
HyKSS: Hybrid Keyword and Semantic Search

Andrew J. Zitzelberger1, David W. Embley1,
Stephen W. Liddle2, and Del T. Scott3

1 Department of Computer Science,
2 Information Systems Department,

3 Department of Statistics
Brigham Young University, Provo, Utah 84602, U.S.A.

Abstract. Keyword search suffers from a number of issues: ambigu-
ity, synonymy, and an inability to handle semantic constraints. Semantic
search helps resolve these issues but is limited by the quality of anno-
tations which are likely to be incomplete or imprecise. Hybrid search, a
search technique that combines the merits of both keyword and semantic
search, appears to be a promising solution. In this paper we describe and
evaluate HyKSS, a hybrid search system driven by extraction ontologies
for both annotation creation and query interpretation. For displaying re-
sults, HyKSS uses a dynamic ranking algorithm. We show that over data
sets of short topical documents, the HyKSS ranking algorithm outper-
forms both keyword and semantic search in isolation, as well as a number
of other non-HyKSS hybrid approaches to ranking.

1 Introduction

Keyword search for documents on the web works well—often surprisingly well.
Can semantic search, added to keyword search, make the search for relevant
documents even better? Clearly, the answer should be yes, and researchers are
pursuing this initiative (e.g., [1]). The real question, however, is not whether
adding semantic search might help, but rather how can we, in a cost-effective
way, identify the semantics both in documents in the search space and in the
free-form queries users wish to ask.

Keyword search has a number of limitations: (1) Polysemy : Ambiguous key-
words may result in the retrieval of irrelevant documents. (2) Synonymy : Docu-
ment publishers may use words that are synonymous with, but not identical to,
terms in user queries causing relevant documents to be missed. (3) Constraint
satisfaction: Keyword search is incapable of recognizing semantic constraints. If
a query specifies “Hondas for under 12 grand”, a keyword search will treat each
word as a keyword (or stopword) despite the fact that many, if not most, relevant
documents likely do not contain any of these words—not even “Hondas” since
the plural is relatively rare in relevant documents.

Semantic search can resolve polysemy by placing words in context, synonymy
by allowing for alternatives, and constraint satisfaction by recognizing specified
conditions. Thus, for example, semantic search can interpret the query “Hondas

2 Zitzelberger, Embley, Liddle, and Scott

for under 12 grand” as indicating interest in retrieving documents advertising
a Honda whose selling price is less than $12,000. Unfortunately, correctly in-
terpreting semantics in target documents and user queries is nontrivial, and
misinterpretations negatively impact performance.

In this paper, we describe and evaluate HyKSS (pronounced “hikes”), a
Hybrid K eyword and Semantic Search system that can mitigate the weaknesses
of both keyword and semantic search and can capitalize on their strengths.4 The
key component of HyKSS is a library of conceptualizations called extraction on-
tologies [3]. An extraction ontology binds linguistic recognizers to a conceptual-
model instance enabling the model instance to recognize concepts in text—both
in target documents and in user free-form queries. Using extraction ontologies to
facilitate semantic search and combining semantic search results with keyword
search results as we do in HyKSS enables us to make the following contributions:

1. We define HyKSS—a hybrid keyword and semantic search system—and de-
scribe our proof-of-concept implementation of a HyKSS prototype.

2. We explain some interesting capabilities of HyKSS, including

(a) its ability to cross ontology boundaries to satisfy queries and
(b) its built-in advanced form mechanism to generate forms from ontological

descriptions that help users understand what it knows about a domain
of discourse and to give users a simple interface to specify more complex
queries involving negations and disjunctions.

3. Over data sets of short topical documents that includes pages from craigslist5

and Wikipedia,6 we show that HyKSS

(a) outperforms both keyword and semantic search in isolation,
(b) outperforms other approaches to hybrid keyword and semantic search,

and
(c) performs well even with minimal semantic recognition and better as se-

mantic recognition increases.

We present the details of these contributions as follows. In Section 2 we define
extraction ontologies. In Section 3 we explain how extraction ontologies interpret
queries, including context discovery, the indexing architecture of HyKSS that
enables rapid query processing, and the hybrid results ranking algorithm. In
Section 4 we describe the experiments we conducted and the results obtained.
We compare HyKSS with related work in Section 5 and draw conclusions about
the viability of a HyKSS-like system in Section 6.

4 In [2], we used HyKSS as our query system to explore cross-language query and
search. Here, we focus on HyKSS itself, describing all its features and providing
an in-depth statistical evaluation of its performance relative to alternative systems.
Except for the necessary background about extraction ontologies and some parts of
the running example and its figures, which serve to illustrate the ideas in HyKSS, this
paper is new, describing HyKSS and its features in depth and providing a statistical
evaluation substantiating our claimed contributions.

5 http://www.craigslist.org
6 http://www.wikipedia.org

HyKSS: Hybrid Keyword and Semantic Search 3

2 Extraction Ontologies

An extraction ontology is a conceptual model augmented linguistically to enable
information extraction. The primary components of the model are object sets,
relationships sets, constraints, and linguistic recognizers. Figure 1 shows an ex-
ample of a conceptual model instance for a car-ad application with its object and
relationship sets and its constraints, and Figure 2 shows part of two linguistic
recognizers—one for Price and one for Make.

Fig. 1. Car Ad Conceptual Model Instance.

The conceptual foundation for an extraction ontology is a restricted frag-
ment of first-order logic. Each object set (denoted graphically in Figure 1 by
a rectangle) is a one-place predicate. Each predicate has a lexical or a nonlexi-
cal designation: lexical predicates (denoted by dashed-border rectangles) restrict
domain-value substitutions to be literals in domain sets, like String and Integer,
or like Price, Year, Make, etc., in Figure 1; nonlexical predicates (denoted by
solid-border rectangles) restrict substitutions to be object identifiers that rep-
resent real-world objects like people, geopolitical entities, and cars. Each n-ary
relationship set (denoted graphically by a line with n object-set connections) is
an n-place predicate. In Figure 1, for example, Car-Color and Car-Feature are bi-
nary relationship sets. Notationally, black triangles denote aggregation groupings
of relationship sets in an is-part-of hierarchy. In Figure 1, a ModelTrim object
relates to, and comprises, a Model specifier (e.g., “Accord”) and a Trim des-
ignator (e.g., “LX”). Black diamonds on relationship sets denote prepopulated,
fixed relationship sets. The Model-Make relationship set in Figure 1, for example,
associates a Make with every Model, so that the predicate facts assert, among
others, that an “Accord” is a “Honda” and a “Taurus” is a “Ford.” Constraints

4 Zitzelberger, Embley, Liddle, and Scott

Price
internal representation: Double
external representations: \$[1-9]\d{0,2},?\d{3}
| \d?\d [Gg]rand | ...

context keywords: price|asking|obo|neg(\.|otiable)| ...
...
units: dollars|[Kk] ...
canonicalization method: toUSDollars
comparison methods:

LessThan(p1: Price, p2: Price) returns (Boolean)
external representation: (less than | <
| under | ...)\s*{p2} | ...

...
output method: toUSDollarsFormat
...

end

Make
...
external representation: CarMake.lexicon
...

