
00

Unsupervised Training of HMM Structure and Parameters for OCRed
List Recognition and Ontology Population

THOMAS L. PACKER, Brigham Young University
DAVID W. EMBLEY, Brigham Young University

Machine-learning-based approaches to information extraction and ontology population often require a
large number of manually selected and annotated examples in order to work. In this paper, we evaluate
ListReader, which provides a way to train the structure and parameters of a hidden Markov model (HMM)
using text selected and labeled completely automatically. This HMM is capable of recognizing lists of records
in OCRed and other text documents and clustering related fields across record templates. The training
method we employ is based on a novel unsupervised active grammar-induction framework that, after pro-
ducing an HMM wrapper, uses an efficient active sampling process to complete the mapping from the HMM
wrapper to ontology by requesting annotations from a user for automatically-selected examples. We measure
performance of the final HMM in terms of F-measure of extracted information and manual annotation cost
and show that ListReader learns faster and better than a state-of-the-art baseline (CRF) and an alternate
version of ListReader that induces a regular expression wrapper.

Categories and Subject Descriptors: I.2.7 [Artificial Intelligence]: Natural Language Processing—Lan-
guage parsing and understanding; H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: information extraction, wrapper induction, unsupervised learning, ac-
tive learning, grammar induction, OCRed text document, list, ontology population, HMM, Hidden Markov
Model

ACM Reference Format:
Thomas L. Packer and David W. Embley, 2014. Unsupervised Training of HMM Structure and Parameters
for OCRed List Recognition and Ontology Population. ACM Trans. Knowl. Discov. Data. 0, 0, Article 00 (
0000), 43 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Information extraction and ontology population are areas of research concerned with
building models or processes to discover information in implicitly-structured sources
like text and to make the structure of that information explicit, machine-readable,
and more readily usable by computing machines. Wrapper induction [Kushmerick
1997] and other machine-learning-based approaches are commonly employed to effi-
ciently produce an extraction model or wrapper. Supervised machine-learning-based
approaches are common (e.g. [Heidorn and Wei 2008], [Li et al. 2011]) and can perform
well in terms of accuracy, but often require a large amount of experimentation and

Authors’ addresses: Thomas L. Packer and David W. Embley, Computer Science Department, Brigham
Young University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 0000 ACM 1556-4681/0000/-ART00 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:2 T. Packer and D. Embley

Fig. 1. Kilbarchan Parish Register Page and KilbarchanPerson Filled-in Form

knowledge engineering to produce an effective set of feature extractors and a large
number of manually selected and annotated examples to learn well.

We propose ListReader, an unsupervised active wrapper induction process for learn-
ing Hidden Markov Models (HMMs) without technical expert input that are cus-
tomized to the structure of each text document (e.g., a book) and capable of populating
one or more richly-structured ontologies. ListReader requires no hand-labeled training
data to construct an HMM. It does, however, require a small number of hand-labeled
examples and a minimal amount of knowledge engineering to finalize the mapping
from HMM-labeled text to a populated ontology. In the end, ListReader induces a wrap-
per that is more accurate than a standard supervised machine learning approach but
requires fewer hand-labeled examples and less knowledge engineering. Moreover, it
minimizes the ways in which the hand-labeled examples affect the final model. In par-
ticular, since hand-labeled data only affects the external mapping from HMM states to
semantic labels, we can more easily repurpose a previously-induced wrapper for a new
target ontology.

To start ListReader processing, a user selects a text document containing one or
more lists of records, e.g., an OCRed collection of page images from a scanned book
selected for an information application. For example, the user could select the Kil-
barchan Parish Register [Grant 1912] for a family history application. Part of one page
of this book appears in the right side of Figure 1. The user constructs a data entry
form for the desired information in the left side of the user interface, e.g., the form

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:3

Fig. 2. KilbarchanPerson Ontology

<KilbarchanPerson.Name.Surname>Scott</KilbarchanPerson.Name.Surname>,

<KilbarchanPerson.Name.GivenName>Alexander</KilbarchanPerson.Name.GivenName>

, par. of <KilbarchanPerson.Parish[1]>Largs</KilbarchanPerson.Parish>[1], and

<KilbarchanPerson.Spouse.Name.GivenName>Elizabeth</KilbarchanPerson.Spouse.Name.GivenName>

<KilbarchanPerson.Spouse.Name.Surname>Houstoun</KilbarchanPerson.Spouse.Name.Surname>

, par. in <KilbarchanPerson.Spouse.Parish[1]>Kirktoun</KilbarchanPerson.Spouse.Parish>[1]>

, 1695 in <KilbarchanPerson.Spouse.Parish[2]>Craigends</KilbarchanPerson.Spouse.Parish>[2]

, 1698 in <KilbarchanPerson.Spouse.Parish[3]>Kirktoun</KilbarchanPerson.Spouse.Parish>[3]

m. <KilbarchanPerson.Spouse.MarriageDate.Day>13</KilbarchanPerson.Spouse.MarriageDate.Day>

<KilbarchanPerson.Spouse.MarriageDate.Month>Dec.</KilbarchanPerson.Spouse.MarriageDate.Month>

<KilbarchanPerson.Spouse.MarriageDate.Year>1691</KilbarchanPerson.Spouse.MarriageDate.Year>

Fig. 3. Labeled Record of the Highlighted Text in Figure 1

in Figure 1 before being filled in.1 ListReader translates the form into an ontology
schema, e.g., the target ontology in Figure 2. Without anything more than the given
text document (e.g., the entire collection of page images of the Kilbarchan book in our
example), ListReader applies an unsupervised process to automatically discover and
align records, induces a simple phrase structure grammar, and trains the structure
and parameters of an HMM. After ListReader sets the HMM’s structure and param-
eters, it actively requests labels for selected strings of text from the user. ListReader
highlights the strings it selects for the user to label, as Figure 1 shows. The user pro-
vides labels by filling in the data entry form.2 Figure 1 shows the filled-in form for
the highlighted text. ListReader uses the structure of the form to generate special-
ized labels for the field strings in the text document that specify the mapping of the
strings to ontology predicates. Figure 3 shows the labels for the highlighted record. Af-
ter labeling, the structure and parameters of the HMM are unchanged but some of the

1The construction of a form is the full extent of ListReader-required manual knowledge engineering.
2Filling in a form with ListReader-selected text is the full extent of required hand labeling.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:4 T. Packer and D. Embley

states will have been assigned labels by the user. ListReader executes the final HMM
using the Viterbi algorithm and maps labeled text to predicates, thus completing the
mapping from text to ontology.

Our approach to wrapper induction is a combination of unsupervised learning and
active learning. ListReader is unsupervised in that it induces an HMM without labeled
training data and does not alter the structure or parameters of this HMM after it starts
making active requests of the user for labels which it receives and assigns to existing
HMM states. Because of how the HMM is induced, one label from the user may apply
to more than one HMM state, which greatly reduces the amount of required labeling.
Furthermore, ListReader follows the spirit of active learning [Settles 2012] in that it
uses this structural model to request labels for those corresponding parts of the known
and unlabeled text that will have the greatest impact on the final wrapper’s mapping
from text to ontology, meaning the greatest increase in recall for the lowest number of
hand-labeled fields.

Our ListReader research makes the following contributions. First, we provide an
algorithm to train both model structure and parameters of an HMM for list recogni-
tion without hand-labeled examples. This algorithm is linear in time and space with
respect to the input text length, the discovered pattern length, and output label al-
phabet. Second, we provide an efficient active sampling process to complete the HMM
as a data-extraction wrapper that can map the data in lists to an expressive ontology
schema. Active sampling is an active-learning-like process that requests labels of se-
lected examples from the user without modifying the internal wrapper structure. The
final wrapper outperforms two alternatives in terms of a metric that combines preci-
sion, recall, and annotation cost. Our global approach to pattern discovery in the first
contribution is complementary to the active sampling process in the second in that
ListReader first discovers the most frequent patterns which then produce the greatest
return on investment of the user’s time in annotating.

We give the details of these contributions as follows. In Sections 2, 3, and 4 we de-
scribe the HMM wrapper induction process, illustrating the steps with a running ex-
ample of the execution of ListReader on the 140-page Kilbarchan Parish Record [Grant
1912]. We explain in Section 2 how ListReader discovers record-like patterns in text in
linear time and space and in Section 3 how ListReader derives the structure and pa-
rameters of an HMM from the discovered patterns—both without human supervision.
In Section 4 we tell how ListReader creates the mapping from HMM states to an on-
tology using active sampling. In Section 5 we provide an evaluation of the performance
of ListReader in terms of the precision, recall, and F-measure of the automatically ex-
tracted information, each as a function of manual field labeling cost, and compare the
learning rates to a state-of-the-art statistical sequence labeler (CRF) and to a previous
version of ListReader that induces regular-expression-based wrappers. In Section 6 we
discuss performance issues and opportunities for future work, and in Section 7 we com-
pare our proposed solution to related work on information extraction from lists and on
unsupervised wrapper induction. Finally, we make concluding remarks in Section 8.

2. UNSUPERVISED PATTERN DISCOVERY
In its unsupervised process of pattern discovery, ListReader finds record-like patterns
in the input text, produces a representation of the hierarchical field structure of these
strings, and associates the major components (delimited field groups) across differ-
ent types of records. In the next major step, detailed in Section 3, ListReader flat-
tens this hierarchical structure into a state machine and sets the parameters of the
HMM using statistics in the collection of parsed record patterns. As we explain in
Subsection 2.1, ListReader begins to discover patterns by conflating the input text—
substituting abstract word and phrase structure for strings of characters. ListReader

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:5

[Sp]

\n

[UpLo+]

[UpLo]

,J a m e s

[Sp]

[DgDg]

1 5

[Sp]

[UpLo+]

[UpLo]

.D e c

[Sp]

[DgDgDgDg]

1 6 7 2 .

[Sp]

\n

Fig. 4. Initial Parse of “\nJames, 15 Dec. 1672.\n”

then efficiently identifies record-like patterns in the abstract text (Subsection 2.2).
Subsequently, ListReader further parses and aligns field groups within and between
record patterns (Subsection 2.3). Finally, ListReader establishes the set of record and
field group templates from which it constructs the HMM (Subsection 2.4).

2.1. Text Conflation
ListReader converts input text into an abstract representation using a small pipeline
of conflation rules. They perform tokenization and chunking of the text which in turn
improve tolerance of many common OCR errors and the natural variations among
fields of the same type. Currently, we have established the following conflation rules,
given in their order of application.

