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ABSTRACT
Building a database of facts extracted from historical doc-
uments to enable database-like query and search would re-
duce the tedium of gleaning facts of interest from historical
documents. We propose a solution in which historical docu-
ments themselves constitute the stored database. In our so-
lution, we use information-extraction techniques to produce
a conceptualized external annotation of facts found in each
document, and we superimpose the conceptualization over
the document collection. The annotation process populates
the conceptualization producing a repository of extracted
facts, and a reasoner obtains inferred facts from these ex-
tracted facts. Our query interface accepts free-form queries
and converts them to formal queries over the extracted and
inferred facts. Displayed results include, in addition to stan-
dard query results, images of original documents with results
highlighted along with reasoning chains for inferred facts
grounded in these highlighted facts. Along with giving the
implementation status of our proof-of-concept prototype, we
present results for extraction accuracy and efficiency and
point to current and future work needed to enable a practical
solution for the envisioned historical-document database.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
E.0 [Data]: General

General Terms
Design,Theory

Keywords
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1. INTRODUCTION
Historians, both professional and avocational, are interested
in gleaning facts from historical documents. Examples:

• When was William Lathrop born?

• Who are the grandchildren of Mary Ely?

• Which of Mary Ely’s grandchildren died before reach-
ing the age of eight?

Documents such as Page 419 of The Ely Ancestry [4] in Fig-
ure 1 contain answers to these queries, but searching for
them manually is tedious. Of value are keyword searches
over documents that have been run through an OCR en-
gine (e.g., Page 419 of the Ely ancestry in Figure 2), but
can we do better? Can we make facts and implied facts
database-like searchable? And, so that untrained users can
pose the queries themselves, can we effectively support free-
form queries for these facts? Further, along with giving an-
swers to queries, can we explain why the answers satisfy the
queries: can we give reasoning chains and display original
documents with facts of interest highlighted?

Answering these questions demands resolving a number of
challenging issues that have been the subject of a consid-
erable amount of research: (1) Automated fact extraction
from text, a challenging sub-area of information extraction
[18, 19, 23], (2) OCR recognition accuracy [15], (3) Question
answering [5, 7, 13], (4) Keyword search and ranking algo-
rithms as pioneered by Google and Yahoo!, and (5) Infer-
ence in logic, particularly description logics [3]. In addition
to these general problems, the queries above applied to the
Ely page in Figures 1 and 2 point to some specific problems
needing resolution: (1) Names in queries may not directly
match names in the text. Neither of the two occurrences
of “William Lathrop” in the magnified part of Figure 1 is
a direct match: both have a middle name and one has an
implied surname. Further, as a common problem, the name
is ambiguous—which William Lathrop? (2) Automatically
sorting out stated family relationships in complex sentences
such as the ones describing the Lathrop families in Figure 1
is non-trivial. (3) Implied information requires reasoning:
of interest, but not stated in Figure 1, for example, are in-
ferable facts, such as the surname of the Lathrop children,



Figure 1: Sample Page from The Ely Ancestry.

their grandparents, and their gender. (4) The information
extraction must be tolerant of OCR errors (e.g., the i860
at the bottom of the magnified part of Figure 2 is really
the year 1860 ) (5) Expectations that all facts (stated and
implied) can be anticipated and therefore extracted and in-
ferred is not reasonable. But help can still be provided by
a combination of keyword and database-query search lead-
ing to pages in documents that humans can read to obtain
desired facts (e.g., Where was Maria Jennings born?).