Fig. 2. Car Ad Linguistic Recognizer for Price.

are of three types: (1) Referential integrity requires objects in relationships to
be objects in connected object sets. (2) Min-max participation restricts an ob-
ject’s participation in a relationship set. Although actual min-max designations
may be specified, common participation constraints have graphical notations of
two types: (a) arrows for 1-max participation of domain-side object sets making,
for example, Year functionally dependent on Car, and (b) connecting small cir-
cles for 0-min participation, making Trim optional for a ModelTrim object. (3)
Generalization/specialization constraints (denoted by a white triangle) form su-
perset/subset relationships among object sets in an is-a hierarchy. Disjoint (+),
complete (∪), and partition (]) constraints add additional restrictions among
specializations. Thus, in Figure 1 Engine, BodyType, Accessory, Transmission
are disjoint sets of some, but not necessarily all, features of a car.

Similar to the work by Buitelaar, et al. [4], we linguistically ground a conceptual-
model instance, turning an ontological specification into an extraction ontology.
Each object set has a data frame [5], which is an abstract data type augmented
with linguistic recognizers that specify textual patterns for recognizing instance
values, applicable operators, and operator parameters. Figure 2 shows part of the
data frames for the object sets Price and Make. Although any kind of textual
pattern recognizer is in principle possible, our implementation supports regu-
lar expressions as exemplified in Price and lexicons as exemplified in Make, or
combinations of regular expressions and lexicons. Each relationship set may also
have a data-frame recognizer. Relationship-set recognizers reference and depend
on data-frame recognizers for each of their connected object sets. In addition,

HyKSS: Hybrid Keyword and Semantic Search 5

relationship sets may be prepopulated with with a fixed set of relationships that
can provide additional context to aid in linguistic grounding. Thus, in Figure 1,
the Make “Honda” would be additional context information for Model “Accord”
in the Car Ad ontology.

In a data frame, the internal representation clause indicates how the sys-
tem stores extracted values internally, and the external representation clause
specifies the instance recognizers. The textual distance of matches from context
keywords helps determine which match to choose for potentially ambiguous con-
cepts within an ontology. The string “25K”, for example, could be a Mileage
or a Price but would be interpreted as a Price when in close context to words
such as asking or negotiable. The units clause expresses units of measure or value
qualifications that help quantify extracted values. A canonicalization method
converts an extracted value and units (if any) to a unified internal representa-
tion. Once in this representation, comparison methods can compare values
extracted from different documents despite being represented in different ways.
These methods can correctly confirm, for example, that “$4,500” is less than
“5 grand.” The external representation clause within a method declaration
in Figure 2, for example, recognizes phrases in queries like “under 15 grand”.
Here, the p2 within curly braces indicates the expected appearance of a Price
parameter p2 for the LessThan operator. The output method is responsible
for displaying internally-stored values to the user in a readable format.

3 Query Processing

Before query processing begins, HyKSS preprocesses a document collection and
creates a keyword index and a semantic index. For the keyword index, HyKSS
uses Lucene,7 and for the semantic index, HyKSS uses OntoES (Ontology
Extraction System).8 OntoES applies extraction ontologies to text documents to
find instance values in the documents with respect to the object and relationship
sets in the ontology. The extraction process uses the linguistic recognizers in data
frames and the constraints of the conceptual-model structure along with several
heuristics to extract instance values. Past work shows that OntoES performs
well in terms of precision and recall for the extraction task when documents are
rich in recognizable constants and narrow in ontological breadth [6]. OntoES re-
turns its semantic index as RDF triples that contain, in addition to the extracted
data values, internal values converted to appropriate internal representations by
data-frame canonicalization methods, standardized external string representa-
tions obtained by data-frame output methods, and information identifying the
document and location within the document of extracted text.

When HyKSS processes queries, it first finds the extraction ontology or set
of extraction ontologies that best matches the query content. This provides a
context for “understanding” the query. HyKSS then distinguishes between se-
mantic text within the query and keyword text, and runs semantic text through

7 http://lucene.apache.org
8 http://deg.byu.edu (in the OntologyWorkbench tool)

6 Zitzelberger, Embley, Liddle, and Scott

the semantic index and keywords through the keyword index. Finally, HyKSS
combines the results to produce a hybrid document ranking.9 To explain and il-
lustrate the process, we use as a running example the query “Hondas in ‘excellent
condition’ in Orem for under 12 grand”.

3.1 Context Discovery

HyKSS discovers context by executing OntoES—applying each extraction ontol-
ogy in its library to the query text. As a result HyKSS discovers zero or more
extraction ontologies to use for generating formal SPARQL queries over the RDF
triples in the semantic index. If zero, none match well enough, and HyKSS treats
the query as a keyword query.

To discover applicable extraction ontologies, HyKSS computes a score for an
ontology’s match with a query. The score for an ontology o is a weighted measure
of the number of words, phrases, and symbols the data frames of o recognize in
the query. In our implementation, HyKSS gives an ontology one point for each
external representation match and each context keyword match, half a
point for each parameter match in a comparison method, and 3.5 points for
matching the object set OntoES deems to be the primary object set (e.g., Car
in Figure 1). HyKSS initializes the set of applicable extraction ontologies with
the highest-scoring ontology and proceeds from highest to lowest adding any
subsequent extraction ontologies that match a part of the query not matched by
an ontology already in the set.

For the running example query, “Hondas in ‘excellent condition’ in Orem
for under 12 grand”, the data frames in the Car ontology in Figure 1 would
recognize “Hondas” and “under 12 grand” as constraints on Make and Price
respectively. A second ontology for U.S. cities would recognize “Orem” and would
be included in the contextual-ontology set since it augments the coverage of the
Car ontology with respect to the query. Other ontologies in the library would
likely rank lower or be subsumed by these two ontologies. Suppose, for example,
the library contained another ontology for contractual services that recognizes
“under 12 grand” as a constraint. Since the car ontology would score higher
and subsume the other ontology, it would be rejected. If the contractual-services
ontology also included U.S. cities—being contractual services available in various
locations—it could potentially score as high as the car ontology for the query.
However, keywords for the nonlexical primary object set Car in Figure 1 should
include keywords such as the common makes and models of cars that would tip
the balance in its favor. Further, whenever there is doubt, HyKSS could return a
top-k list of possibilities from which the user could select appropriate contextual
ontologies for the query.

3.2 Semantic Query Processing

The HyKSS semantic query processor takes the output from the context-discovery
step and generates a SPARQL query. Figure 3 shows the essence of the result

9 See the HyKSS demo at http://deg.byu.edu

HyKSS: Hybrid Keyword and Semantic Search 7

for our running example—the “essence” because HyKSS also generates query
components to retrieve information about the extracted text in the web page:
(1) information about the web page from which OntoES extracted the text (its
URL as well as a reference to a cached copy of the web page), (2) the text
strings actually matched (as opposed to their converted internal representations
used for query processing), (3) the locations of each text string in the web page
(making the semantic index an actual index into its known web pages), and (4)
the string’s canonical display value (for use in communicating extracted values
to a user).

PREFIX ann:<http://dithers.cs.byu.edu/owl/ontologies
/annotation#>

PREFIX Car:<http://dithers.cs.byu.edu/owl/ontologies/Car#>
PREFIX US Location:<http://dithers.cs.byu.edu/owl/ontologies

/US Location#>

SELECT ?Car ?CarResource ?US Location
?US LocationResource ?Make ?MakeValue
?Price ?PriceValue ?US City ?US CityValue

WHERE
{

?Car ann:inResource ?CarResource .
?US Location ann:inResource ?US LocationResource .
FILTER (?US LocationResource = ?CarResource)

OPTIONAL{?Car Car:Car-Make ?Make .
?Make Car:MakeValue ?MakeValue .}

FILTER (!bound(?MakeValue)
|| regex(str(?MakeValue), “Honda”)) .