(1) Split Word: Merges two alphabetic word tokens that are separated by a hyphen
and a newline into a single word symbol.

(2) Horizontal Punctuation: Conflates thin, horizontally-oriented punctuation charac-
ters: underscore, hyphen, en dash, em dash, and other Unicode variations.

(3) Numeral: Replaces each digit in a numeral with a digit designator (“Dg”).
(4) Word: Replaces contiguous letters with a generic word designator that only pre-

serves the relative order of upper-case (“Up”) and lower-case (“Lo”) characters.
ListReader optionally preserves the full spelling of lower-case words.

(5) Space: Conflates normal space characters (“ ”) with newlines (“\n”) using a com-
mon symbol (“[Sp]”).

(6) Incorrect Space: Removes spaces that occur on the “wrong side” of certain punctua-
tion characters because of an OCR or typesetting error, such as immediately before
a period.

(7) Capitalized Word Repetition: Replaces each contiguous sequence of space-delimited
capitalized words of any length with a single, generic symbol (“[UpLo+]”).

(8) Numeral Repetition: Replaces each contiguous sequence of comma- or hyphen-
separated numerals of any length greater than one with a generic symbol (e.g.
“[Dg+-]”) that only preserves the identity of the punctuation delimiter. The same
delimiter must be found between every pair of numerals in a sequence. Extra
spaces around the punctuation delimiter are also allowed.

The cumulative application of the conflation rules produces a sequence of small parse
trees. Figure 4 shows the parse trees for the text “\nJames, 15 Dec. 1672.\n”. The
dashed line joins the root phrase symbols giving a new sequence of symbols in which
ListReader looks for patterns. Not all conflation rules need be used for every book.
Generally, all of them should be used that do not erase distinctions between records
that should not be aligned, such as is the case when conflating lower-case words in
records where different field group delimiters like “born on” and “died on” are aligned.
Preventing the conflation of lower-case words is appropriate for books such as the
Kilbarchan Parish Register [Grant 1912] which contains very little prose and whose
list records are consistently structured.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:6 T. Packer and D. Embley

2.2. Record Pattern Search
To find record-like patterns in the simplified text, ListReader first builds a suffix tree
data structure from the conflated text. It then searches for repeated patterns that sat-
isfy our record-selection constraints: records must begin and end with a valid record
delimiter, must occur at least twice, and must contain at least one numeral or capital-
ized word.

ListReader relies on the suffix tree to efficiently find patterns in text. A suffix tree
is a compact data structure representing all suffixes of a text string by paths from its
root to its leaf nodes. (In our running example, the text is the single long string of
conflated symbols from the first conflation symbol for the first token on the first page
of the book to the last conflation symbol for the last token on the last page.) Each edge
in the suffix tree is labeled by the substring of symbols it represents. In addition, the
information maintained for each edge includes the offsets for each occurrence of the
edge’s substring and a count of these occurrences. ListReader constructs a suffix tree
in linear time and space using Ukkonen’s algorithm [Ukkonen 1995]. It also finds and
collects record-like patterns within the suffix tree in linear time and space by iterating
over the edges of the suffix tree and checking for strings terminating in each edge that
adhere to the properties specified for a record.

Figure 5 shows several patterns ListReader finds from the conflated text of the Kil-
barchan Parish Register. With each pattern we also give in Figure 5 the number of
unconflated strings that belong to the pattern and show a few of them—all of them for
the last pattern. Observe that all of the strings of original text satisfy the properties
required of records—each begins and ends with “\n” (a specified record delimiter) and
includes a number or a capitalized word or both. The patterns are thus potential record
patterns, and each pattern along with its candidate records forms a record cluster. Its
pattern is called a record template.

2.3. Field Group Discovery
ListReader next discovers parts of records (field groups) that recur among different
record clusters. These correspondences will be represented later in the HMM and used
to reduce the number of necessary hand-labeled fields. The intuition is that since a
field like a birth year or marriage year follows a specific field group delimiter like
“born” or “m.”, it can be identified and labeled the same even when found in different
record clusters. The dates following ”born” in the second and third record cluster in
Figure 5 are all birth dates, and the dates following “m.” in the last two record clusters
are all marriage dates.

From the set of aligned record clusters discovered, ListReader identifies field group
delimiters, defined as follows:

(1) sequences of lower-case words separated by whitespace or punctuation that occur
in a fixed position within a few different record clusters along with their adja-
cent whitespace and punctuation characters. Requiring “few” to be more than four
record clusters typically eliminates valid delimiters from consideration, and re-
quiring less than two record clusters provides insufficient evidence for delimiter
patterns. From the clusters in Figure 5, ListReader can identify the following field
group delimiters of this first type: “, born ”, “, and ”, and “ m. ”. With additional
supporting evidence from other clusters in the book, ListReader would also identify
“, par. of ” in the last record cluster in Figure 5 as a field group delimiter.

(2) record delimiters along with whitespace and punctuation that follow or precede
them. In Figure 5, all the initial record delimiters (i.e. “\n”) and both types of final
record delimiters (i.e. “.\n” and “\n”) are field group delimiters of this second type.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:7

[[Sp][UpLo+],[Sp][DgDg][Sp][UpLo+].[Sp][DgDgDgDg].[Sp]]
Record instance count: 1296

\nJames, 15 Dec. 1672.\n
\nRobert, 15 Oct. 1676.\n
...

[[Sp][UpLo+],[Sp][DgDg][Sp][UpLo+][Sp][DgDgDgDg].[Sp]]
Record instance count: 710

\nJoan, 25 April 1651.\n
\nJohn, 30 May 1652.\n
...

[[Sp][UpLo+],[Sp][born][Sp][DgDg][Sp][UpLo+].[Sp][DgDgDgDg].[Sp]]
Record instance count: 441

\nWilliam, born 10 Dec. 1755.\n
\nJames, born 24 Oct. 1758.\n
...

[[Sp][UpLo+],[Sp][born][Sp][DgDg][Sp][UpLo+][Sp][DgDgDgDg].[Sp]]
Record instance count: 265

\nWilliam, born 23 June 1747.\n
\nJames, born 19 June 1749.\n
...

[[Sp][UpLo+],[Sp][UpLo+],[Sp][and][Sp][UpLo+][Sp][m].[Sp][DgDg][Sp][UpLo+].[Sp][DgDgDgDg][Sp]]
Record instance count: 61

\nAiken, David, and Janet Stevenson m. 29 Sept. 1691\n
\nAitkine, Thomas, and Geills Ore m. 21 Dec. 1661\n
...

[[Sp][UpLo+],[Sp][UpLo+],[Sp][par].[Sp][of][Sp][UpLo+],[Sp][and][Sp][UpLo+][Sp][m].[Sp][Dg][Sp]
[UpLo+].[Sp][DgDgDgDg][Sp]]
Record instance count: 6

\nBarbor, Ninian, par. of Lochwinnoch, and Marion Reid m. 3 Mar. 1681\n
\nBarbor, William, par. of Paisley, and Elizabeth Gibson m. 9 Dec. 1680\n
\nCrafurd, Thomas, par. of Beith, and Catherine Wilsoune\nm. 6 Sept. 1660\n
\nErskine, John, par. of Lochwinnoch, and Jonet Reid m. 8 Dec. 1658\n
\nInglis, John, par. of Glasgow, and Annas Shaw m. 6 Jan. 1660\n
\nLyle, John, par. of Kilmacome, and Jessie Cochran m. 8 Feb. 1677\n

Fig. 5. A Selection of Record Clusters from the Kilbarchan Parish Register

ListReader constructs field group templates from the text appearing between
field group delimiters and associates a field group template with the delim-
iter on its left. Field group templates consist of a field group delimiter, whose
text is not conflated in the template, followed by one or more variations of the
field group itself, whose text is conflated. For example, the field group tem-
plate for the delimiter “, born ” in the third record cluster in Figure 5 is
“, born [DgDg][Sp][UpLo+].[Sp][DgDgDgDg]” and one of its variations in the fourth
record cluster in Figure 5 is “, born [DgDg][Sp][UpLo+][Sp][DgDgDgDg]”. In the third
record cluster the months are abbreviations followed by a period, and in the fourth the
months are spelled out and have no period. Additional variations in the Kilbarchan
Parish Record include dates with single-digit days, dates with missing days (only
months and years), and dates with day ranges, presumably when the birth day is only
approximately known. The “ m. ” delimiter from the last two record clusters in Fig-
ure 5 has only one variation in the figure, but in the full Kilbarchan Parish Record, the
dates have several variations. The initial delimiter, “\n” has the following variations
in Figure 5:

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:8 T. Packer and D. Embley

[UpLo+],[Sp][DgDg][Sp][UpLo+].[Sp][DgDgDgDg]
[UpLo+],[Sp][DgDg][Sp][UpLo+][Sp][DgDgDgDg]
[UpLo+]
[UpLo+],[Sp][UpLo+]

and many more in the full book. A field group template for a final record delimiter is
just the delimiter itself as no field follows it.

The delimiters themselves also allow for slight variations. Because of OCR or type-
setting errors, “m. ” may sometimes appear as “m, ” or “m: ”, for example. In the Kil-
barchan Parish Record”, when a name in records like “\nJames, 15 Dec. 1672.\n” is
unknown, the typesetters let a long dash represent the unknown name, e.g. “\n———
, 15 Dec. 1672.\n”. In this case the OCR treats the long dash as line art and ignores
it, but does pick up the comma making the initial record delimiter have “\n, ” as
a variation. ListReader recognizes delimiter variations by considering any delimiter
text that contains the same sequence of lower-case words (or newlines in the special
case of record delimiters) as the same delimiter despite any variations in punctuation
and spaces.

2.4. Final Record and Field Group Template Selection
At this point ListReader almost has what it needs for HMM creation. With some ad-
ditional adjustments, ListReader will have identified record and field group templates
from which it can directly construct an HMM that will extract the fields in the records.
The adjustments include discarding record patterns that do not resolve into a clean
sequence of field group templates and grouping record clusters that satisfy the same
sequence of field group templates and then splitting some of the individual field group
templates into alternate template groups depending on whether there is enough vari-
ation to warrant a split.