To address these issues, and as a way to enable search for
facts and implied facts in historical documents, we propose
WoK-HD.1 In our WoK-HD, we automate the construction
of a conceptual structure superimposed over images of his-
torical documents that enables the document repository to
serve as a queriable repository of facts. To provide a firm
foundation for our WoK-HD we adopt and adapt fundamen-
tal tenets from the philosophical disciplines of ontology, epis-
temology, logic, and linguistics and to make it computation-
ally viable we integrate these ideas with conceptual modeling
fundamentals for information systems. Thus, the concep-
tual structure is a linguistically-grounded ontology (as de-
scribed in Section 2), enabling it to commit to the existence
of objects and their properties based on text obtained from
document images via an OCR engine. Epistemologically,
the conceptual structure, populated with extracted facts, is
a formal predicate-calculus theory, which immediately en-
ables logic reasoners to infer facts that are implied, but not
directly stated in the historical documents (as described in
Section 3). The application of linguistically-grounded on-
tologies to free-form user queries leads to the automatic
generation of formal queries over the populated conceptual
structure (as described in Section 4). In addition to re-
turning results to free-form user queries, the WoK-HD also

1We call our proposed system WoK-HD (W eb of
Knowledge for H istorical Documents) because it is part of
our larger WoK project [12] in which we superimpose a web
of data (in the semantic web sense [24]), over a general col-
lection of documents—in this case over historical-document
images with text made machine readable by an OCR engine.

Figure 2: OCR of Sample Page in Figure 1.

provides epistemological truth authentication: when asked,
it displays reasoning chains for any inferred facts and also
displays original document images with relevant extracted
facts highlighted (also described in Section 4).

Our contribution in this paper is the WoK-HD implemen-
tation, which we describe here. Prior work has focused on
extraction from multiple-record web documents [10], free-
form query processing [2], the use of 3rd-party reasoners
over extracted genealogical data [25], named-entity recogni-
tion in OCR’ed historical documents [16], and advocating
the WoK vision [12]. However, this is the first time we have
been able to focus on fact extraction in historical documents
and the first time we have been able to put the various
pieces together in a single implemented system to create
a WoK-HD—the superimposition of extraction ontologies,
free-form query processing, and result authentication over
a data repository of historical documents. In Section 5 we
give our current implementation status, and we report the
results of some initial experimentation. Although we have
accomplished much, many opportunities for further work
still await us (Section 6). We conclude in Section 7.

2. FACT EXTRACTION
Facts are instantiated first-order-logic predicates. Exam-
ples:

• Person(osmx17 ) is a one-place predicate, where osmx17
is the object identifier for some person.2

• Person(osmx17 ) has Name(“William Gerard Lathrop”)
is a two-place predicate, written here using infix nota-
tion with whitespace allowed, rather than in the more
common prefix notation: hasName(osmx17, “William
Gerard Lathrop”).

• Person(osmx17 ) married Person(osmx193 ) on Mar-
riage Date(1837 ) is a three-place predicate.

2All our object identifiers have the form osmx(\d)∗—“osm”
for Object-oriented Systems Modeling [11], the conceptual-
modeling language we use, and “x” for XML, the language
in which we represent our populated conceptual models.



Predicate names are ontological statements of what objects
can exist for one-place predicates and statements of what
relationships among objects can exist and how existing ob-
jects can relate for n-place predicates (n ≥ 2). Instantiated
predicates therefore are statements of fact—epistemological
knowledge assertions.

2.1 Ontologies as Frameworks for Facts
Ontology is the study of existence. Its most fundamen-
tal question is “What exists?” We answer computation-
ally for our WoK-HD by declaring a conceptual-model in-
stance. The conceptual model we use for the WoK-HD is
fact-oriented, meaning that each declared object set corre-
sponds to a one-place first-order-logic predicate and each
declared n-ary relationship set corresponds to an n-place
predicate. In the context of our WoK-HD, we call our fact-
oriented conceptual-model instances ontologies because they
are intensional statements about what can exist.

Epistemology is the study of knowledge. One of its funda-
mental questions is “What is knowledge?” For our WoK-
HD, we answer computationally by saying that a populated
conceptual-model instance constitutes knowledge. WoK-HD
ontologies are frameworks for facts, which, when instan-
tiated, constitute atomic epistemological knowledge state-
ments. Figure 3 is a screenshot of our Ontology Workbench
with an ontology on the left and a document to be anno-
tated on the right. When a user clicks on the go button, the
workbench automatically annotates the document and adds
it to the WoK-HD.