OPTIONAL{?Car Car:Car-Price ?Price .
?Price Car:PriceValue ?PriceValue .}

FILTER (!bound(?PriceValue) || ?PriceValue < 12000) .

OPTIONAL{
?US Location US Location:US Location-US City ?US City .
?US City US Location:US CityValue ?US CityValue .}

FILTER (!bound(?US CityValue)
|| regex(str(?US CityValue), “Orem”)) .

}

Fig. 3. Generated SPARQL Query (partial).

The context-discovery step provides the ontologies for the generated SPARQL
query—Car and US Location in the second and third PREFIX statement in
Figure 3 for the running example. The first PREFIX statement references the
annotation schema. In part, it allows for checking that the information referenced
by the two ontologies comes from the same resource (web page), as guaranteed
by the condition ?US LocationResource = ?CarResource in the first FILTER
statement in Figure 3.

The ontologies from the context-discovery step also provide structure for the
query. The nodes of the particular subgraph selected from each ontology for the
query depend on which object sets contain data frames whose recognizers match

8 Zitzelberger, Embley, Liddle, and Scott

portions of the query text. In our running example, “Hondas” matches with Make
in the Car ontology in Figure 1, “under 12 grand” matches with the LessThan
operator in Price, and “Orem” matches with US City in the US Location ontol-
ogy. HyKSS also selects as a node the primary object set of each ontology—Car
in Figure 1 and US Location the US cities and states ontology.

Given the nodes, query generation is straightforward for the running example.
As Figure 3 shows, HyKSS generates joins over the edges Car-Make and Car-
Price in the Car ontology in Figure 1 and the edge US Location-US City in the
US Location ontology. HyKSS also generates appropriate selection conditions in
the FILTER statements in Figure 3 so that if the values are bound (i.e., found
and extracted from the web page), they satisfy the conditions that the advertised
car is a Honda, its price is less than $12,000, and it is in the US city named
Orem. The RDF property names (e.g., Car:MakeValue and Car:PriceValue) in
the SPARQL query result from the way we map conceptual-model instances to
OWL/RDF. We map each object set to a class C, and for lexical object sets we
add a property CV alue, the concatenation of the object-set name and the literal
string “Value”.

In general, query generation for expected queries over expected ontologies is
straightforward. Like typical keyword-only queries in which users query for pages
that satisfy as many of the keywords as possible, we expect that for hybrid queries
users wish to have as many of the semantic constraints satisfied as possible.
Thus, we generate only conjunctive queries, and we always allow constraint-
satisfaction to be OPTIONAL as Figure 3 shows. Further, since we expect most
ontologies for HyKSS applications to have a simple structure that is acyclic (or
acyclic after excluding prepopulated fixed relationship sets like Model-Make in
Figure 1), HyKSS can generate queries like it does for the running example
in a straightforward way: join across ontologies in the context discovery set by
ensuring that the extracted information comes from the same web page, join over
edges in the ontologies that connect identified nodes, and filter conjunctively on
identified conditions. For cycles that lead to multiple paths between the same
two identified nodes, such as if the conceptual-model instance in Figure 1 had
a second edge between Car and Feature denoting features that could be added
(as opposed to ones the car already has), we expect that relationship-set data-
frame recognizers would be able to identify clues in queries that would select
one path or another, or in the absence of identified clues, interact with the user
to disambiguate the query.

Also, like typical keyword-oriented search engines, we provide advanced search
capabilities for users who wish to pose queries that involve disjunctions and nega-
tions.10 Thus, a user could pose the query “Find me the hondas in ‘excellent con-
dition’ in Orem and Provo for under 12 grand”. Then, after selecting Advanced
Search, a partially filled in form would appear, including the Make “Honda”
(having been canonicalized from “Hondas”), the Price “$12,000” (written in its

10 To see a sample of a generated form, enter a query like the running example query
to provide context and then click on Advanced Search in the HyKSS demo (http:
//deg.byu.edu/demos).

HyKSS: Hybrid Keyword and Semantic Search 9

Fig. 4. Disjunctively Expanded Advanced Search Form

output form and as a parameter for the less-than operator declared in its data
frame), and the first US City “Orem” but not the second city. To add the second
city, a user would click on OR and enter “Provo”. Figure 4 shows the result.
Given the filled-in form in Figure 4, generation of the Boolean condition for the
query is straightforward.11

HyKSS creates the form itself by traversing the conceptual-model graphs of
the selected ontologies in the context discovery set. Available conditional oper-
ators come from those declared in an object set’s data frame. HyKSS also adds
typical advanced keyword capabilities as Figure 4 shows. Note that in Figure 4
the Vehicle ontology is similar to, but does not correspond to, the ontology in
Figure 1; instead, it corresponds to one of the extraction ontologies we use in

11 In general, logic form identification in natural language is difficult (e.g., see [7]). In
our query here, for example, note that “and” denotes disjunction rather than its
more common conjunctive denotation.

10 Zitzelberger, Embley, Liddle, and Scott

the experimental section below. In general, there exists a one-to-one mapping
between forms and the conceptual-model hypergraphs we use for extraction on-
tologies [8]. Thus, HyKSS can both generate query forms as it does for Figure 4
and match filled-in query forms to conceptual structures as it does to generate
SPARQL queries. Although not yet integrated into the HyKSS implementation,
forms for conceptual-model hypergraphs also allow for nesting [8]—nestings that
a user can unfold to allow for bounded queries over recursive cycles in conceptual-
model hypergraphs.

3.3 Keyword Query Processing

For keyword queries to work well, it is necessary to remove extraneous words
and symbols found in a query but not intended for matching. For hybrid seman-
tic and keyword matching, words and phrases intended to convey non-equality
comparison matching should also be removed.

HyKSS begins its preprocessing of hybrid queries with the removal of com-
parison constraints. A comparison constraint is a phrase such as “under 12
grand” that a data frame in an extraction ontology recognizes as matching one
of its comparison methods. This removal prevents the terms “under”, “12”,
and “grand”, which likely constitute noise, from matching irrelevant tokens in
documents. As an exception, however, the keyword query processor leaves rec-
ognized equality-comparison parameters as keywords, so that in database-like
query phrases such as “City = Orem” or “Make is equal to Honda”, HyKSS
only removes the equality symbol and “is equal to” respectively. The motivation
here is that words such as “Hondas” and “Orem” in the running example query
are useful keywords even when they are part of a phrase recognized as declaring
the use of a comparison method. Removal of comparison constraints reduces the
running example query to “Hondas in ‘excellent condition’ in Orem”. Note, by
the way, that it is the plural “Hondas” left as a keyword, even though the Make
data-frame recognizer converts the plural to a singular for its use in semantic
equality comparisons.

The remaining types of words and symbols to be removed include common
punctuation characters, Lucene special characters such as wildcard characters
that might unknowingly trigger unexpected functionality, and stopwords from
non-quoted phrases. HyKSS passes quoted phrases, such as ‘excellent condition’,
for Lucene to process as single-phrase keywords. As is typical, HyKSS retains
stopwords within quoted strings so that phrases such as “no dings” remain intact.
Since “in” is a stopword and not within a quoted string, the final keyword query
for the running example is “Hondas ‘excellent condition’ Orem”.

3.4 Hybrid Query Processing

In our implementation, Lucene does the keyword processing, Sesame12 executes
the generated SPARQL query, and HyKSS provides the ranking algorithm and

12 http://www.openrdf.org

HyKSS: Hybrid Keyword and Semantic Search 11

results display. Figure 5 shows the ranked results for our our running example
query, and Figure 6 shows the results of clicking on “highlighted” for the highest
ranked document. Upon the click, HyKSS retrieves the cached page from which
it extracted information, highlights the information extracted that matches with
the user query, and displays the page.