Figure 6 shows the new record clusters that include the record clusters in Figure 5
after grouping clusters with the minor variations. The first group in Figure 6 includes
the records in the first two clusters in Figure 5, and many more—3341 altogether,
which includes not only the 1296 in the first cluster and 710 in the second, but also all
others that have the pattern “\n<name>, <date>.\n”. The second cluster in Figure 6
groups the third and fourth clusters in Figure 5 as well as several other clusters that
all have the pattern “\n<name>, born <date>.\n”. The third cluster in Figure 6 groups
the fifth cluster in Figure 5 with others like it, and the last cluster in Figure 6 shows
the complete grouping of records for the last cluster in Figure 5. Note how the added
records vary from the six in Figure 5: double-digit days, months that are not abbrevi-
ated, names with punctuation (“M’Gregor”), and names with a missing surname (the
last two). Being complete and small enough will allow this last grouping to serve as an
example for the field-group-template-splitting adjustment ListReader makes.

First, however, we explain how ListReader groups record clusters and ensures that
each pattern consists of a clean sequence of field group templates. When used to parse
text, we say that a field group template produces a field group segment as a new type
of parse tree node. These nodes can be seen in the parse trees in Figure 7 for the first
string of characters constituting the first record in the third cluster group in Figure 6.
Except for the special “End-Segment” node, each “Segment” node includes a “Delim”
node followed by a “FieldGroup” node as Figure 7 shows.

As a next step, ListReader again produces a suffix tree, working with a new in-
put sequence composed of both field group segments wherever a field group tem-
plate matches text and the original conflated text elsewhere. In Figure 7 the
text matches field group templates, and thus the sequence of symbols from which
ListReader constructs this second suffix tree is a sequence of “[...-Segment]”

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:9

[[\n-Segment][\n-End-Segment]]
Record instance count: 3341

\nJames, 15 Dec. 1672.\n
\nRobert, 15 Oct. 1676.\n
...
\nJoan, 25 April 1651.\n
\nJohn, 30 May 1652.\n
...

[[\n-Segment][born-Segment][\n-End-Segment]]
Record instance count: 1078

\nWilliam, born 10 Dec. 1755.\n
\nJames, born 24 Oct. 1758.\n
...
\nWilliam, born 23 June 1747.\n
\nJames, born 19 June 1749.\n
...

[[\n-Segment][and-Segment][m-Segment][\n-End-Segment]]
Record instance count: 132

\nAiken, David, and Janet Stevenson m. 29 Sept. 1691\n
\nAitkine, Thomas, and Geills Ore m. 21 Dec. 1661\n
...

[[\n-Segment][par-of-Segment][and-Segment][m-Segment][\n-End-Segment]]
Record instance count: 23

\nBarbor, Ninian, par. of Lochwinnoch, and Marion Reid m. 3 Mar. 1681\n
\nBarbor, William, par. of Paisley, and Elizabeth Gibson m. 9 Dec. 1680\n
\nBarr, John, par. of Killelan, and Issobell Cunynghame m. 12 July 1661\n
\nBlair, Hugh, par. of Kilmacome, and Margaret Roger m. 22 Aug. 1677\n
\nCarruth, John, par. of Kilmacolm, and Jean Houstoun m. 25 Nov. 1656\n
\nCochran, William, par. of Lochwinnoch, and Jonet King m. 13 May 1675\n
\nCraig, John, par. of Beith, and Marione Speir m. 18 Dec. 1672\n
\nErskine, John, par. of Lochwinnoch, and Jonet Reid m. 8 Dec. 1658\n
\nInglis, John, par. of Glasgow, and Annas Shaw m. 6 Jan. 1660\n
\nKelloch, Mungo, par. of Kilmalcome, and Jonet Andrews m. 24 Feb. 1657\n
\nLang, John, par. of Kilmacome, and Mary Love m. 15 Feb. 1677\n
\nLochhead, John, par. of Nilston, and Helen Rodger m. 5 May 1681.\n
\nLyle, John, par. of Kilmacome, and Jessie Cochran m. 8 Feb. 1677\n
\nM’Gregor, John, par. of Kilmacome, and Isobel Flemyng m. 22 Dec. 1673\n
\nMudie, John, par. of Kilmacome, and Jonet Lyle m. 25 April 1678\n
\nOre, John, par. of Paisley, and Elizabeth How m. 29 Oct. 1650\n
\nPaterson, John, par. of Paisley, and Janet Caldwell m. 14 June 1652\n
\nShaw, John, par. of Erskine, and Jean Mudie m. 28 Jan. 1651\n
\nSmith, David, par. of Lochwinnoch, and Agnes Hair m. 30 Nov. 1660\n
\nWallace, John, par. of Paisley, and Agnes Lennox m. 23 Dec. 1680\n
\nWilson, Patrick, par. of Paisley, and Jonet Thomson m. 21 Dec. 1676\n
\n, William, par. of Kilpatrick, and Issobel Dalzel m. 26 Oct. 1655\n
\n, Robert, par. of Lochwinnoch, and Issobell King m. 17 July 1673\n

Fig. 6. Record Clusters Grouped by Clean Field Group Template Sequences

symbols—“[\n-Segment][and-Segment][m-Segment][\n-End-Segment]” for the text in
Figure 7. On the other hand, when the text of a potential record does not fully parse
into “[...-Segment]” nodes as is the case for the three record clusters in Figure 8, the
sequence of symbols is the original conflated text (e.g. the sequence of conflation sym-
bols at the top of each record cluster in Figure 8). The first record cluster in Figure 8
fails to parse into a sequence of “[...-Segment]” symbols because of the inserted birth
times, the second because of the deleted day in the date, and the third because of the
OCR errors, substituting letter characters for digits.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:10 T. Packer and D. Embley

[Sp]

\n

[UpLo]

[UpLo+]

A i k e n ,

[Sp]

[UpLo]

[UpLo+]

D a v i d

[\n-Segment]

[\n-Delim]

[\n-FieldGroup]

(a)

,

[Sp]

[and]

a n d

[Sp]

[UpLo]

[UpLo+]

[Sp] [UpLo]

J a n e t S t e v e n s o n

[and-Segment]

[and-Delim]

[and-FieldGroup]

(b)

[Sp]

[m]

m .

[Sp]

[DgDg]

2 9

[Sp]

[UpLo]

[UpLo+]

S e p t .

[Sp]

[DgDgDgDg]

1 6 9 1

[m-Segment]

[m-Delim]

[m-FieldGroup]

(c)

[Sp]

\n

[\n-End-Segment]

[\n-End-Delim]

(d)

Fig. 7. Parse Trees of “\nAiken, David, and Janet Stevenson m. 29 Sept. 1691\n” for each Segment:
(a) “[\n-Segment]”, (b) “[and-Segment]”, (c) “[m-Segment]”, and (d) “[\n-End-Segment]”

[\n,[Sp][born][Sp][DgDg][Sp][UpLo+][Sp][Dg+,][Sp][a].[m]\n]
Record instance count: 2

\nBarbara, born 10 July 1763, 3 a.m.\n
\nMary, born 28 July 1750, 2 a.m.\n

[\n.[Sp][DgDgDgDg]\n]
Record instance count: 2

\nJames, Dec. 1656.\n
\nRobert, Nov. 1689.\n

[\n,[Sp][Up][Sp][UpLo+].[Sp][DgDgDgDg]\n]
Record instance count: 3

\nWilliam, JO Sept. 1758.\n
\nElizabeth, I Nov. 1700.\n
\nJohn, II Mar. 1705.\n

Fig. 8. Record Clusters without Field Group Segment Matches

ListReader searches for record patterns in this second suffix tree as it does in the
first suffix tree with one additional constraint: each record template must be com-
posed entirely of field group segments. Thus, ListReader clusters all the text strings of

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:11

record candidates that have the same sequence of “[...-Segment]” templates despite
any variations in the underlying text. The record clusters for the text string in Fig-
ure 7 and hundreds of other similar text strings in the Kilbarchan Parish Record are
all grouped together in the same cluster. This clustering produces a higher level of text
abstraction and a better identification of basic patterns from which to build HMM rec-
ognizers (e.g. the higher-level record patterns in Figure 6 rather than the lower-level
record patterns in Figure 5). Furthermore, rejecting some clusters like those in Fig-
ure 8 helps ListReader focus on major patterns so that it does not need to create and
execute HMM recognizers for the long tail of patterns that occur infrequently or hap-
pen to be exceptions to the general typeset text patterns of a book. Rejecting patterns
does not mean, however, that the information in these rejected patterns will not be
extracted. When we explain how ListReader constructs HMM recognizers in Section 3,
we will also show that the HMMs constructed allow for deviations from the basic pat-
terns for insertions, deletions, and substitutions, respectively like inserted birth times,
missing days in dates, and OCR-error character substitutions in Figure 8. In essence,
ListReader discovers the basic “clean” patterns in a book including a limited number
of variations as a phrase structure grammar and also accommodates exceptions to ba-
sic patterns and larger variations with the HMM derived from that phrase structure
grammar.

In grouping variations into basic clean patterns, ListReader’s procedure can cluster
field group templates that vary widely and therefore that a single linear HMM can-
not reasonably accommodate. In Figure 6, for example, the four field group templates
under the first “[\n-Segment]” are all quite different—varying in length (10, 5, 2, and
16 symbols, respectively) and content (respectively: given name and date, surname
followed by given name, place, and two consecutive full names in two variations). To
model widely differing patterns in a single high-level cluster, ListReader partitions
patterns into similarity groups and for each group, selects a representative pattern as
the basis for generating an HMM recognizer. We choose this approach of accounting
for field group template variations instead of either creating a separate HMM recog-
nizer for each variation or merging all the variations into a single union of parallel
HMM recognizer. Using all possible variations is less desirable for two reasons: it sig-
nificantly increases the running time of execution, which is quadratic in the number
of states, and it significantly increases the variations that have to be hand-labeled.
Merging all variations into a single pattern is probably hard to do without more do-
main knowledge than we expect the user to provide. Therefore, we choose to select a
representative sample of field group variations from which ListReader builds its HMM
recognizers.

In selecting field group template variations to be representatives, ListReader must
be careful to observe significant differences and ignore minor variations. It therefore
estimates the “distance” between variations and separates those that vary more than
a pre-specified threshold and groups the rest with the separated templates such that
they partition the space of field group template variations. Then for each block of the
partition, ListReader selects a “best” field template representative. From each repre-
sentative ListReader generates a component of the HMM, as we explain in Section 3.