In the ontology in Figure 3, boxes denote object sets—
dashed boxes for lexical object sets and solid boxes for non-
lexical object sets. Elements of lexical object sets are text
strings (e.g., “Lathrop” could be an element of the lexical
object set Surname, and both “William” and “Gerard” could
be elements of Given Name). Elements of non-lexical object
sets are object identifiers (e.g., osmx17 could be an element
of the non-lexical object set Person, and osmx443 could be
an element of Name). Object-set names are one-place pred-
icate names.

Lines connecting object sets denote binary relationship sets,
and diamonds with n incident lines connecting to object
sets denote n-ary relationship sets. Names for binary rela-
tionship sets with reading direction arrows next to relation-
ship lines are a space-delimited concatenation of the tail-
side object-set name, the name associated with the reading-
direction arrow, and the head-side object-set name (e.g.,
Person died on Death Date). Names for n-ary relationship
sets are specified fully and must include the object-set name
for each of its connections. Relationship sets without spec-
ified names have default names: an alphabetized hyphen-
delimited concatenation of the space-elided object-set name
for each connection (e.g., MarriageDate-Person-Person for
the ternary relationship set in Figure 3). Relationship-set
names are n-place predicate names, which we write in infix
notation (e.g., Person(x) has Birth Date(y)).

Ontological constraints come in several varieties. A white
triangle denotes a generalization/specialization, an is-a re-
lationship; generalizations attach to the apex of a triangle
and specializations attach to the base (e.g., in Figure 3 Child

is a specialization of Person). An is-a relationship constrains
the set of objects in a specialization to be a subset of the
objects in a generalization. A black triangle denotes aggre-
gation and indicates that an aggregate object includes its
connected component objects. Formally, however, a black
triangle is just a template for a collection of is part of rela-
tionship sets. Thus, the aggregation in Figure 3 stands for
two relationship sets whose names are Given Name is part
of Name and Surname is part of Name. Every relationship-
set/object-set connection has participation constraints, ei-
ther explicitly given or given by default. The participation
constraint 1:2 associated with the connection of the object
set Child and the relationship set Child has parent Person
constrains child objects to associate with either one or two
person objects (no more and no less). Participation con-
straints with variables must satisfy given constraints over
the variables. Thus, in Figure 3, since a + b > 0, name
aggregates must have either one or more given names or a
surname or both. In the absence of explicit participation
constraints, decorations on connections determine cardinal-
ity constraints. Arrowheads constrain relationship sets to
be functional from tail(s) to head(s) (e.g., a person can be
born on only one date and a marriage takes place on only
one date). Circles on connections denote optional participa-
tion, so that in our ontological specification in Figure 3, for
example, a person need not participate in a marriage and
need not have a death date (e.g., because the date may be
unknown), but must have a name.

2.2 Linguistically Grounded Ontologies
Besides “What is knowledge?” another fundamental ques-
tion of Epistemology is “How is knowledge acquired?” For
our WoK-HD, we answer by grounding our ontologies lin-
guistically [6]. Linguistics is the study of human language,
and one of its fundamental questions is “How does language
convey meaning?” To provide for meaning conveyance, we
assign a data frame [9] to each object set and each relation-
ship set in an ontology. In artificial intelligence, a frame is a
data structure for representing a stereotyped situation (e.g.,
a room or a child’s birthday party) [14]. A data frame is a
data structure for representing a data item such as a date—
i.e., everything about a date: how a date appears in text
in all of its various forms (e.g., “May 12, 1835” or “Easter
1874”), how a date is represented internally (e.g., as a Julian
date, 1847032 for February 1, 1847), and what operations
apply (e.g., between(x, y, z):Boolean for date x is between
dates y and z). A data frame ties ontology components to
language and thus grounds them linguistically.