HyKSS ranks documents by the simple linear interpolation formula: key-
word score×keyword weight + semantic score×semantic weight. For keyword -
score, HyKSS uses the ranking score returned by Lucene—a number that mea-
sures query-document similarity with a combination of the vector space and
Boolean models.13 The ranking of semantic results is still an open area of re-
search. As no standard methods exist, HyKSS uses a simple ranking process
based on the amount of requested information a resulting document includes.
After semantic query execution filters out documents that violate a condition
specified in the query, the semantic post-query-processor in HyKSS counts for
each document the number of lexical object sets matched by the query for which
the document returns at least one value. HyKSS then normalizes the resulting
counts by dividing by the highest count for the document set, yielding a se-
mantic score for each document. Finally, HyKSS weights keyword and semantic
scores according to the contribution of each with respect to the query: k/(k+ s)
for keyword weight and s/(k + s) for semantic weight, where k is the number of
words that remain in the query after removing (1) stopwords (except those in
quoted phrases) and (2) words recognized as denoting semantic inequality com-
parisons, and s is one-half of the sum of (1) the number of lexical object sets in
the ontologies in the context-discovery set matched by the user query and (2) the
number of equality and inequality conditions generated for the user query. For
our sample query, k = 4 (“Hondas”, “excellent”, “condition”, “Orem”) and s = 3
(one half of three plus three—the three matched lexical object sets in the two
ontologies in context-discovery set: US Location:US City, Vehicle:Make, and Ve-
hicle:Price, plus the three conditions: Vehicle:Price < $12,000, Vehicle:Make =
Honda, and US Location:US City = Orem. To obtain the final ranking, HyKSS
sorts the documents by rank score.

Observe that the weights in the HyKSS dynamic ranking scheme depend
on the query being asked, whereas the keyword and semantic scores depend on
the keyword and semantic matches in a document. If HyKSS fails to recognize
any semantic information, it uses only keyword ranking. Similarly, HyKSS uses
only semantic ranking if no keywords remain after preprocessing the query. The
weights adjust on a spectrum between the extremes of all semantic queries and
all keyword queries based on the amount of semantic information and keywords
discovered in the query. This ranking approach is advantageous because it does
not require users to manually set weights or annotate data to tune weights that
work well for the document collection.

The top five results in Figure 5 have values in the semantic columns (Us city,
Make and Price) indicating that these documents do not violate any semantic
constraints. Further, each of the five results has a value for each column, in-

13 See http://lucene.apache.org/core/3_6_1/scoring.html for details

12 Zitzelberger, Embley, Liddle, and Scott

Fig. 5. Ranked Results for “Hondas in ‘excellent condition’ in Orem for under 12
grand”.

Fig. 6. Highlighted Display of Highest Ranked Document for the Running Example
Query.

dicating that the semantic ranking algorithm would assign them all the same
score. The bottom five results all violate at least one semantic constraint, and
thus they receive a semantic score of zero. If HyKSS were limited to only using
its semantic ranking algorithm, it would return the top five documents in an
arbitrary order. Using the keyword score in combination with semantic score,
however, enables HyKSS to move the more query-relevant documents to the top
of the ranking. The top five documents all contain the word “Orem”, but only the
top two documents also contain the phrase “excellent condition”. The keyword
ranking mechanism assigns a higher keyword score to these two documents, and
the hybrid ranking mechanism correctly places these two relevant documents at
the top of the ranking.

4 Experimental Results

We wish to determine how well HyKSS performs comparatively against keywords
alone, semantics alone, and against other approaches to hybrid search. Because
the performance of HyKSS depends on what ontologies are in its library and

HyKSS: Hybrid Keyword and Semantic Search 13

their quality together with the document and query sets, the space of comparison
possibilities is huge. We therefore sample only a small subset of the possibilities,
but we explore thoughtfully so as to learn as much as we can about the space
in general. With a pay-as-you-go notion in mind, we also explore the space with
respect to the costs and benefits of making extraction ontologies highly domain
dependent and tuning them to recognize semantic facts in a domain as accurately
as possible.

In subsequent sections, we describe the comparison space we explored. In
Section 4.1 we describe the sliding scale of ontological conceptual richness we
considered—from a simple extraction ontology that is only able to recognize
numbers to a rich extraction ontology with instance recognizers for a full array
of domain-dependent concepts. In Section 4.2 we describe the document set we
considered, which consists either of documents all in a single application domain
or documents in multiple application domains, providing noise for each other’s
queries. We also describe in Section 4.2 the query sets and how we obtained
them, and we explain how we divided them into queries whose semantics we
would be sure to recognize (training set) and queries whose semantics we may
or may not recognize (validation and test sets). In Section 4.3 we describe the
problems we faced in creating a gold standard for evaluation and how we resolved
them. In Section 4.4, we describe the query processing and ranking techniques
we compared against HyKSS. Finally, in Section 4.5 we present the results of
our experiments and discuss their implications.

4.1 Ontology Libraries

As a domain of choice for our experimentation, we consider vehicle advertise-
ments. Within the domain, we experiment with five levels of ontological richness:
(1) numbers, (2) generic units, (3) vehicle units, (4) vehicle, and (5) vehicle plus
special categories of vehicles. The first two are general and apply to many do-
mains (including vehicles), but they are devoid of specific vehicle domain con-
cepts. The last three specifically target the vehicle domain, but at various levels
of sophistication.

Level 1: Numbers. The lowest level of semantic modeling consists of a
single extraction ontology with a single lexical object set that recognizes only
numbers. It recognizes cardinal numbers such as 37, 2,000, and 10.5 but not
ordinal or nominal numbers. The Number ontology is intentionally designed to
be extremely limited. It includes no unit designators, not even K or M to denote
thousands or millions. It does, however, know a few keywords that often refer to
numbers such as “price”, “mileage”, and “year”, but does not use keywords to
differentiate among different kinds of numbers since there is only one object set
for the instances—the numbers themselves. Its only operators are the comparison
operators, which also include keywords such as “less than” to provide textual
identifiers for operator applicability.

Level 2: Generic Units. This next level of semantic modeling has a library
that consists of three simple ontologies: DateTime, Distance, and Price. The
DateTime ontology recognizes common date-time formats and stores values in

14 Zitzelberger, Embley, Liddle, and Scott

seconds since 1970 for comparison. It does not adjust for time zones or daylight
savings time (all times are assumed to be in GMT). The Distance ontology
recognizes generic distances such as height, width, and length using common
units like kilometers, feet, and miles. We store recognized distances canonically as
measurements in meters. The Price ontology only recognizes US dollar amounts.
It also recognizes and interprets units such as “K” and “grand” to indicate the
multiplier 1000. Having more specific domain knowledge also allows methods to
be invoked with more intuitive terms such as “after” for DateTime, “longer” for
Distance, and “under” for Price.

Level 3: Vehicle Units. Moving closer to the vehicle domain, the next
level of semantic modeling includes three simple ontologies in its library: Vehi-
clePrice, VehicleMileage and VehicleYear. Having knowledge of the domain lets
the ontologies recognize values that are applicable to vehicles. For example, the
DateTime ontology recognizes the string “1836” but the VehicleYear ontology
does not, since “1836” cannot be the year for an automobile make and model.