To measure the distance between pattern variations, ListReader uses a normalized
Levenshtein edit distance: the minimum number of word insertions, deletions, and
substitutions to transform one pattern to another divided by the average of the lengths
of the patterns. Figure 9 shows the three pattern variations and their instances for
the initial field group segment of the last record cluster in Figure 6. The normal-
ized edit distance between the first two pattern variations, “\n[UpLo],[Sp][UpLo]” and
“\n[Up]’[UpLo],[Sp][UpLo]”, is 2/((5 + 7)/2) = 0.333—two insertions, “[Up]” and “’”
into the first pattern (length 5), yields the second pattern (length 7). The normalized

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:12 T. Packer and D. Embley

[\n[UpLo],[Sp][UpLo]] [\n[Up]’[UpLo],[Sp][UpLo]]
(count 20, length 5) (count 1, length 7)
\nBarbor, Ninian \nM’Gregor, John
\nBarbor, William
\nBarr, John
\nBlair, Hugh
\nCarruth, John
\nCochran, William [\n,[Sp][UpLo]]
\nCraig, John (count 2, length 4)
\nErskine, John \n, William
\nInglis, John \n, Robert
\nKelloch, Mungo
\nLang, John
\nLochhead, John
\nLyle, John
\nMudie, John
\nOre, John
\nPaterson, John
\nShaw, John
\nSmith, David
\nWallace, John
\nWilson, Patrick

Fig. 9. Initial Field Group Template Instances in the Last Record Cluster in Figure 6 Grouped by Pattern
Variation

edit distance between the first and the third is 0.222, and between the second and
third is 0.545. If the threshold is 0.5, the second and third pattern variations should
be in separate groups. The first can be grouped with either the second or the third, and
should be with the third in this example since it is “closer.”

When a group has more than one pattern variation, ListReader selects one to be the
representative for the group. ListReader constructs its HMM from a combination of all
the representatives, one for each group. To select the best representative, ListReader
computes a representative score for a pattern variation by multiplying the pattern’s
length in symbols by its instance count and chooses the pattern variation with the
highest score as the representative for the group. For the pattern variations in Figure 9
the scores are 20× 5, 1× 7, and 2× 4 for the first, second, and third group respectively.
Thus, for our example in Figure 9, “\n[UpLo],[Sp][UpLo]” is the representative for the
group consisting of the first and third pattern and “\n[Up]’[UpLo],[Sp][UpLo]” is the
representative of its own group. The representative score is motivated by observing
that the score for a pattern is the number of tokens the pattern matches in the full
text—more is likely to be better. In preliminary experiments on the Shaver-Dougherty
Genealogy, ListReader’s representative-selection procedure improved precision, recall,
F-measure, and reduced the number of required hand-labelings compared to two other
policies: one that selects the single longest pattern variation among all variations and
one that selects the longest pattern for each group of pattern variations. Also, changing
the edit distance cut-off values between 0.1 and 0.9 did not significantly affect the
final evaluation scores, nor did normalizing by the length of only one of the compared
patterns.

Figure 10 shows the representative templates along with an instances to illustrate
them for the remaining field group template sequences in Figure 6. These template
sequences also have some field-template variations, but perhaps different from what
might be expected. The third cluster of records about couples and marriage dates does
not have enough pattern variation to warrant breaking any of the field templates into
groups. Date variations following the “m.” such as double-digit vs. single-digit days and
abbreviated vs. non-abbreviated months are at most an edit distance or two apart (not

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:13

[[\n-Segment][\n-End-Segment]]

[\n-Segment]
\n[UpLo],[Sp][DgDg][Sp][UpLo].[Sp][DgDgDgDg] :

\nJames, 15 Dec. 1672
\n[UpLo],[Sp][UpLo] : \nAllasoun, Richard
\n[UpLo] : \nLochwinnoch
\n[Up]’[UpLo],[Sp][UpLo][Sp]?[Sp][UpLo][Sp][UpLo]-[Sp][Lo] :

\nM’Pherson, Mary ? Archibald Fer-\nguson

[\n-End-Segment]
.\n : .\n
\n : \n

[[\n-Segment][born-Segment][\n-End-Segment]]

[\n-Segment]
\n[UpLo] : \nWilliam

[born-Segment]
,[Sp][born][Sp][DgDg][Sp][UpLo].[Sp][DgDgDgDg] : , born 10 Dec. 1755

[\n-End-Segment]
.\n : .\n
\n : \n

[[\n-Segment][and-Segment][m-Segment][\n-End-Segment]]

[\n-Segment]
\n[UpLo],[Sp][UpLo] : \nAiken, David

[and-Segment]
,[Sp][and][Sp][UpLo][Sp][UpLo] : , and Janet Stevenson

[m-Segment]
[Sp][m].[Sp][DgDg][Sp][UpLo].[Sp][DgDgDgDg] : m. 23 Nov. 1655

[\n-End-Segment]
\n : \n

Fig. 10. Template Representatives of First, Second, and Third Record Cluster in Figure 6 (The “?” between
“Mary” and “Archibald” is a character error; on the original page in the Kilbarchan book it is an m-dash.)

enough when compared to the number of symbols in the “[m-Segment]” template). In
addition, in these marriage records name patterns and patterns of record termination
with no period are highly consistent across more than 100 pages in the Kilbarchan
Perish Record. On the other hand, the first record cluster, with the template sequence
“[\n-Segment][\n-End-Segment]”, does break into several groups as Figure 10 shows.
Like the third record cluster, the second cluster’s “[\n-End-Segment]” template breaks
into two groups (normalized edit distance: 1/1.5 = 0.667), but neither of its two preced-
ing field group templates has enough variation to cause a break into groups.

3. HMM CONSTRUCTION
An HMM is a probabilistic finite state machine consisting of a set of hidden states S, a
set of possible observations W , an emission model P (w|s) associating a state with a set
of observable events, and a transition model P (st|st−1) associating one state with the
next. States are initially “hidden” and must be inferred during application of the HMM
from the observable events in the text. In our work, each event is a word-sized chunk
of text (a token), including alphabetic words, numerals, spaces including newlines, and

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:14 T. Packer and D. Embley

punctuation characters. Inferring the correct state associated with each word token is
the main task done in extracting information from the text and is guided by the param-
eters of the HMM. Using the Viterbi algorithm, ListReader selects the most probable
sequence of states given the words of the input text and the HMM’s parameters. The
emission model is a categorical distribution—a table of conditional probabilities indi-
cating which observation w can be emitted3 from which hidden state s and with what
probability given s. The transition model is also a categorical distribution—a table of
conditional probabilities indicating which hidden state st at position t can follow which
other hidden state st−1 at position t− 1 and with what probability given st−1. The two
kinds of probabilities are the parameters of the HMM. The set of states and the transi-
tions that have non-zero probabilities in the transition model determine the structure
of the state machine of the HMM. The processing described in Section 2 provides what
ListReader needs to produce the set of hidden states and both the transition and the
emission model for our application.

The HMM that ListReader constructs has two levels of structure, page-level and
record-level, that are connected by transitions. The record-level states belong to record
templates that are connected to each other and to the page-level states of the HMM. In
Subsection 3.1, we explain how ListReader generates states for field group templates
and how it labels states, providing them with syntactic and semantic IDs. (In Section 4
we tell how ListReader transforms these IDs into labels that map text associated with
the HMM’s hidden states to an application ontology.) In Subsection 3.2, we discuss
transition and emission models for field group templates and say how ListReader sets
parameters at the level of field group templates. Finally, in Subsection 3.3 we explain
how ListReader finishes the transition model connecting HMM fragments for field
group templates to each other to form HMM components for record templates and con-
necting record-template components to page-level HMM states and setting page-level
transition and emission parameters.

3.1. Field Group Template State Generation
ListReader transforms each field group template representative into a linear sequence
of HMM states, one HMM state for each word token in the parse tree of the field
group segment. (In Figure 7 the dashed arrows show the sequence of word tokens
considered for HMM construction.) Consider the representative templates in Figure 10
and particularly, for example, the representative template

[Sp] [m] . [Sp] [DgDg] [Sp] [UpLo] . [Sp] [DgDgDgDg]

for the “[m-Segment]” (second from the bottom in Figure 10). The generated HMM
fragment for this representative template has ten states, one for each word token in
the representative template. Figure 11 shows these ten states. In addition to one state
per word token in a field group template, ListReader generates an insertion state be-
tween every pair of consecutive word states. Figure 11 shows these insertion states as
empty nodes. These insertion states allow for inconsistent punctuation and noise in
pattern delimiters and for sparse comments such as when the time of birth is given
as the first cluster in Figure 8 shows. Figure 11 also shows the transitions among the
states for the representative template (albeit, as yet without the transition probabili-
ties). The main transitions form a straight line through the template; the transitions
to and from insertion states allow for text-addition deviations from a typical record;
and the transitions that skip over word states allow for text-omission anomalies. The

3The term “emission” comes from the generative story commonly used to explain how an HMM can generate
text. HMM parameters are traditionally chosen to maximize the likelihood that the HMM can generate the
actual text that the HMM was meant to model.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:15

Fig. 11. HMM States and Connecting Transitions for “[m-Segment]” whose Representative Template is
“[Sp][m].[Sp][DgDg][Sp][UpLo].[Sp][DgDgDgDg]”

missing days in the dates in the second cluster in Figure 8 is an example of when the
HMM should skip states by taking a deletion transition. Patterns with inconsistencies
and exceptions are those that tend to be discarded when ListReader culls its set of
discovered patterns keeping only record patterns that are a clean sequence of repre-
sentative field-group-template segments. Insertion states and deletion transitions help
overcome deficiencies caused by inconsistencies and exceptions.