We call linguistically grounded ontologies extraction ontolo-
gies because their data frames enable our extraction system
(OntoES)3 to extract facts from a document (e.g., from the
Ely page in Figure 3) and to populate an ontology (e.g., the
conceptual-model instance in Figure 3) with these facts. In
ontological terms, data frames are about ontological commit-
ment. Because extraction ontologies populate three different
types of conceptualizations—lexical object sets, non-lexical
object sets, and relationship sets—data frames specify on-
tological commitment in three different ways.

3As the tab in the Ontology Workbench in Figure 3 shows,
we call the system that invokes extraction ontologies on doc-
uments OntoES (Ontology Extraction System).



Figure 3: Screenshot of Workbench with Extraction Ontology Ready to Apply to Ely Page
.

Ontological Commitment for Lexical Object Sets. The ele-
ments in lexical object sets are strings that represent them-
selves. Thus, we merely need to recognize a textual string as
potentially belonging to a lexical object set to attain ontolog-
ical commitment. In OntoES, we mainly use regular expres-
sions as recognizers. In Figure 3, for example, in the Data
Frame Editor window, the regular expression \b18\d\d\b,
recognizes years in the 1800s—more Value expressions can
be added, as needed. The data-frame interface in Figure 3
also shows some additional recognition features. Under the
Lexicon Editor tab, users can declare lexicons, which are
simple lists of values (e.g., country names); as such they are
special kinds of regular-expression recognizers, although we
process them differently for efficiency reasons. Under the
Macro Editor tab, users can declare and name regular ex-
pressions that are useful as components of more complex
regular expressions. Exception expressions (which users can
add in the Value Phrase form) eliminate strings that a value
expression may recognize but are not wanted. Left and Right
context expressions and Keyword Phrases can help ensure
the correctness of extracted values. In addition to recog-
nizing lexical elements that belong to an object set, a data
frame also converts values into an internal representation
(especially for use in applicable Methods), provides a stan-
dard string representation for display, and stores annotation
information for provenance purposes (a reference to a cached
page from which a value is extracted and the location on the
page of the extracted value).

Ontological Commitment for Non-Lexical Object Sets. Ele-
ments in non-lexical object sets are object identifiers. As is
typical in philosophical ontology, it is non-trivial, in general,
to determine when to commit to an object’s existence—to

determine when OntoES should generate an object identi-
fier. In our earlier work on multiple-record web documents
[10] (e.g., for car ads or obituaries), we assumed that each
record was for an object (e.g., each car ad for a car and
each obituary for a deceased person). In general, however,
we must answer the question, “What lexical information
provides sufficient evidence for the extraction ontology to
commit to the existence of an object?” Data frames for
non-lexical object sets provide for declarations of ontologi-
cal commitment, i.e., let users state what lexical evidence
must exist for generating an object. In many documents,
and particularly in historical documents, proper nouns de-
note existence. In the Ely page in Figures 1–3, the proper
noun “William Gerard Lathrop” denotes the existence of a
person and the proper noun“Boonton, N. J.”denotes the ex-
istence of a location. Further, the constraints in the ontology
in Figure 3 require that a person have a name and that a
name (which is itself non-lexical) have either one or more
given names or a surname or both. Hence, we declare in the
Person data frame that the existence of a new Name object
commits the ontology to generate a new Person object, and
the existence of name strings in the text being processed
commits the ontology to generate a new Name object. As
an example of another kind of ontological commitment for
non-lexical object sets, if we were to choose to model Mar-
riage Event as a non-lexical object the ontology in Figure 3
with related object sets Person (twice) and Marriage Date,
the existence of two people and a marriage date would imply
the existence of a marriage event.