Level 4: Vehicle. The next level of semantic modeling is domain specific.
The ontology library for vehicles consists of a single ontology with common
concepts of interest, including Color, Make, Mileage, Model, Price, and Year. It
does not attempt to model every possible concept in the entire vehicle domain,
or even all the concepts in Figure 1. With a higher level of semantic modeling,
the Vehicle ontology library is able to consider more context during extraction.
For example, the Year object set in the Vehicle ontology can take advantage
of the fact that a Year value often precedes a Make or Model value, whereas
VehicleYear cannot because it has no concept of Make. Also, whereas lexical
object sets in less semantically rich libraries have no constraint on the number
of occurrences they can extract from a document, the functionally dependent
lexical object set in the Vehicle ontology has a limit of one extracted instance,
meaning that HyKSS extracts only one Color, Make, Mileage, Model, Price, and
Year from a document.

Level 5: Vehicle+. The final level of semantic modeling consists of the
Vehicle ontology, together with five new ontologies: GermanVehicle, HybridVe-
hicle, JapaneseVehicle, SportsVehicle, and VehicleType. These additional ontolo-
gies allow for more fine tuned extraction and querying in the vehicle domain.
The GermanVehicle and JapaneseVehicle ontologies determine whether vehicle
makes are German or Japanese. They also recognize terms such as “German
car” and “Japanese car”. The HybridVehicle and SportsVehicle ontologies func-
tion similarly but make use of vehicle models rather than makes. The Vehicle-
Type ontology also relies on vehicle models and categorizes vehicles as “car”,
“truck”, “SUV”, or “van”. These additional ontologies are valuable in under-
standing higher level queries such as “find me a black truck” or “list Japanese
cars”.

4.2 Document and Query Sets

As Fernandez, et al. point out, the semantic-search community has no bench-
marks to judge the quality of semantic-search methods [9]. One of the difficulties

HyKSS: Hybrid Keyword and Semantic Search 15

in collecting queries is to explain to subjects what semantic-search queries are.
Fortunately, we had built a rudimentary semantic-search engine for the vehicle
domain and had constructed an online demo.14 We asked students in two senior-
level database classes to generate two queries they felt the system interpreted
correctly and two queries they felt the system misinterpreted, but that the sys-
tem should have handled correctly. The students generated 137 syntactically
unique queries (syntactic duplicates were removed). For our purposes, we then
removed queries that the free-form query interface of HyKSS is not designed to
handle. These queries included features such as negations, disjunctions, and ag-
gregations. We also removed queries when the intent was ambiguous, the query
could not be objectively evaluated, or the query could not have relevant results
in the document set eventually used in our experiments. We removed a total of
24 queries, leaving 113 queries in the final set. These 113 queries constitute our
training query set.

We posed a similar task to a class of students in computational linguistics.
We did not present the online demo to these students, but rather showed them
a few example queries and asked them to submit hand-written queries they felt
a semantic system like HyKSS could handle. This resulted in 71 unique queries
from which we removed 11 using the same previously mentioned criteria. The
remaining 60 queries constitute our blind query set.

For document sets we chose to use vehicle advertisements posted on local
craigslist sites.15,16 Craigslist lets users post classified advertisements that con-
sist of free-text descriptions and a small number of semantic fields. However,
users occasionally misuse these fields and enter incorrect or irrelevant infor-
mation. We gathered 250 vehicle advertisements from the “for sale by owner”
section under the “car+trucks” headings of the craigslist sites. We then divided
these advertisements into training (100), validation (50), and test (100) docu-
ment sets. The training set includes documents from the Provo craigslist site
while the validation and test sets are from the Salt Lake City craigslist site.17

We also gathered additional topical documents not in the vehicle advertise-
ment domain to use as noise in the experiments. These additional documents
include 318 mountain pages and 66 roller coaster pages from Wikipedia18, and 88
video game advertisements from Provo’s craigslist site. We gathered the moun-
tain pages manually by downloading a subset of pages linked from the list-of-
mountains page.19 In creating the subset we attempted to avoid pages that re-
ferred to a mountain range and chose a selection of pages about single mountains.
We downloaded the roller coaster pages using the links from the list-of-roller-

14 http://www.deg.byu.edu/demos/askontos
15 http://provo.craigslist.org
16 http://saltlakecity.craigslist.org
17 The document sets may have contained duplicate or similar advertisements due to

cross posting and re-posting tendencies of craigslist users. We did not check for this,
but rather just took the ads as posted.

18 http://www.wikipedia.org
19 http://en.wikipedia.org/wiki/List_of_mountains

16 Zitzelberger, Embley, Liddle, and Scott

coaster-rankings page.20 One of roller coasters, Hades, linked to page about the
Greek god rather than the roller coaster, but we chose to leave it in the doc-
ument set because it represents real-world noise. We included pages with the
same URL only once.

As it turned out, only 76 of the 113 queries in the training set corresponded
to valid results in the document sets. Rather than report vacuous results, we
excluded the non-applicable queries from the training set. Likewise, only 15 of
the 60 queries in the blind set were applicable. This left us with a total of 91
useful queries between the training and blind query sets that were applicable to
our chosen document sets.

4.3 Annotation and Tuning

The decision to create our own document and query sets also required that we
create gold standard annotations for the data. To avoid being influenced by the
blind sets of documents and queries, we first tuned our extraction-ontologies on
the training sets of documents and queries. We then locked them from further
tuning and proceeded with the creation of our annotations for the gold standard.

We began our tuning by ensuring that each ontology library extracted prop-
erly from and generated proper interpretations for the queries in the query train-
ing set. For these queries, we were able to tune our Numbers, Vehicle, and Ve-
hicle+ ontology libraries up to 100% and our Generic Units and Vehicle Units
ontology libraries up to 98% accuracy. We continued the tuning process by ensur-
ing that the ontology libraries extracted properly from documents in the training
document set. We tuned only for text; an image, for example, may show the color
of a vehicle, but OntoES does not extract this information without textual cues.
The tuned precision of the ontology libraries over the training documents ranged
from 97% to 100%, and recall ranged from 94% to 100%. The only ontology li-
brary to achieve 100% in either metric was the Numbers library.

We next annotated the validation document set. To see what drop-off we
should expect when we turned to the blind document set, we measured preci-
sion and recall for the ontology libraries. For the Vehicle+ ontology library, for
example, we found that recall fell from 99% for the training document set to
94% for the validation document set and that precision fell from 98% to 90%.
We therefore anticipated a similar decline in extraction quality for the blind
document set and had some idea of what to expect for the blind query set as
well.

With ontology tuning complete, we next constructed query-document rel-
evance annotations for the training query set relative to the blind document
set. Assigning query-document relevance is inherently subjective. To remain as
objective as possible, we decided to use a closed-world assumption in assigning
relevance: a document is relevant to a query if it explicitly satisfies all constraints
in the query and has some response for each concept (e.g., Price, Make, US City)
mentioned in the query. When determining relevance, we used all information

20 http://en.wikipedia.org/wiki/List_of_roller_coaster_rankings

HyKSS: Hybrid Keyword and Semantic Search 17

available in the advertisements, including visual information that OntoES is cur-
rently incapable of extracting. For example, many vehicle advertisements do not
specify the number of doors on or the color of a vehicle, but include a picture of
the vehicle indicating the values for these attributes. We used all of this informa-
tion in determining query-document relevance. We did not, however, attempt to
infer information not available in the advertisement from information present.
For example, if an advertisement listed the trim of the vehicle, we did not try to
infer the number of doors. One exception to this is that we did infer the Make
of a vehicle given a Model (as per the fixed Make-Model relationship set in Fig-
ure 1) due to its relative ease. We also took advantage of human intuition to
infer the meaning of phrases like “fully loaded” to indicate that it had standard
features, such as air conditioning and a CD player, occasionally requested in user
queries.