Figure 11 further shows that ListReader assigns each state two IDs—a semantic
ID and a syntactic ID. Each state’s syntactic ID (the second identifier in the nodes
of Figure 11) is fundamentally a dot-delimited sequence of numbers representing the
path in the parse tree from root (a record node that groups all segment nodes of a
record template) to word token (the word token for which the state is being created).
Each number in this path indicates the order of the node among its siblings in the
parse tree. Consider, for example, the parse trees in Figure 7 with “[Record]” added as
the root node forming one parse tree for the record template. Then the path to “Aiken”
is

[Record] [\n-Segment] [\n-FieldGroup] [UpLo+] [UpLo]
1 1 2 1 1

and the path to “1691” is

[Record] [m-Segment] [m-FieldGroup] [DgDgDgDg]
1 3 2 6

To make the syntactic ID of each HMM state functionally complete within the HMM,
ListReader assigns “alternative” numbers (“A” numbers) to both the [Record]-level
number and the [...-Segment]-level number in a path. The [Record]-level number
identifies the alternative among all record templates discovered by ListReader, each of
which implies a certain set of field group templates in a certain order. This record-level
alternation number, along with the parse tree numbers, makes the syntactic ID of each
node unique within the complete HMM. In our run of ListReader on the Kilbarchan
Parish Record, the “[[\n-Segment][and-Segment][m-Segment][\n-End-Segment]]”
record happens to have been the 6th alternative record template found. The
[...-Segment]-level number identifies which field-group alternative pertains to the

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:16 T. Packer and D. Embley

state—1 in our example since the “[m-Segment]” in Figure 10 has only one alternative.
Thus, in Figure 11 the tenth state, for example, has the syntactic ID “1A6.3A1.2.6”,
with [Record]-level alternative “A6” and [...-Segment]-level alternative “A1”.

The semantic ID of an HMM state identifies the field group template to which the
states of the field group apply and also the position of the token within the field
group template. A semantic ID is the suffix of the syntactic ID starting with the field
group segment’s alternation number. (We prepend the field group template’s identify-
ing name parenthetically to the semantic ID for human readability. In Figure 11, since
all the states belong to the “[m-Segment]” field template, they all begin with “(m)”.) The
semantic ID, therefore, represents both a type of field group segment and a token’s po-
sition within that field group segment.

The semantic ID of a state is purposefully not unique within an HMM. States
that share a semantic ID (and in turn the words they match) should be labeled the
same because they have the same relationship with the primary object of their re-
spective records. For example, all “m. <date>” constructs in the entire Kilbarchan
Perish Record are marriage dates and should be labeled as such regardless of which
record template in which they are found. (In our run of the Kilbarchan book, seven
different record templates include the “[m-Segment]” field group template, two of
which are in Figure 6.) ListReader should request only one label from the user for
all states that share the same semantic ID—and therefore request only one label
for the many hundreds of “m. <date>” strings in the Kilbarchan book. ListReader
carefully infers semantic IDs and therefore carefully assigns field group alternation
numbers. ListReader assigns the same field group alternation number to field group
templates that (1) are of the same type (e.g. “and” and “m” are different) and (2) con-
tain the same conflated field group words (e.g. “[UpLo]” and “[UpLo][Sp][UpLo]” are
different). Therefore, HMM states with the same field group alternation number will
have the same semantic ID if they are in the same position within their respective
field group segments, even when those field groups appear in different record tem-
plates. This semantically ties the HMM states together that refer to the same field
group templates and, in active sampling (Section 4.1), prevents the user from label-
ing more than one example of that field group. For example, the field group tem-
plate “[m-Segment]” matching “ m. 29 Sept. 1691” in the third cluster of Figure 6
also matches “ m. 18 Dec. 1672” in the fourth cluster and will be assigned the same
final labels because they will first be assigned the same semantic IDs, despite being in
different positions in two different record templates.

3.2. Field Group Template Parameter Setting
ListReader sets the emission and transition parameters using maximum likelihood
estimation (MLE). That is, they are set by normalizing the sums of counts of phrases
in parse trees. These parameters must allow for flexible alignment of an induced HMM
with text containing natural differences from the text on which the HMM is trained,
such as word substitutions, insertions, and deletions. Beyond MLE, we also smooth
these parameters using pseudo-counts (Dirichlet priors) to allow for combinations of
events not present in the training data.

A substitution is a token in one record that does not exactly match the corre-
sponding token in another record. For example, if an HMM fragment were built for
the text “\nJames, 15 Dec. 1672.\n”, we still expect the fragment to match text like
“\nJames, 15 Dee, 1672.\n”, despite the comma replacing the period and the “e” re-
placing the “c” (likely due to noise in the document causing OCR errors). ListReader
allows for substitutions using both conflation of text and smoothing in the emission
model: “[UpLo]” conflates “Dee” as well as “Dec”, and the emission model settings al-
low for alternatives in fixed text—punctuation and delimiter text. The emission model

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:17

of each record-level state is set with the word-level conflated text for that state with
a count of 1.0, unless the state is part of a delimiter in which case ListReader uses
the non-conflated text, e.g. “[m]” instead of “[Lo]”. Emission parameters for conflated
tokens belonging to numeral and alphabetic word character classes are smoothed with
small, fractional pseudo-counts to allow for any other numeral or alphabetic words
with low probability (lower for words outside of the character class of the original text).
For example, in Figure 12 the word with conflated text “[DgDgDgDg]” receives a count
of 1.0 for “[DgDgDgDg]”, a pseudo-count of 0.01 for “[Dg]”, “[DgDg]”, “[DgDgDg]”, and
“[DgDgDgDgDg]” and a pseudo-count of 0.001 for “[UpLo]”, “[LoUp]”, “[Up]” and “[Lo]”.
In general, ListReader’s construction of emission models promotes better alignment of
similar words, especially words of the same character class, despite the small amount
of training data provided and despite possible OCR errors and other variations. Sim-
ilarly, as Figure 12 shows, ListReader adds pseudo-counts of spaces for the two kinds
of internal space it encounters, (“ ” and “\n”), thus accommodating line breaks in the
middle of a record where spaces usually appear. Finally, all record-level state emission
models except for “[Sp]” and record delimiters (“\n” for our running example) receive
a pseudo-count of 0.0001 for every other word in the document. We have omitted these
smallest parameters from the figure for simplicity. After collecting the counts for a
state’s emission model, ListReader sums the counts and divides the various counts by
the sum to establish normalized emission probabilities that sum to one for each state’s
emission model as Figure 12 shows.

A deletion is a sequence of one or more tokens of a record template that are missing
in the text that should otherwise match that record template. For example, although
the HMM fragment in Figure 11 is for text like “\nJames, 15 Dec. 1672.\n” we ex-
pect the HMM to be flexible enough to match text like “\nJames 15 Dec. 1672\n” (with
some of the punctuation missing) or like “\nJames, Dec. 1672.\n” (with the day in the
date missing). To accommodate deletions, states in the HMM that are not adjacent in
training data should become adjacent during execution. To allow for deletions during
unsupervised training, the transition model of each pair of adjacent states receives a
full count of 1.0, while the transition model of each pair of non-adjacent states receives
a pseudo-count of 1/30 if a pair of states satisfies our deletion constraint and zero oth-
erwise. The deletion constraint requires an ordering on states: the second state must
follow the first state within a training record, regardless of how far apart the words
are. For example, in Figure 11 the “m” precedes the double-digit number for the day in
the date, so the transition from the state representing “m” to the state representing the
double-digit day receives the 1/30 pseudo-count. But the reverse transition (from the
double-digit state to the “m” state) would receive a zero pseudo-count. Proper order is
determined algorithmically by comparing the parse tree numbers in the syntactic IDs
of the two HMM states in question. The algorithm checks to see that the two states
have ancestor numbers that are correctly ordered: e.g. states “1A6.3A1.1.3” for “m”
and “1A6.3A1.2.1” for the double-digit state are correctly ordered because they have
the same record alternation number (“A6”) and the same field-group-segment alterna-
tion number (“A1”) in the same position (3), and their field group parse tree numbers
are in the correct order (3.1.3 < 3.2.1). But the reverse order would not be allowed.
Field-group-segment alternation number can be different as long as their positions
are also different. Figure 12 shows the probabilities on the deletion transitions (which
also depend on out transitions to insertion states, discussed next).

An insertion is a sequence of one or more tokens appearing in text that should
match a record template but which did not appear within the training text of
that record template. For example, although the HMM fragment in Figure 11
is for text like “\nJames, 15 Dec. 1672.\n” we expect the HMM to be flexible
enough to match text like “\nJames, 15. Dec. 1672..\n” (containing two extra pe-

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:18 T. Packer and D. Embley

Fig. 12. HMM Transition and Emission Models for the Last Four States of “[m-Segment]” and the Single
State of “[\n-End-Segment]” for the Last Record Template in Figure 10

riods, perhaps because of noise in the text). It should also match text of oc-
casional comments that may not have been seen in the training text, so that
the HMM fragment for “\nJames, 15 Dec. 1672.\n” would also match the text
“\nJames, 15 Dec. 1672. (father dead)\n” in which the author is adding a comment
saying that a father died before the child’s birth. To accommodate as-yet unseen ad-
ditions in a pattern, ListReader generates insertion states between record-level states
st−1 and st. Although not shown in our HMM figures, each insertion state has as its
syntactic label the concatenation of the prior and subsequent states’ syntactic label
(st + st−1) and as its semantic label the concatenation of the two states’ semantic la-
bels. ListReader sets counts for three new transitions per insertion state: one to the
insertion state from the prior state: st−1 to (st + st−1), one self-transition for possi-
ble additional insertions: (st + st−1) to (st + st−1), and one from the insertion state
to the subsequent state: (st + st−1) to st. The pseudo-count is the same for all three
transitions: n/30, where n is 1, 2 or 3 depending on the likelihood of insertion at that
location given prior knowledge of the behavior of insertions in list-like text: n = 3 next
to record delimiters, n = 2 next to field group delimiters, and n = 1 everywhere else.
In Figure 12, for example, the transition probability derived from the pseudo-count for
the transition to the insertion state next to the record delimiter is greater than the
probabilities on the transitions to other insertions states, which models the expecta-
tion that an insertion at the end of the record is more likely than in the middle.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:19

3.3. Connecting the Pieces
As Figure 13 shows, ListReader generates page-level states for the beginning (PageBe-
ginning) and ending (PageEnding) of each page and connects them to states for non-
list text (NonList) and for list-record text (RecordDelimiter), the beginning state for
all record-template HMMs. Figure 13 also shows how ListReader connects its record-
delimiter state to every HMM record template—all 47 of them for our example run of
the Kilbarchen Parish Record. One of the record-template HMMs is open, schemati-
cally showing the interconnections of the HMM fragments for

[\n-Segment][born-Segment][\n-End-Segment]

the second record template in Figure 10. Notice that the field group template
“[\n-End-Segment]” has two representative templates, one for “.\n” and one for “\n”.
Whenever a field group template has multiple representative templates, ListReader
generates parallel HMM fragments, one for each identified representative template.
Each field group template has an HMM fragment of the form of the field-template
HMM for “[m-Segment]” in Figure 11. Schematically, Figure 13 shows for each HMM
field group template only the initial and final states along with the entry and exit in-
sertion states. Each HMM fragment requires connections to all prior and subsequent
HMM fragments as Figure 13 shows. When consecutive parallel HMM fragments oc-
cur as they would for the first record template in Figure 10, the HMM fragments are
connected in a cross-product fashion. Thus ListReader would generate sixteen tran-
sitions to connect the pieces of the first record template in Figure 10, which contains
four HMM fragments for “[\n-Segment]”. Each of the four representative field group
templates has four out-transitions, three going to the two end-record HMM fragments
and one going directly to the record delimiter as in Figure 13.