Ontological Commitment for Relationship Sets. Recognizers
in OntoES for relationship sets are regular expressions with
slots for lexical or non-lexical objects. Examples:



{Person}\sb\.\s{Birth Date}
{Child}.+son\sof.+and\s{Person}

where braces enclose references to connected object sets.
Thus, ontological commitment for relationship sets depends
on ontological commitment for object sets. Interestingly,
ontological commitment for object sets can also depend on
ontological commitment for relationship sets. When the son
of regular expression above matches a textual phrase like
“William Gerard Lathrop ... son of ... and Gerard Lath-
rop”, this match also signals the ontological commitment of
a new Child object and, since Child is a specialization of
Person, also the propagation of the new Child object to the
Person object set.4

3. INFERRED FACTS
Because our populated ontologies constitute predicate-calc-
ulus theories, we can immediately apply any logic inference
engine to obtain inferred facts.5 In our Ontology Work-
bench, a user can click on the Tools menu (see Figure 3) to
bring up a Rule Editor that lets a user declare rules based on
predicates and rule heads of other declared rules in an ontol-
ogy. Thus, for example, based on the ontology in Figure 3,
we can declare a rule for grandparent of :

Person(x ) is grandparent of Person(y) :-
Child(y) has parent Person(z ),
Child(z ) has parent Person(x ).

When a user declares rules, the system adds structure to
the ontology: for this grandparent-of rule, for example, it
adds a recursive Person-Person relationship set. Then, af-
ter OntoES extracts basic facts, it runs the inference rules
and populates the added structures. It would, for our exam-
ple here for instance, insert a relationship from the person
identifier for Mary Ely to the person identifier for Maria Jen-
nings and place the relationship in the Person is grandparent
of Person relationship set.

From the Ely page in Figure 1, a reader can infer a number
of facts. A reader can easily discern, for example, that Mary
Ely is the grandmother of the five Lathrop children: Maria,
William, Donald, Anna Margaretta, and Anna Catherine.
For some “easily discernible” facts it is possible to write sim-
ple inference rules as just described, but for others there
may be better ways and for still others additional facilities
may be needed to obtain all the facts “easily discernible”
by a reader. For example, should we extract the fact that
the surname of the grandchildren is “Lathrop”, which in the
Ely page is stated only indirectly as the last name of the fa-
ther of the family, or should we infer it? And, for example,
how can we obtain gender information so that we know that
Mary is the grandmother, and not the grandfather? The

4Note that care must be taken not to generate extra ob-
jects by invoking multiple rules for object commitment for
the same recognized textual string. Thus, for example, al-
though there is evidence that “William Gerard Lathrop” de-
notes a person via both Person has Name and Child is-a
Person, OntoES only generates one person object. Different
appearances of the same name denoting the same person is
another matter—and is to be resolved through determining
object identity, not by fact extraction (see Section 6).
5In our implementation we generate OWL ontologies, pop-
ulate them with RDF triples, and reason with the Pellet
inference engine.

obvious “son of” and “dau. of” clues can help, but in the Ely
page, these clues are explicit only for the parents, not the
grandparents and not the children.

Through the use of features already available in OntoES in
combination with inference rules, it is possible for users to
resolve these issues and others like them. For gender, as
an example, the inference is indirect either through gender-
specific relationships or through knowledge of gender-specific
given names. For gender-specific relationships, for example,
we can add the specialization Son in addition to Child in the
ontology in Figure 3 and add inference rule Person(x ) has
Gender(“Male”) :- Son(x ). And for gender-specific names
we can add the object set Female Given Name to the ontol-
ogy along with the inference rule Person(x ) has Gender(“Fe-
male”) :- Person(x ) has Name(y), Given Name(z ) is part of
Name(y), Female Given Name(z ). For distinguishing given
names and surnames, one possible resolution is to make use
of canonicalization methods, which, as mentioned earlier, is
a way to convert extracted strings into internal represen-
tations. When, for example, a recognizer picks up the full
name of a person, a canonicalization method can divide it
into given names and a surname. And, in addition, when
the surname is implicit, as it is for the children of a family
in the Ely page, the following rule for surnames could be
added: Surname(x ) is part of Name(y) :- Person(z ) has
Name(y), Child(z ) has parent Person(w), Person(w) has
Gender(“Male”).