4.4 Query Processing and Ranking Techniques

We evaluated the retrieval quality of HyKSS by comparing it and two of its
variations with keyword-only techniques, semantics-only techniques, and generic
hybrid techniques, which we describe and label as follows.

– Keyword (K): Lucene ranks results of processing queries after removing
non-phrase stopwords.

– Keyword - Pre-processing (Kp): Lucene ranks results of processing queries
after removing comparison-constraint words and non-phrase stopwords.

– HyKSS - Set Weights (Hs): HyKSS processes queries and ranks results
using set weights for interpolating keyword and semantic scores.21

– HyKSS - Dynamic Weights (Hd): HyKSS processes queries and ranks
results using its dynamic ranking scheme described in Section 3.4.

– HyKSS - Single Ontology (Ho): HyKSS processes queries and ranks re-
sults using its dynamic ranking scheme, but instead of considering ontology
sets, HyKSS uses only the single best matching ontology.

– Keyword - Soft Semantics (Gs): Lucene ranks results as for Kp, but only
for results that satisfy a soft semantic filter that eliminates documents that
explicitly violate a semantic constraint (open world assumption).

– Keyword - Hard Semantics (Gh): Lucene ranks results as for Kp, but
only for results that satisfy a hard semantic filter that eliminates documents
that do not satisfy all semantic constraints (closed world assumption).

– Soft Semantic Ranking (Sr): uses a HyKSS-style dynamic ranking scheme,
but only for documents that pass the soft semantic filter.

– Soft Semantics (Ss): This process retrieves all results that satisfy the soft
semantic filter, but does no ranking, leaving results in an arbitrary order.

21 We established the keyword and semantic weights as those that maximized mean
average precision over the 50 validation documents. To find the keyword weight k,
we executed the 100 queries in the training query set using 101 weight combinations
(0.0–1.0) and chose the best. The semantic weight s became 1− k.

18 Zitzelberger, Embley, Liddle, and Scott

– Hard Semantics (Sh): This process retrieves all results that satisfy the
hard semantic filter, but does no ranking, leaving results in an arbitrary
order.

4.5 Experiments and Results

Since the primary focus of HyKSS is to retrieve relevant documents, we use
Mean Average Precision (MAP) [10] to evaluate its quality.22 In essence, MAP
declares a retrieval system to be perfect for a query q if it returns all N relevant
documents for q in the top N ranking positions. MAP penalizes a retrieval
system if it ranks irrelevant documents before all relevant documents. Precision
for the kth relevant document in the ranking for query q, Pr(Dqk), is computed
as k/(n+ 1) where n is the number of documents that precede the kth relevant
document in the ranking. Thus, the average precision for a single query q is
1
nq

∑nq

k=1 Pr(Dqk), where nq is the number of relevant documents for query q.

Mean average precision for a setQ of queries is the mean of each average precision
across all queries:

MAP(Q) =
1

|Q|

|Q|∑
q=1

1

nq

nq∑
k=1

Pr(Dqk).

We computed MAP scores for our training and blind query sets over docu-
ments in our clean and noisy document sets across all ontology libraries (Num-
bers, Generic Units, Vehicle Units, Vehicle, and Vehicle+) and for each of our
experimental techniques identified in Section 4.4 (K, Kp, Hs, Hd, Ho, Gs, Gh,
Sr, Ss, Sh). Figure 7 illustrates the type of results we measured; it shows the
average MAP scores that result from applying all ten techniques to the training
query set over the clean document set. As should be expected, we found that
MAP scores for the training query set were higher than corresponding MAP
scores for the blind query set, and MAP scores for the clean document set were
higher than corresponding scores for the noisy document set.

Because we applied ten different techniques to the same queries and docu-
ments using a variety of ontology libraries, our MAP-score responses are cor-
related. Thus, the most suitable methodology for interpreting the data is mul-
tivariate analysis of variance (see [12], especially Chapters 6 and 8). The need
to account for the inherent differences between the 91 applicable queries in our
training and blind query sets led us to use a block statistical model. The factors
in our model are document set (clean and noisy) and ontology library (Num-
bers, Generic Units, Vehicle Units, Vehicle, and Vehicle+). We studied the main
effects of document set and ontology library, and possible interactions between
those factors to determine differences.23

22 See [11] for a full discussion of the principles of ranking in information retrieval.
23 We began our analysis using a split plot design, but when we examined the interac-

tions among our factors and found that the interactions were not major sources of
response variability, we simplified to a block statistical model.

HyKSS: Hybrid Keyword and Semantic Search 19

Fig. 7. MAP Scores for Training Query Set and Clean Document Set

After examining the multivariate analysis of variance for our data, we dis-
covered that the ten techniques behave similarly within each family. That is, the
HyKSS (Hs, Hd, and Ho), generic-hybrid (Gs, Gh), keyword-only (K and Kp),
and semantics-only (Sr, Ss, Sh) technique families all behaved in a statistically
similar manner within each family type. Thus, to simplify the presentation, we
have chosen to report the results of only the four techniques that best represent
each family. We chose Hd, Gs, K, and Sr as the representative techniques for
the four families.

Table 1 is the multivariate analysis of variance for our block statistical model
over the four representative techniques. We have allowed all treatments to have
their own sources of variability. Error1 is the interaction between query and
document set, and Error2 is the interaction between query and ontology library.
The test statistic we used is Wilks’ Λ. We found that document set, library,
and the interaction between document set and library are all statistically sig-
nificant, with p-values less than .0078, .0001, and .0001, respectively. Because
the interaction of document set and ontology library turned out to be statis-
tically significant, we then looked into decomposing the differences among the
various techniques. We are interested in the relative performance of HyKSS,
so we examined the differences between Hd and the other three representative
techniques. We found that Hd and K are distinct (p < .0018), as are Hd and Sr

(p < .0001). However, Hd and Gs are statistically indistinguishable at the level
of the document-set by ontology-library interaction. Therefore we examined the
main effect, ontology library, and found that at the level of ontology library, Hd

and Gs are indeed different (p < .0001).

Table 2 gives average MAP scores for the four representative techniques,
grouped by ontology library and document set, across the combined population
of training and blind queries. Figure 8 shows graphs of the MAP scores from
Table 2. The differences in performance between the various techniques are sig-
nificant within the p < .05 threshold that we had established at the outset of
our experimentation, meaning that the differences are not merely random.

Figure 9 shows average MAP scores across the combination of clean and noisy
document sets—the resulting data if we conclude that the interaction between

20 Zitzelberger, Embley, Liddle, and Scott

Wilks’ F
Source DF Λ Value Pr > λ Pr > F

Query 90
Document Set 1 0.8745 <.0078
Error1 90
Ontology Library 4 0.4279 <.0001

Hd vs. K 48.79 .0001
Hd vs. Sr 4.19 .0025
Hd vs. Gs 21.87 .0001

Error2 360
Doc. Set*Library 4 0.7569 <.0001

Hd vs. K 4.37 .0018
Hd vs. Sr 18.50 .0001
Hd vs. Gs 0.31 .8696

Error 360

Error1 is for Query*Document Set interaction

Error2 is for Query*Ontology Library interaction

Table 1. Multivariate Analysis of Variance

Doc. Set Library Hd Ss K Gr

Clean

Number 0.3720 0.2906 0.3255 0.1450
GenericUnits 0.4783 0.3591 0.3255 0.2116
VehicleUnits 0.5009 0.3917 0.3255 0.2341
Vehicle 0.5925 0.4725 0.3255 0.4975
Vehicle+ 0.6896 0.5677 0.3255 0.6043

Noisy

Number 0.2682 0.2157 0.2762 0.0332
GenericUnits 0.4060 0.3000 0.2762 0.1207
VehicleUnits 0.4603 0.3594 0.2762 0.1672
Vehicle 0.5218 0.3342 0.2762 0.4187
Vehicle+ 0.6079 0.4157 0.2762 0.5101

Table 2. MAP Scores by Representative Technique for Ontology Libraries Grouped
by Document Set

document set and ontology library is unimportant. Because we found the mag-
nitude of the interaction to be small, and upon further examination discovered
that the graphs of the various sub-cases of factor combinations always yielded
a pattern similar to Figure 9, we concluded that the interaction between doc-
ument set and ontology library is not practically important even though it is
statistically significant.