ListReader creates transitions from the RecordDelimiter state to the start states
of each of the initial field group templates for every record template it discovers.
ListReader sets the count for each of these transitions equal to the sum of the sizes
of the clusters in the group for the representative template being modeled. For the
HMM of the record template for the group consisting of the first and third clusters
in Figure 6, for example, the count would be 22 (20 for the first cluster plus 2 for the
third). The second cluster in Figure 6 is in a group of its own and has the count 1.
Counts for transitions from the RecordDelimiter state to an initial insertion state are
3/30 as specified earlier for an insertion state adjacent to a record delimiter. The count
for the out-transition to the NonList state is the number of locations in the book where
a record delimiter is followed by text that was not identified as being part of a list
record, and the count for the out-transition to the PageEnding state is the number
of pages in the book that end in a record delimiter. Summing these counts and nor-
malizing them yields the transition probabilities for transitions emanating from the
RecordDelimiter state. Figure 13 shows eight of these transition probabilities for our
example run of the Kilbarchen Parish Record, with two of the edges in the figure con-
tain parameters for both a transition to an insertion state and to a non-insertion state
separated by a comma.

ListReader generates states and transitions for its page-level model as Figure 13
shows. The emission model of PageBeginning and PageEnding are fixed to contain
only the special character that ListReader artificially inserts into the text sequence at
the beginning and ending of each page to represent page breaks. The emission model
of RecordDelimiter is fixed to contain the set of allowable record delimiters, which cur-
rently contains only the newline character. For these fixed emission models, the proba-
bility of the allowable character is 1.0 and all other probabilities are 0.0. The emission
model of NonList state is not fixed. Rather, it is set as the MLE estimate of all word

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:20 T. Packer and D. Embley

Fig. 13. Schematic Diagram of ListReader-generated HMM

tokens in the input text that were not covered by any candidate records during unsu-
pervised grammar induction. The emission model for the NonList state in Figure 13
lists several of these word tokens and their probabilities based on actual occurrence
counts in our run of ListReader on the Kilbarchan Parish Record. The most frequently
occurring word token not included in candidate records is the space character with
32.4% of the uncovered tokens and “[UpLo]” with 17.6%. Three of many tokens that ap-
pear only once are “mile”, “are”, and “about”—not shown in Figure 13 along with many
others. We train the emission model of the NonList state on unlabeled data and the
emission models of list states on labeled data (specifically automatically-labeled data).
These two sets of states (list and non-list) can be seen as a binary classifier, predicting
a “positive” and a “negative” class. We justify our approach to training our HMM from
mixed labeled and unlabeled data by citing Elkan and Noto ([Elkan and Noto 2008])
who show that for binary classifiers, “under the assumption that the labeled examples
are selected randomly from the positive examples ... a classifier trained on positive and
unlabeled examples predicts probabilities that differ by only a constant factor from the
true conditional probabilities of being positive.” We also smooth the emission model of
the NonList state using small Dirichlet priors to allow any word to appear, even those
not appearing in the training data.

The parameters for the other transitions among the four page-level states are also
trained using MLE from the records discovered during grammar induction. For the em-
anating transitions of the PageBeginning state, for example, if there were 100 pages of
input text and 10 of the pages began with list text and 90 with non-list text, then the

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:21

transition from PageBeginning to RecordDelimiter would receive a count of 10 while
the transition from PageBeginning to NonList would receive a count of 90. The transi-
tion model is also smoothed with small Dirichlet priors to allow any reasonable transi-
tions that were not seen in the parsed text such as a transition from PageBeginning to
PageEnding, allowing for an empty page or a page consisting only of a picture. For the
NonList state, the count for the transition to the RecordDelimiter state is the number
of instances in the book where ListReader identified text outside a list immediately be-
fore a list; the count for the self loop returning to the NonList state is number of word
tokens in the book that are not covered by record templates and do not immediately
precede a list; and the count for the transition to the PageEnding state is the number
of pages in the book that do not end with a list. ListReader normalizes counts for each
emanating state, producing the transition probabilities.

Figure 13 shows the transition probabilities for our example run of the Kilbarchan
Perish Record. Altogether, the full ListReader-generated HMM for our example run of
the Kilbarchan Parish Record has 1,805 states and 3,717 transitions.

4. LABELING AND FINAL EXTRACTION
To populate an ontology with extracted information, ListReader (1) obtains labels from
a user for HMM states and (2) maps labeled text to the ontology. To obtain labels,
ListReader actively and selectively requests labels that associate HMM states with
elements of the ontology, as explained in Subsection 4.1. ListReader then applies ob-
tained state-label knowledge to extract information from throughout the input text
and map it to the ontology, as explained in Subsection 4.2.

4.1. Active Sampling
Active sampling consists of a cycle of repeated interaction with the user. On each itera-
tion of the loop, ListReader selects and highlights text that matches part of the HMM,
and the user labels the fields in highlighted text. Labeling consists of the user copy-
ing substrings of the ListReader-selected text into the entry fields of the data entry
form in ListReader’s UI as Figure 1 shows. ListReader then accepts the labeled text
via the web form interface and assigns labels to the corresponding HMM states, which
completes that part of the HMM and enables it to become a “wrapper” that extracts
information from the text and maps it to the ontology as we explain in Subsection 4.2.

The active sampling cycle is a modified form of active learning, focusing on the “ac-
tive sampling” step and performing practically none of the “model update” step, just
as in [Hu et al. 2009]. The HMM training ListReader does is fully unsupervised—no
HMM structure or parameter learning takes place under the supervision of a user ei-
ther interactively or in advance. Label renaming is the only change ListReader makes
to the HMM during active sampling. In each cycle, ListReader actively selects the text
for labeling that maximizes the return for the labeling effort expended. To initialize
the active sampling cycle, ListReader applies the HMM to the text of each page in
the book. It labels the strings that match each state with the state’s semantic ID.
ListReader saves the count of matching strings for each semantic ID. It also records
the page and character offsets of the matching strings throughout the book and their
associated semantic IDs. ListReader uses the page and character offsets when high-
lighting a span of text in the UI for the user to label. ListReader selects a span of text
on each iteration of active sampling using a query policy (explained next) that is based
on the counts of matching strings for each semantic ID.

The string ListReader selects as “best” is a string that matches the HMM fragment
with the highest predicted return on investment (ROI). The ROI can be thought of
as the slope of the learning curve: higher accuracy and lower cost produce higher
ROI. The HMM fragments considered are HMM record templates or contiguous parts

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:22 T. Packer and D. Embley

thereof (e.g. the HMM fragment for “[m-Segment]” illustrated in Figure 11). When
more than one string matches the best HMM fragment, ListReader selects the first
one on whichever page contains the most matches of that HMM fragment. ListReader
computes the predicted ROI as the sum of the counts of the strings matching each
state in the candidate HMM fragment divided by the number of states in the HMM
fragment—that is, the average match-count per state. Querying the user to maximize
the immediate ROI tends to maximize the slope of the learning curve and has proven
effective in other active learning situations [Haertel et al. 2008]. Once the user labels
the selected text, ListReader removes the counts for all strings that match the corre-
sponding states or that share the semantic IDs of labeled states, recomputes the ROI
scores of remaining states, and issues another query to the user.

In our example run of the Kilbarchan Parish Record, ListReader selects the high-
lighted text in Figure 14. Its HMM record template is composed of the first represen-
tative for the first “[\n-Segment]” field group template and the first representative
for the first “[\n-End-Segment]” field group template in Figure 10. There are nine
matching states in this HMM record template, one for each word-level, non-record-
delimiter symbol, “[UpLo],[Sp][DgDg][Sp][UpLo][Sp][DgDgDgDg].”. The hit count for
the strings matching each state are:

[UpLo] 2680
, 2678

[Sp] 2691
[DgDg] 2680
[Sp] 2678

[UpLo] 2679
[Sp] 2682

[DgDgDgDg] 2683
. 3840

whose sum is 25,291 and whose ROI score is thus 25291/9 and is greater than the
ROI score for any other HMM record template. Intuitively, this makes sense because
the most often occurring fact assertion in the Kilbarchan Parish Record is statement
about a christening of a child of the form “<GivenName>, <Day> <Month> <Year>”,
of which there are thousands.

When one HMM state receives a user-supplied label, all states sharing the same
semantic ID receive the same final label. In the example in Figure 14 the user
would label “Marie” as KilbarchanPerson.Name.GivenName, “17” as KilbarchanPer-
son.ChristeningDate.Day, “June” as KilbarchanPerson.ChristeningDate.Month, and
“1653” as KilbarchanPerson.ChristeningDate.Year. And, since given-name and date
fields in other christening record-templates have the same semantic IDs, these fields
are also labeled—thousands of them due to the date variations (abbreviated/non-
abbreviated months and single-digit/double-digit days) that appear in the Kilbarchan
Perish Record. Furthermore, all delimiters are implicitly labeled whenever a user la-
bels the fields in a record as the text between labeled fields and preceding the first
labeled field and following the last labeled field. In the example in Figure 14, the user
implicitly labels four delimiters: the comma and space between the name and the day
in the date, the two spaces within the date, and the period following the year. The
states for delimiters also have semantic IDs as Figure 11 shows, so ListReader prop-
agates the labels to all other states with identical semantic IDs—those that have the
same delimiter in the same position in the same field group template.