4. QUERY INTERFACE
Suppose a user enters the free-form query: grandchildren
of Mary Ely. Figure 4 shows the results along with the
authentication displayed when a user clicks on Maria Jen-
nings in the table of returned results. The authentication
is a display of the reasoning chain explaining why the sys-
tem believes that Maria Jennings is a grandchild of Mary
Ely. Highlighted in the displayed Ely page are the extracted
base facts supporting the reasoning chain.

The motivation for authentication traces its roots to Plato
who insists that knowledge should be justified [17]. “Knowl-
edge” without some sort of truth authentication can be con-
fusing and misleading. For our WoK-HD, we thus attempt to
establish truth via provenance and authentication. And, al-
though we cannot guarantee that rules and facts in sources
are genuine, we can expose them and let users decide for
themselves whether the results returned are valid.

The motivation for supporting free-form queries is clear: un-
trained users are incapable of formulating structured quer-
ies, and even trained users are incapable when neither the
type of database nor the schemas of the data are known.
Although necessary, processing free-form queries automati-
cally is challenging. To explain our approach for the WoK-
HD project, consider the query: Mary Ely’s grandchildren
who died before reaching the age of eight. The key idea is to
apply extraction ontologies to queries. Linguistically, mean-
ing conveyance is a matter of matching query words and
phrases to object and relationship sets (given or inferred)
and to methods applicable to these object and relationship
sets. Then, the system can generate the equivalent of select-
project-join queries over conceptual-model instances by join-
ing over the subgraph of matched object and relationship



Figure 4: Query Results with Reasoning Chain Grounded in Extracted Facts
.

sets, selecting both by doing equality restrictions for iden-
tified lexical-object-set instances and by applying identified
Boolean methods, and projecting on matched lexical object
sets in the subgraph. For example, the system can obtain the
following select, project, and join expressions for the query
about Mary’s grandchildren by applying an extraction on-
tology like the one in Figure 3, albeit augmented to include
inference rules and to have a rich set of recognizers not only
for object and relationship sets, but also for methods and
inferred object and relationship sets.

select with: Given Name = “Mary” ∧ Surname = “Ely”
∧ Age in Years(Birth Date, Death Date) < 8

project on: Given Name(of grandchild), Surname(of grand-
child), Birth Date(of grandchild), Death Date(of grand-
child), Given Name(of grandparent), and Surname(of
grandparent).

join over: Given Name is part of Name, Surname is part
of Name, Person has Name, Person has grandchild
Person (an inferred relationship set), Person born on
Birth Date, and Person died on Death Date.

Derivation of Age in Years requires sophisticated data-frame
recognizers as detailed in [2]. Determination of projection
on the names of the grandchildren is interesting because it
involves the inverse of ontological commitment—recognizing
that a name should be written to identify a person. Other
projections are for all mentioned lexical object sets in the
select or join statements. Implied also are projections for

non-lexical object sets. Joins are over a path among all men-
tioned object sets. Multiple uses of the same relationship
set must observe appropriate natural-join renaming conven-
tions. Ambiguity resolution for cyclic hypergraphs requires
either path recognition from phrases in the query via relationship-
set data-frame recognizers or user interaction.