Next we performed several post-hoc tests to determine whether the differ-
ences in MAP scores that we see in Figure 9 are significant. We narrowed our
multivariate analysis of variance to just the Vehicle and Vehicle+ cases and
found that the three techniques that use semantics—Hd, Gs, and Sr— behave
in a statistically indistinguishable pattern. To visualize why this is so, notice
how the slope of the lines for these techniques in Figure 9 for the Vehicle and
Vehicle+ cases is similar. However, we found that the difference between these

HyKSS: Hybrid Keyword and Semantic Search 21

(a) Clean Document Set

(b) Noisy Document Set

Fig. 8. Representative MAP Scores

Fig. 9. Representative MAP Scores Averaged over Document Set

22 Zitzelberger, Embley, Liddle, and Scott

three and the keyword technique, K, is indeed significant as we should expect.
We further drilled down into the data and compared the average MAP scores
for Hd across Vehicle and Vehicle+ and found the difference to be statistically
significant (F value 24.17, p < .0001). We also found that the difference between
average MAP scores forHd and Sr on Vehicle+ is statistically significant (F value
28.24, p < .0001). In other words, we are satisfied that Figure 9 summarizes the
data in a statistically reliable manner.

The graph in Figure 9 suggests at least five interesting conclusions. (1)
Keyword-only techniques are relatively constant in their performance regardless
of the sophistication of the available semantics. This is what we should expect,
because these techniques do not use any semantics in calculating query results.
(2) Conversely, all of the techniques that take advantage of semantics (HyKSS,
semantics-only, and generic-hybrid techniques) yield improved results when the
available semantics become more sophisticated. Again, this is intuitively what
we should expect from the nature of the task. (3) The semantics-only approach
is inferior to hybrid and keyword techniques for simple ontology libraries where
there is not much semantic support. However, semantics-only can be quite good
when the ontology library is rich. (4) The generic-hybrid approach trends in
the same direction as HyKSS, but at a lower level of overall performance. (5)
HyKSS performs better on average than the other techniques (significant at the
level p < .05) across a range of conditions (query set, document set, and ontology
library). As we would expect, the difference between HyKSS and keyword-only
performance is minimal when the available semantics are simple, but becomes
much more pronounced as the available semantics increase. For simplicity we
have only presented the analysis for the representative techniques, but we per-
formed the full analysis for all ten techniques and found similar results, so these
conclusions hold for all the techniques we tested.

5 Related Work

HyKSS processes free-form queries in a hybrid fashion, recognizing both key-
words and semantic constraints. Looking for similar systems, we found little
work in efforts to handle comparison constraints in free-form queries, and none
in the hybrid search arena. We did see, however, that Microsoft announced that
its search engine Bing24 has natural language capabilities that make use of com-
parison constraints on price in the search process. Being proprietary, we are
unable to make direct comparisons with HyKSS, but we did enter our running
query on the Bing home page.25 Bing failed to semantically process the com-
parison constraint “under 12 grand” but, at least, returned results in the right
domain, whereas another widely used search engine not only failed to recognize
the constraint, but also returned in its top results an ad for a grand piano in
Orem in “excellent condition”.

24 http://www.bing.com
25 January, 2012

HyKSS: Hybrid Keyword and Semantic Search 23

The hybrid search systems of which we are aware either all require structured
queries rather than free-form queries [1, 13–15], require a “keyword-based struc-
tured query language” [16], or require queries that are an extension of formal
conjunctive queries [17, 18]. The structured query hybrid systems do, however,
have retrieval and ranking mechanisms similar to those in HyKSS. The authors
of [13] present an adaption of the vector space model for hybrid search that
weights annotated concepts in documents according to a TF/IDF scheme. The
form-based query system of K-Search [1] is similar to the advanced form inter-
face of HyKSS, but does not include negations. By default, results must satisfy a
hard semantic filter and are ranked according to keyword score, which is compa-
rable in concept to the Keyword - Hard Semantics technique in our experiments.
GoNTogle [1] allows users to return the intersection or union of keyword and se-
mantic search results. For semantic ranking, GoNTogle considers the number of
tokens in the document that the annotation covers, the total number of tokens
in the document, and the number of ontology classes involved in query execu-
tion. Like HyKSS, GoNTogle combines the semantic score with the keyword with
linear interpolation, but with pre-set weights.

The authors of [14] leverage semantic annotations in the context of existing
search engines. They use a generalization of the PageRank algorithm, Objec-
tRank, which allows the ranking process to include objects in addition to pages.
In an offline step the system processes ontological reasoning and generates HTML
pages for each object. The system then transforms formal structured queries into
a sequence of standard web search queries and combines results. Experiments
show that the approach performs well in terms of precision and recall.

In addition to hybrid search, CE2 [17] and Semplore [18] show viability for
large-scale applications. CE has a unified framework that includes both RDF
data and documents. Preliminary results show increased precision over keyword
and semantic search while maintaining acceptable response times with millions
of triples.

Although not a hybrid system, PowerAqua [19] has a number of similarities
with HyKSS. It accepts a natural language query and returns annotations from
various public structured knowledge repositories as answers. In its search for rel-
evant annotations, PowerAqua considers multiple ontologies and maps ontologies
together, relying on syntactic label similarities, semantic similarities in ontology
hierarchies and WordNet, and some heuristics. PowerAqua, by itself, is a seman-
tic search system, although Fernandez, et al. [9] discuss combining PowerAqua
with the work of Castells, et al. [13] to construct a cross-ontology hybrid search
system. The cross-ontology mechanism in HyKSS is, in many ways, simpler than
the mechanism used in PowerAqua. Similar to PowerAqua, HyKSS combines on-
tologies dynamically at runtime to answer a user query. In contrast, HyKSS can
rely on data frames within extraction ontologies, along with a series of simple
heuristics, to determine ontological context. PowerAqua is not as fortunate and
relies instead on labels and the structure of ontologies without data frames to
discover similarities.

24 Zitzelberger, Embley, Liddle, and Scott

Based on our work we believe that it is fruitful to explore blending the best of
both the semantic and keyword worlds in a hybrid approach like HyKSS. Since
there is increasing interest in semantic search techniques, we expect this to be the
topic for continued future study as researchers continue to improve the available
non-hybrid approaches. For example, two non-hybrid semantic search systems
of note are FREyA [20] and MORAG [21]. FREyA transforms natural-language
questions into SPARQL queries by mapping words from the natural-language
question to concepts within an underlying ontology. FREyA uses a combination
of syntactic parsing, ontology-based reasoning, and user interaction to establish
and refine its interpretation of natural-language queries. MORAG is a framework
that uses explicit semantic analysis (ESA) to map (and match) query concepts
to document concepts through the lens of some semantic concept space derived
from such knowledge sources as Wikipedia.