ListReader’s label propogation across semantic IDs minimizes the user’s labeling
effort during active sampling. As an example, Figure 15 shows ListReader’s second

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:23

Fig. 14. First Active-Sampling User Query

Fig. 15. First Active-Sampling User Query Requiring Only Partial Labeling

active-sampling query for our example run of the Kilbarchan Parish Record. The high-
lighting is multicolored: green for previously labeled fields (the GivenName “Robert”,
the ChristeningDate.Day “3”, the ChristeningMonth “Oct”, and the Christening.Year
“1709”); red for previously labeled delimiters (“, ”, “ ”, “ ”, and “.”); and yellow for unla-
beled text (the period following “Oct” in Figure 15). ListReader does not know, by what
it has so far learned, whether the period following “Oct” belongs to the Month field or
to the delimiter between “Oct” and “1709”. At this point, the user should copy “Oct.”
into the KilbarchanPerson.Christening.Month form field to label the “.” state following
the “[UpLo]” state now known as the KilbarchanPerson.ChristeningDate.Month state
in the HMM fragment as being part of the month field.

As our Kilbarchan example shows, active sampling is impactful from the first query.
Furthermore, it improves recall monotonically as it does not back-track or reverse
labeling decisions from one cycle to the next. Compared with typical active learning

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:24 T. Packer and D. Embley

[Settles 2012], it is not necessary for ListReader to induce an intermediate model from
labeled data before it can become effective at issuing queries. This would be true even
if ListReader did update the HMM during active learning cycles, although it would
necessitate ListReader having to apply the HMM again on every cycle, which currently
it avoids. Furthermore, ListReader need not know all the labels at the time of the first
query. Indeed, it starts active sampling without knowing any labels. The query policy is
similar to processes of novelty detection [Marsland 2003] in that it effectively identifies
new structures for which a label is most likely unknown. Furthermore, the wrapper
can be induced for complete records regardless of how much the user annotates or
wants extracted, and ListReader is not dependent on the user to identify record- or
field-delimiters nor to label any field the user does not want to be extracted.

4.2. Mapping Data to Ontology
Having completed the HMM wrapper, including user-supplied labels, ListReader ap-
plies the HMM using the Viterbi algorithm a second time to compute the most prob-
able sequence of state IDs for each token in each page, translates the syntactic IDs
into user-supplied labels for each token, and then translates text strings labeled with
form-field labels into predicates that it inserts into the ontology. The entire flow from
HTML form and text (e.g. Figure 1) to ontology (e.g. Figure 2) takes a few steps, as
we now explain. To automate much of this process, we have established formal map-
pings among three types of knowledge representation: (1) HTML forms (e.g. Figure 1),
(2) ontology structure (e.g. Figure 2), and (3) in-line labeled text (e.g. Figure 3). These
mappings effectively reduce the ontology population problem to a sequence labeling
problem, and in turn the sequence labeling problem to a form-construction and form-
filling task, a process more familiar to most users than either sequence labeling or
ontology population.

The mapping begins with the user-constructed HTML form. The structure of the
form is a tree of nested, labeled form fields. The names of some of the form fields may be
the same, in which case they will map to the same object set in the ontology, resulting
in a non-tree shaped ontology. The leaves of the tree of form fields are lexical text-
entry fields into which the user inserts field text from the page by clicking on the text.
ListReader maps form fields to object sets (concepts or unary predicates) and uses the
nesting of one field inside another to produce a relationship set (n-ary predicates n > 1)
among object sets. The root of the tree is the form title and represents the primary
object set, i.e. the topical concept of a record in a list, for example KilbarchanPerson in
Figure 1.

ListReader maps the empty HTML form to an ontology schema that may contain
a number of conceptual distinctions including any of the following. (1) textual vs.
abstract entities (e.g. GivenName(“Archibald”) vs. KilbarchanPerson(Person1) in Fig-
ure 1, where Person1 is an object identifier); (2) 1-many relationships in addition to
many-1 relationships so that a single object can relate to many associated entities
or only one (e.g. a KilbarchanPerson object in Figure 2 can relate to several Parishes
but only one ChristeningDate—the arrowhead in the diagram on ChristeningDate des-
ignating functional, only one, and the absence of an arrowhead on Parish designat-
ing non-functional, allowing many); (3) n-ary relationships among two or more en-
tities instead of strictly binary relationships (e.g. if a user wants to associate dates
of residence in a parish along with the parish name yielding a ternary relationship
among KilbarchanPerson, Parish, and ResidenceDates in Figure 2 and being desig-
nated by a double-column multiple-entry field with ResidenceDates along side of Parish
in Figure 1); (4) ontology graphs with arbitrary path lengths from the root instead of
strictly unit-length as in named entity recognition or data slot filling (e.g. Kilbarchan-
Person.Spouse.MarriageDate.Day in Figure 2); (5) concept categorization hierarchies,

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:25

including, in particular, role designations (e.g. if a user wants to designate roles for
some Kilbarchen persons who have duties in the parish, such as a priest or an alter
boy); and (6) a non-tree ontology structure (object sets can be shared among multiple
relationship sets). This expressiveness provides for the rich kinds of fact assertions we
wish to extract in our application.

After active sampling is complete, ListReader labels the text of each page as illus-
trated in Figure 3 and translates the labeled text into predicates and inserts them into
the ontology. Record delimiter tags surround a complete record string and determine
which fields belong to the same record. ListReader splits labels into object set names
and instantiates objects for each new object set name and relationship predicates for
each dot-separated sequence of object set names. The text string of the each leaf field is
instantiated as a lexical object. Any remaining unlabeled text (text labeled as NonList
or text still labeled with its original semantic ID) produces no output.

5. EVALUATION
We evaluate ListReader on two books, the Shaver-Dougherty Genealogy and the Kil-
barchan Parish Register, and compare its performance to two baselines, an implemen-
tation of the Conditional Random Field (CRF) and a previous version of ListReader
that induced regular-expression wrappers instead of HMM wrappers [Packer and Em-
bley 2014]. The regex version of ListReader is similar to the HMM version except that
it creates separate regular expression wrappers for every record pattern discovered
during grammar induction whereas the HMM version is selective about which record
and field group templates make it into the final HMM wrapper. The motivation for cre-
ating the HMM version is to overcome the brittleness of regular expressions, believing
that the more malleable HMM wrappers would yield better recall results because of
their ability to recognize variations in text patterns without requiring an exact match
and would not hurt precision results too much because of ListReader’s ability to create
HMMs with a high degree of correlation to the observed text.

In Subsection 5.1, we describe the data (books) we used to evaluate ListReader.
We explain the experimental procedure for evaluating the CRF in Subsection 5.2. We
give the metrics we used in Subsection 5.3 and the results of the evaluation in Sub-
section 5.4, which includes a statistically significant improvement in F-measure as a
function of labeling cost.

5.1. Data
General wrapper induction for lists in noisy OCR text is a novel application with no
standard evaluation data available and no directly comparable approaches other than
our own previous work. We produced development and evaluation data for the current
research from three separate family history books.4

We developed ListReader almost entirely using the text of the The Ely Ancestry
[Beach et al. 1902] and Shaver-Dougherty Genealogy [Shaffer 1997]. The Ely Ancestry
contains 830 pages and 572,645 word tokens and Shaver-Dougherty Genealogy con-
tains 498 pages and 468,919 words. We used Shaver-Dougherty Genealogy and three
pages of the Kilbarchan Parish Register [Grant 1912] containing 6013 words as our
evaluation data. The Kilbarchan Parish Register would be considered a blind test ex-
cept for our recognizing the need to not conflate lower-case words for this kind of book.
We have added this option as an input parameter that is easy to set after quickly in-
specting the input document. We chose the two test books to represent larger and more
complex text on the one hand using the Shaver-Dougherty Genealogy and smaller and
simpler text on the other using the Kilbarchan Parish Register.

4We will make all text and annotations available to others upon request.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:26 T. Packer and D. Embley

Fig. 16. ShaverPerson Ontologies

The Kilbarchan Parish Register is a book composed mostly of a list of marriages and
sub-lists of children under each marriage. The three pages we used as our test set are
in the Appendix.

To label the text, we built a form in the ListReader web interface, like the one on the
left side of Figure 1 that contains most of the information about a person visible in the
lists of selected pages. Using the tool, we selected and labeled all the field strings in
68 pages from Shaver-Dougherty Genealogy and 3 pages from the Kilbarchan Parish
Register. We ran the unsupervised wrapper induction on the text of the labeled pages.
Grammar induction did not use the labels, but active sampling used a small number
of them, namely those for the text selected by ListReader during active sampling. All
of the remaining labels were used as ground truth for evaluation. The web form tool
generated and populated the corresponding ontologies which we used as the source
of labeled text. The annotated text from the 68 pages of the Shaver-Dougherty Ge-
nealogy have the following statistics: 14,314 labeled word tokens, 13,748 labeled field
instances, 2,516 record instances, and 46 field types. Figure 16 shows the two ontolo-
gies used for these 46 field labels—one for the main body of the paper and one for the
index. The annotated text from the 3 pages of the Kilbarchan Parish Register have the
following statistics: 852 labeled word tokens, 768 labeled field instances, 165 record in-
stances, and 12 field types. Figure 2 shows the ontology corresponding to those 12 field
labels—the 12 paths from the KilbarchanPerson object set to the leaf lexical object sets
after combining MarriageDate with ProclamationDate and combining BirthDate with
ChristeningDate.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:27

5.2. CRF Comparison System
We believe the performance of the supervised Conditional Random Field (CRF) serves
as a good baseline or reference point for interpreting the performance of ListReader.
The CRF implementation we applied is from the Mallet library [McCallum 2002]. To
ensure a strong baseline, we performed feature engineering work to select an appro-
priate set of word token features that allowed the CRF to perform well on development
test data. The features we applied to each word include the case-sensitive text of the
word, and the following dictionary/regex Boolean attributes: given name dictionary
(8,428 instances), surname dictionary (142,030 instances), names of months (25 vari-
ations), numeral regular expression, roman numeral regular expression, and name
initial regular expression (a capital letter followed by a period). The name dictionaries
are large and have good coverage of the names in the documents. We also distributed
the full set of word features to the immediate left and right neighbors of each word
token (after appending a “left neighbor” or “right neighbor” designation to the feature
value) to provide the CRF with contextual clues. Using a larger neighbor window than
just right and left neighbor did not improve its performance. These features constitute
a greater amount of knowledge engineering than we allow for ListReader. We simu-
lated active learning of a CRF using a random sampling strategy—considered to be
a hard baseline to beat in active learning research, especially early in the learning
process [Cawley 2011].

