$ associated with the join tree. With these two FDs, at a minimum the join tree in Figure 19(a) can be covered by four NNF scheme trees; and the connected subtrees covered by these NNF scheme trees are circled by dotted lines. On the other hand, it is possible that \mathcal{L} , our heuristic, makes a wrong guess at every stage and produces seven NNF scheme trees instead, as shown in Figure 19(b). \Box

We stress that for our heuristic to arrive at the worst-case scenario, it has to guess wrong at every stage. Such a probability, however, is small. As an example, consider Figure 19(b). Our heuristic must first produce the two three-node NNF scheme trees. Then it will generate the two-node NNF scheme tree. Otherwise, it will not arrive at the worst-case scenario.

6 Concluding Remarks

In this paper we presented a polynomial-time algorithm to generate a largest redundancy-free XML storage structure from an acyclic hypergraph and a set of embedded FDs where each hyperedge is in BCNF. The algorithm generates a largest NNF scheme tree, which can then be mapped to a redundancy-free XML storage structure. Besides reducing space requirements and overcoming update anomalies, the algorithm also determines a largest set of hyperedges such that no join is needed to navigate from one data item to another within the storage structure. Further, when applied repeatedly on hyperedges not already included in generated scheme trees, the algorithm always yields redundancy-free XML storage structures and often, especially in practical cases, yields the fewest. This, then, also reduces the join cost to navigate from any data item within the application to any other.

Acknowledgements

The work described in this paper was partially supported by Strategic Research Grants 7001945 and 7002140 of City University of Hong Kong. D.W. Embley was supported in part by the National Science Foundation under grant numbers 0083127 and 0414644.

References

- Marcelo Arenas and Leonid Libkin. A normal form for XML documents. ACM Transactions on Database Systems, 29:195–232, 2004.
- [2] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of acyclic database schemes. *Journal of the ACM*, 30(3):479–513, 1983.
- [3] Ronald Bourret. XML and databases. September 2005. http://www.rpbourret.com/xml/XMLAndDatabases.htm.

- [4] Ronald Bourret. XML database products. March 2007. http://www.rpbourret.com/xml/XMLDatabaseProds.htm.
- [5] Yi Chen, Susan B. Davidson, Carmem S. Hara, and Yifeng Zheng. RRXF: Redundancy reducing XML storage in relations. In *Proceedings of 29th International Conference on Very Large Data Bases*, pages 189–200, Berlin, Germany, September 9-12 2003.
- [6] David W. Embley and Wai Yin Mok. Developing XML documents with guaranteed "good" properties. In Proceedings of the 20th International Conference on Conceptual Modeling, pages 426–441, Yokohama, Japan, November 27-30 2001.
- [7] Ronald Fagin, Alberto O. Mendelzon, and Jeffrey D. Ullman. A simplified universal relation assumption and its properties. *ACM Transactions on Database Systems*, 7(3):343–360, 1982.
- [8] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia Neumann, Robert Schiele, and Till Westmann. Anatomy of a native XML base management system. *The VLDB Journal*, 11(4):292–314, 2002.
- [9] Gang Gou and Rada Chirkova. Efficiently querying large XML data repositories: A survey. IEEE Transactions on Knowledge and Data Engineering, 19(10):1381–1403, 2007.
- [10] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Lakshmanan, Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee Wiwatwattana, Yuqing Wu, and Cong Yu. TIMBER: A native XML database. *The VLDB Journal*, 11(4):274–291, 2002.
- [11] Solmaz Kolahi and Leonid Libkin. XML design for relational storage. In Proceedings of the 16th International Conference on World Wide Web, pages 1083–1092, Banff, Alberta, Canada, May 8-12 2007.
- [12] Mark Levene and George Loizou. A Guided Tour of Relational Databases and Beyond. Springer, 1999.
- [13] Leonid Libkin. Normalization theory for XML. In Proceedings of the 5th International XML Database Symposium, pages 1–13, Vienna, Austria, September 23-24 2007.
- [14] David Maier. The Theory of Relational Databases. Computer Science Press, 1983.
- [15] Wai Yin Mok and David W. Embley. Generating compact redundancy-free XML documents from conceptual-model hypergraphs. *IEEE Transactions on Knowledge and Data Engineering*, 18(8):1082–1096, 2006.
- [16] Wai Yin Mok, Yiu-Kai Ng, and David W. Embley. A normal form for precisely characterizing redundancy in nested relations. ACM Transactions on Database Systems, 21(1):77–106, 1996.

- [17] Matthias Nicola and Bert Van der Linden. Native XML support in DB2 universal database. In Proceedings of the 31st International Conference on Very Large Data Bases, pages 1164–1174, Trondheim, Norway, August 30 - September 2 2005.
- [18] Z. Meral Özsoyoglu and Li-Yan Yuan. A new normal form for nested relations. ACM Transactions on Database Systems, 12(1):111–136, 1987.
- [19] Mark A. Roth, Henry F. Korth, and Abraham Silberschatz. Extended algebra and calculus for nested relational databases. ACM Transactions on Database Systems, 13(4):389–417, 1988.
- [20] Yehoshua Sagiv. A characterization of globally consistent databases and their correct access paths. ACM Transactions on Database Systems, 8(2):266–286, 1983.
- [21] Klaus-Dieter Schewe. Redundancy, dependencies and normal forms for XML databases. In Proceedings of the Sixteenth Australasian Database Conference, pages 7–16, Newcastle, Australia, January 31st - February 3rd 2005.
- [22] Bart Steegmans, Ronald Bourret, Owen Cline, Olivier Guyennet, Shrinivas Kulkarni, Stephen Priestley, Valeriy Sylenko, and Ueli Wahli. XML for DB2 Information Integration. IBM, July 2004.
- [23] Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.
- [24] Millist W. Vincent, Jixue Liu, and Chengfei Liu. Strong functional dependencies and their application to normal forms in XML. ACM Transactions on Database Systems, 29(3):445–462, 2004.
- [25] Junhu Wang and Rodney W. Topor. Removing XML data redundancies using functional and equality-generating dependencies. In *Proceedings of the Sixteenth Australasian Database Conference*, pages 65–74, Newcastle, Australia, January 31st - February 3rd 2005.
- [26] Cong Yu and H. V. Jagadish. XML schema refinement through redundancy detection and normalization. *The VLDB Journal*, 17(2):203–223, 2008.