6 Conclusion

HyKSS processes hybrid keyword and semantic search queries in accord with
five principles: (1) semantic indexing, along with standard keyword indexing,
(2) semantic analysis as well as keyword analysis of user queries, (3) result rank-
ing based on both semantic and keyword match, (4) identification and use of
overlapping ontological contexts, and (5) advanced form search when conjunc-
tive free-form queries are insufficient. Semantic indexing for HyKSS is similar to
standard keyword indexing in the sense that HyKSS precrawls web sites (e.g.,
craigslist.org), indexes the semantics with extraction ontologies, and leaves a
pointer to the original text semantically identified by OntoES. Semantic query
analysis matches OntoES-identified semantics in the query with known ontolo-
gies and removes semantic-only query words, as well as stop words, before pro-
cessing keywords. The HyKSS result ranking algorithm dynamically apportions
weights to keywords and semantics depending on the proportion of keywords
and semantics in the query. HyKSS can process queries that span ontologies,
both for conjunctive free-form queries and advanced form queries (e.g., cars and
US locations in our running example query and in our example of a form query
in Figure 4).

HyKSS performs hybrid keyword and semantic free-form queries well. With
a chosen alpha level of p < .05 we found for our experiments with car ads
from craigslist.org that HyKSS outperforms keyword search in isolation, seman-
tic search in isolation, and two generic hybrid search protocols (Keyword - Soft
Semantics and Keyword - Hard Semantics). Our experiments also show that as
semantic recognition within a domain increases, ranking results can improve:
For the HyKSS - Dynamic Weights technique in the car-ads domain, Vehicle+
performs better than Vehicle (p < .0001), and more generally as Figure 9 shows,
all of the techniques that leverage semantic recognition tend to perform better
when more semantic recognition is available. Across the domains we considered
(car ads, mountains, roller coasters, video games), even a small amount of se-
mantics (e.g. Generic Units) appears to perform better than no semantics at all

HyKSS: Hybrid Keyword and Semantic Search 25

as Figure 9 shows. We also observed that too little semantics combined with key-
word search performs worse than keyword search in isolation for some techniques
(e.g., consider Numbers for Sr and Gs in Figure 9). However, as the performance
of HyKSS demonstrates, there are significant advantages to hybridizing keyword
and semantic search techniques, and the HyKSS approach itself appears promis-
ing.

References

1. R. Bhagdev, S. Chapman, F. Ciravegna, V. Lanfranchi, and D. Petrelli. Hybrid
search: Effectively combining keywords and ontology-based searches. In Proceed-
ings of the 5th European Semantic Web Conference (ESWC’08), pages 554–568,
Tenerife, Canary Islands, Spain, June 2008.

2. D.W. Embley, S.W. Liddle, D.W. Lonsdale, J.S. Park, B.-J. Shin, and A. Zitzel-
berger. Cross-language hybrid keyword and semantic search. In Proceedings of the
31st International Conference on Conceptual Modeling (ER 2012), pages 190–203,
Florence, Italy, October 2012.

3. D.W. Embley and A. Zitzelberger. Theoretical foundations for enabling a web of
knowledge. In Proceedings of the Sixth International Symposium on Foundations of
Information and Knowledge Systems (FoIKS’10), pages 211–229, Sophia, Bulgaria,
February 2010.

4. P. Buitelaar, P. Cimiano, P. Haase, and M. Sintek. Towards linguistically
grounded ontologies. In Proceedings of the 6th European Semantic Web Conference
(ESWC’09), pages 111–125, Heraklion, Greece, May/June 2009.

5. D.W. Embley. Programming with data frames for everyday data items. In Proceed-
ings of the 1980 National Computer Conference, pages 301–305, Anaheim, Califor-
nia, May 1980.

6. D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,
and R.D. Smith. Conceptual-model-based data extraction from multiple-record
web pages. Data & Knowledge Engineering, 31(3):227–251, 1999.

7. V. Rus. A first evaluation of logic form identification systems. In R. Mihalcea and
P. Edmonds, editors, Senseval-3: Third International Workshop on the Evaluation
of Systems for the Semantic Analysis of Text, pages 37–40, Barcelona, Spain, March
2004.

8. C. Tao, D.W. Embley, and S.W. Liddle. FOCIH: Form-based ontology creation
and information harvesting. In Proceedings of the 28th International Conference
on Conceptual Modeling (ER2009), pages 346–359, Gramado, Brazil, November
2009.

9. M. Fernandez, V. Lopez, M. Sabou, V. Uren, D. Vallet, E. Motta, and P. Castells.
Semantic search meets the web. In Proceedings of the Second IEEE International
Conference on Semantic Computing (ICSC‘08), pages 253–260, Santa Clara, Cal-
ifornia, 2008.

10. C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, New York, New York, July 2008.

11. T.-Y. Liu. Learning to Rank for Information Retrieval. Springer, Berlin, Germany,
1st edition, 2011.

12. A.C. Rencher and W.F. Christensen. Methods of Multivariate Analysis. Wiley, 3rd
edition, July, 2012.

26 Zitzelberger, Embley, Liddle, and Scott

13. P. Castells, M. Fernandez, and D. Vallet. An adaptation of the vector-space model
for ontology-based information retrieval. IEEE Transactions on Knowedge and
Data Engineering, 19(2):261–272, February 2007.

14. B. Fazzinga, G. Gianforme, G. Gottlob, and T. Lukasiewicz. Semantic web search
based on ontological conjunctive queries. In Proceedings of the Sixth International
Symposium on Foundations of Information and Knowledge Systems (FoIKS10),
pages 153–172, Sophia, Bulgaria, February 2010.

15. G. Giannopoulos, N. Bikakis, T. Dalamagas, and T.K. Sellis. GoNTogle: A tool for
semantic annotation and search. In Proceedings of the Seventh European Semantic
Web Conference (ESWC‘10), pages 376–380, May/June 2010.

16. J. Pound, I.F. Ilyas, and G. Weddell. Expressive and flexible access to web-
extracted data: A keyword-based structured query language. In Proceedings of
the 2010 International Conference on Management of Data (SIGMOD’10), pages
423–434, Indianapolis, Indiana, June 2010.

17. H. Wang, T. Tran, and C. Liu. CE2: Towards a large scale hybrid search engine
with integrated ranking support. In Proceedings of the 17th ACM Conference
on Information and Knowledge Management (CIKM’08), pages 1323–1324, Napa
Valley, California, October 2008.

18. L. Zhang, Q. Liu, J. Zhang, H. Wang, Y. Pan, and Y. Yu. Semplore: An IR
approach to scalable hybrid query of semantic web data. In Proceedings of the 6th
International Semantic Web Conference and 2nd Asian Semantic Web Conference
(ISWC/ASWC’07), pages 652–665, Busan, Korea, November 2007.

19. V. Lopez, V. Uren, M.R. Sabou, and E. Motta. Cross ontology query answering
on the semantic web: An initial evaluation. In Proceedings of the Fifth Inter-
national Conference on Knowledge Capture (K-CAP’09), pages 17–24, Redondo
Beach, California, September 2009.

20. D. Damljanovic, M. Agatonovic, and H. Cunningham. Natural language interfaces
to ontologies: Combining syntactic analysis and ontology-based lookup through
the user interaction. In Proceedings of the 7th Extended Semantic Web Conference
(ESWC10), pages 106–120, Heraklion, Greece, May/June 2010.

21. O. Egozi, S. Markovitch, and E. Gabrilovich. Concept-based information retrieval
using explicit semantic analysis. ACM Transactions on Information Systems,
29(2):1–34, April 2011.