5. EVALUATION
We have largely implemented the WoK-HD as described
here, and we are diligently working to complete the basic,
full-line implementation. Users can declare extraction on-
tologies with an ontology editor implemented within the On-
tology Workbench as Figure 3 shows. Specifically, they can
declare conceptual-model instance and specify data frames
for both object sets and relationship sets including instance
recognition, canonicalization of recognized values, applicable
method declaration, and recognizers for method applicabil-
ity. OntoES runs and populates declared ontologies with
facts as described in Section 2. Users can invoke a rule edi-
tor through the Ontology Workbench and declare inference
rules (although we still need to allow for declaring more so-
phisticated rules). At the completion of an OntoES run, the
system can call an inference engine, which produces all facts
inferred from extracted facts according to declared inference
rules as described in Section 3. The system is also able to
evaluate free-form queries ([2]). However, integrating previ-
ous work on free-form queries into the Ontology Workbench
is only partial, as is work on authentication display. Thus,
we are unable to provide more than the mock-up that ap-
pears in Figure 4 even though much of the implementation



described in Section 4 is working in separate tools.

Based on our implementation, we declared an extraction on-
tology similar to the one in Figure 3, except that it also in-
cludes Son and Daughter specializations of Person and Son
of Person and Daughter of Person relationship sets, and it
does not include the marriage relationship set (the code for
n-ary relationship sets, n > 2, is not yet complete). We ran
it against the Ely page in Figure 2 and populated the on-
tology with 103 facts. OntoES extracted these 103 facts in
about 10 seconds. Checked manually, these results have a
recall ratio of 0.91 (97 correct facts of the 107 ground-truth
facts) and a precision ratio of 0.94 (only six false positives)
for a combined harmonic-mean F-measure of 0.93. We also
declared inference rules to find grandchildren and ran our
inference engine and found 31 of the 40 grandchild facts for
the three families on the Ely page (which can be seen most
clearly in Figure 4). Failure to find the additional nine was
a result of the OntoES’s failure to extract all base facts. In-
ferred facts are always correct with respect to the given base
facts, although users, of course, may specify nonsense rules
and rules that do not correspond to standard expectations
(which is why reasoning-chain authentication is important).
We also ran the extraction ontology against Pages 420–426 of
The Ely Ancestry and extracted 859 facts. We checked recall
and precision manually, yielding 0.59 and 0.71 respectively,
which is lower than for Page 419, but this was expected
since our recognizers were created with family descriptions
of the Ely page in Figures 1–4 in mind. The majority of the
missed facts were linked to not correctly recognizing names
and bad OCR. When this happened, the system became con-
fused and used the closest available name or date to form a
relationship.

6. CURRENT AND FUTURE WORK
Our current task is to complete the work of integrating all
code within our Ontology Workbench and to make the full-
line from extraction through inference, query processing,
and authentication operational. Our future work, which we
have already begun, is to make various components work
better. Our efforts are particularly directed to three ma-
jor enhancements: (1) hybrid keyword and semantic search,
(2) semi-structured text readers, and (3) integration of fact-
filled ontologies and determining object identity within and
across fact-filled ontologies.

Hybrid Keyword and Semantic Search—HyKSS. HyKSS [27]
integrates standard keyword processing with semantic search.
In addition to returning results for free-form queries as de-
scribed here, HyKSS ranks pages from the repository in
which semantic results and keyword hits are found. It uses
a combined keyword and semantic ranking score in which
the relative weights of keywords and semantics depend on
the proportion of each in the user query. HyKSS also has an
advanced-search facility, in which it dynamically generates
a form depending on the ontology (or ontologies) applicable
to a user request, prepopulates the form with what it un-
derstands from the user request, and allows a user to alter
the content of the form—in particular in a way to be able to
specify disjunctive and negation queries, as well as standard
conjunctive queries. Integrating HyKSS into our Ontology
Workbench is underway.

Semi-structured Readers. Knowledge engineering, by hand,
is expensive. We thus have sought for ways (e.g., [20, 21])
and continue to seek for ways to generate extraction ontolo-
gies in an unsupervised or semi-supervised fashion by taking
advantage of the semi-structured nature of data-rich docu-
ments. The lists in the Ely page in Figures 1–4 are examples.
From an ordinary form specified by a user and after filling
in the form for one list entry (e.g., the family description for
the William Gerard Lathrop family in the middle of the Ely
page), we can generate an extractor for the list entry. To
the extent other list entries have the same pattern, we can
also extract from them. The challenge is to have the system
also be able to dynamically adjust its list-entry extractor in
the face of variations, asking for occasional help only when
it sees that variations are ambiguous or contain information
beyond the data filled in for the initial list entry. We further
see that, using techniques similar to those of Divali, et al. [8],
this automated list reader should be able to generate an ex-
tractor in an unsupervised fashion from (possibly noisy and
likely incomplete) extraction results obtained from OntoES.
In addition to cutting the cost of knowledge engineering,
we conjecture that we can also increase extraction accuracy.
Exploiting semi-structured patterns has a better chance of
being tolerant of OCR errors (e.g., of accepting the i800 in
Figure 2) and is less dependent on dictionaries for named-
entity extractors (e.g., of accepting the erroneous “c” as an
“e” in Tilcstone)

Integration and Object Identity. Extraction ontologies de-
signed with respect to the way facts are conveyed in a docu-
ment or generated automatically according to semi-structur-
ed patterns in text are not likely to be organized in an ideal
way. For the extraction ontology used for our evaluation,
for example, we extracted names as they appeared in the
text, but would prefer to have names decomposed as in the
ontology in Figure 3. Further, we extracted son of and
dau. of facts, but would prefer to only have child of facts
along with gender information. We can use techniques de-
veloped in previous work [26] to automate the generation
of schema mappings and data-transformation rules. Besides
transforming facts to conform to a predeclared ontology, we
may wish to integrate ontologies to create a larger appli-
cation ontology (particularly for ontologies generated auto-
matically from semi-structured sources such as tables as we
have described in prior work [22]). An additional challenge,
particularly for historical documents, is to resolve object
identity—e.g., to determine that all the grandmother Mary
Ely’s on the Ely page in Figures 1–4 are the same, but the
one child Mary Ely in the Abigail Huntington Lathrop fam-
ily is different. Our approach is to compare the extracted
attribute information for each identified person to resolve
object identity as we have done in previous work [1].

7. CONCLUDING REMARKS
We have largely achieved our objective a creating a WoK-
HD (a web of knowledge super-imposed over a database of
images of historical documents). In the pilot field exper-
iment we ran, OntoES extracted hundreds of family facts
from eight pages of the on-line copy of the 1902 The Ely An-
cestry [4] with an F-measure accuracy of 0.68. All inferred
grandchild facts were necessarily correct with respect to the
extracted base facts. The WoK-HD enables search for both
facts and implied facts through its free-form query inter-



face. Results returned, in addition to the facts that satisfy
a query, include display authentication information, which
consists of reasoning chains grounded in facts highlighted in
original document images. The full-line implementation is
nearly complete, but we still have work to do to integrate
free-form query processing and authentication display into
our WoK-HD. Nevertheless, the results we already see are
encouraging and show the practical viability of a WoK-HD.
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[18] D. Sànchez. A methodology to learn ontological
attributes from the web. Data & Knowledge
Engineering, 69:573–597, 2010.

[19] S. Sarawagi. Information extraction. Foundations and
Trends in Databases, 1(3):261–377, 2008.

[20] C. Tao and D.W. Embley. Automatic hidden-web
table interpretation, conceptualization, and semantic
annotation. Data & Knowledge Engineering,
68(7):683–703, July 2009.

[21] C. Tao, D.W. Embley, and S.W. Liddle. FOCIH:
Form-based ontology creation and information
harvesting. In Proceedings of the 28th International
Conference on Conceptual Modeling (ER2009), pages
346–359, Gramado, Brazil, November 2009.

[22] Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, Y. Ding,
and G. Nagy. Toward ontology generation from tables.
World Wide Web: Internet and Web Information
Systems, 8(3):261–285, 2005.

[23] J. Turmo, A. Ageno, and N. Català. Adaptive
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