Each time we executed the CRF, we trained it on a random sample of n lines of
text sampled throughout the hand-labeled portion of the corpus. Then we executed the
trained CRF on all remaining hand-labeled text. We varied the value of n from 1 to
10 to fill in a complete learning curve. We ran the CRF 7,300 times for the Shaver-
Dougherty Genealogy and 4,000 times for the Kilbarchan Parish Register and then
computed the average y value (precision, recall, or F-measure) for each x value (cost)
along the learning curve and generated a locally weighted regression curve from all
7,300 (or 4,000) points.

5.3. Experimental Procedure and Metrics
To test the three extractors (two versions of ListReader and the CRF) we wrote an
evaluation system that automatically executes active sampling by each extractor, sim-
ulates manual labeling, and completes the active sampling cycle by reading in labels
for ListReader and by retraining and re-executing the CRF. The extractors incur costs
during the labeling phase of each evaluation run which includes all active sampling cy-
cles up to a predetermined budget. To simulate active sampling, the evaluation system
takes a query from the extractor and the manually annotated portion of the corpus
and then returns just the labels for the text specified by the query in the same way
the ListReader user interface would have. In this way, we were able to easily simulate
many active sampling cycles within many evaluation runs for each extractor.

For purposes of comparison, we computed the accuracy and cost for each evalua-
tion run. We measured cost as the number of field labels provided during the labeling
phase, a count that correlates well with the amount of time it would take a human
user to provide the labels requested by active sampling. The CRF sometimes asks the
user to label prose text while ListReader does not. To be consistent in measuring cost,
we do not count these labelings against the cost for the CRF. This means that the
CRF has a slight advantage as it receives training data for negative examples (prose
text) without affecting its measured cost. During the test phase, the evaluation system
measured the accuracy of the extractors only on tokens of text not labeled for active
sampling.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:28 T. Packer and D. Embley

Since our aim is to develop a system that accurately extracts information at a low
cost to the user, our evaluation centers on a standard metric in active learning re-
search that combines both accuracy and cost into a single measurement: Area under
the Learning Curve (ALC) [Cawley 2011]. The rationale is that there is no single, fixed
level of cost that is right for all information extraction projects. Therefore, the ALC
metric gives an average learning accuracy over many possible budgets. We primarily
use F1-measure as our measure of extraction accuracy, although we also report ALC
for precision and recall curves. Precision is defined to be tp

tp+fp and recall is defined
to be tp

tp+fn where tp means true positive, fp means false positive, and fn means false
negative field strings. F-measure (F1) is the harmonic mean of precision (p) and recall
(r), or 2pr

p+r . ALC is
∫max

min
f(c)dc, where c is the number of user-labeled fields (cost) and

f(c) can be precision, recall, or F-measure as a function of cost, and min and max refer
to the smallest and largest numbers of hand-labeled fields in the learning curve. The
curve of interest for an extractor is the set of an extractor’s accuracies plotted as a
function of their respective costs. The ALC is the percentage of the area, between 0%
and 100% accuracy and min and max cost, that is covered by the extractor’s accuracy
curve. ALC is equivalent to taking the mean of the accuracy metric at all points along
the curve over the cost domain—an integral that is generally computed for discrete
values using the Trapezoidal Rule,5 which is how we compute it.

5.4. Results
From Tables I and II we see that the ALC of F-measure for ListReader (HMM) is signif-
icantly higher than that of ListReader (Regex) for both books, which in turn is signif-
icantly higher than that of the CRF. ListReader (HMM) consistently outperforms the
CRF in terms of F-measure over both learning curves. ListReader (Regex) consistently
produces only a few false positives (precision errors). The improvement of ListReader
(HMM) over (Regex) is due to improved recall. The ListReader-generated HMM is ca-
pable of recognizing up to almost 50% more list records in the input text document
than the phrase structure grammar from which it is built, despite the fact that HMM
construction eliminates between about 50% and 90% of the patterns found in the sec-
ond suffix tree to satisfy our record selection constraints while the Regex preserves
all of them. ListReader (HMM) does not produce as high a precision as ListReader
(Regex), but does improve on recall. Recall is improved because the HMM matches
more records with fewer record templates on account of its flexible probabilistic struc-
ture, allowing the user to provide fewer labels to cover more information (allowing the
HMM to reach the end of the long tail of record templates faster).

From Table II we see that in the Kilbarchan Parish Register, ListReader (HMM)
outperforms ListReader (Regex) and the CRF in all three metrics except in the case of
Regex’s precision, but that difference is not statistically significant as it is in Shaver-
Dougherty Genealogy.

Figures 17, 18, and 19 show plots of the F-measure, precision, and recall learn-
ing curves for ListReader and the CRF on the Shaver-Dougherty Genealogy and Fig-
ures 20, 21, and 22 show plots of the F-measure, precision, and recall learning curves
for ListReader and the CRF on the Kilbarchan Parish Register. These plots provide
detail behind the ALC metrics in Tables I and II. Visually, the learning curves indicate
that ListReader (Regex and HMM) both outperform the CRF fairly consistently over
varying numbers of field labels for all three metrics. Tables I and II tell us that the
differences among the three extractors are statistically significant for most pairwise
comparisons at p < 0.05 using an unpaired t test. The three pairs that are not signifi-

5See http://en.wikipedia.org/wiki/Trapezoidal rule

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

http://en.wikipedia.org/wiki/Trapezoidal_rule

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:29

Table I. ALC of Precision, Recall, F-measure for the
Shaver-Dougherty Genealogy (%)

Prec. Rec. F1

CRF 50.63 33.95 38.82
ListReader (Regex) 97.60 32.55 48.78
ListReader (HMM) 69.59 42.84 52.54

All differences are statistically significant at p < 0.05

using an unpaired t test except for the difference in
Recall of ListReader (Regex) and the CRF.

Table II. ALC of Precision, Recall, F-measure for the Kil-
barchan Parish Register (%)

Prec. Rec. F1

CRF 68.86 63.02 65.47
ListReader (Regex) 96.34 54.30 67.92
ListReader (HMM) 91.38 72.74 79.19

All differences are statistically significant at p < 0.05

using an unpaired t test except for the difference in
Precision of the two ListReaders and the difference in
Recall of ListReader (Regex) and the CRF.

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F-measure vs. Cost for ListReader and CRF

Hand Labeled Fields

Te
st

 F
-m

ea
su

re

●
●

●● ●

●
●

●
●

●
●● ● ●●

●
● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

● ListReader (HMM)
ListReader (Regex)
CRF (mean F-measure)
CRF (regression curve)

Fig. 17. F-measure Learning Curves for the Shaver-Dougherty Genealogy

cant are the ones comparing the recall of ListReader (Regex) and the CRF on both the
Shaver-Dougherty Genealogy and the Kilbarchan Parish Register and comparing the
precision of the two versions of ListReader on the Kilbarchan Parish Register.

The spike in the CRF’s recall at Cost = 4 in Figure 22 is because the majority of
records in the book are child records that contain 4 fields. When the CRF is lucky
enough to train on one of these records, it usually does well extracting the other child
record information.

Comparing the sizes of the extractors, ListReader (Regex) generated a regular ex-
pression that was 319,096 characters long for the Shaver-Dougherty Genealogy match-

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:30 T. Packer and D. Embley

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision vs. Cost for ListReader and CRF

Hand Labeled Fields

Te
st

 P
re

ci
si

on

●

●
●
●

●
● ● ● ●

● ●●
● ●●●

● ●

● ListReader (HMM)
ListReader (Regex)
CRF (mean Precision)
CRF (regression curve)

Fig. 18. Precision Learning Curves for the Shaver-Dougherty Genealogy

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Recall vs. Cost for ListReader and CRF

Hand Labeled Fields

Te
st

 R
ec

al
l

●

●

● ●
●

●
●

●

●
●● ● ●●

●

● ●● ●

● ListReader (HMM)
ListReader (Regex)
CRF (mean Recall)
CRF (regression curve)

Fig. 19. Recall Learning Curves for the Shaver-Dougherty Genealogy

ing 3,334 records, and one that was 54,600 characters long for the Kilbarchan Parish
Register matching 268 records. ListReader (HMM) generated an HMM with 2,015
states for the Shaver-Dougherty Genealogy matching 3,023 records and an HMM
with 255 states for the Kilbarchan Parish Register matching 162 records. The HMM
matches fewer records than the Regex because it is built from a fraction of the available
record parse trees. The key to its improved recall, again, is that each (hand-labeled)

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:31

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F-measure vs. Cost for ListReader and CRF

Hand Labeled Fields

Te
st

 F
-m

ea
su

re ●

●

●

● ●
●

● ● ● ●

● ListReader (HMM)
ListReader (Regex)
CRF (mean F-measure)
CRF (regression curve)

Fig. 20. F-measure Learning Curves for the Kilbarchan Parish Register

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision vs. Cost for ListReader and CRF

Hand Labeled Fields

Te
st

 P
re

ci
si

on

● ● ●
● ● ● ●

●
● ●

● ListReader (HMM)
ListReader (Regex)
CRF (mean Precision)
CRF (regression curve)

Fig. 21. Precision Learning Curves for the Kilbarchan Parish Register

HMM record template can match more records than each (hand-labeled) Regex tem-
plate. Otherwise, the HMM should match less than half of the number of records that
the Regex does. The CRF had 353 types of feature values and 28 states for the Shaver-
Dougherty Genealogy and 191 types of feature values and 15 states for the Kilbarchan
Parish Register. A smaller number of states probably contributed to its faster running
time and lower accuracy compared to the HMM.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:32 T. Packer and D. Embley

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall vs. Cost for ListReader and CRF

Hand Labeled Fields

Te
st

 R
ec

al
l

●

●

●

●
●

●

● ● ● ●

● ListReader (HMM)
ListReader (Regex)
CRF (mean Recall)
CRF (regression curve)

Fig. 22. Recall Learning Curves for the Kilbarchan Parish Register

Comparing the running time of ListReader, time and space complexity is linear in
terms of the size of the input text, but unlike the Regex version, the HMM version is
quadratic in the length of the record and the size of the label alphabet. The typical
implementation of the training phase of a linear chain CRF is quadratic in both the
sizes of the input text and the label set [Cohn 2007], [Guo et al. 2008]. We ran all ex-
tractors on a desktop computer with Java (JDK 1.7), a 2.39 GHz processor, and 3.25
GB of RAM. ListReader (Regex) took 26 seconds to run on the Kilbarchan Parish Reg-
ister and 2 minutes 47 seconds to run on the Shaver-Dougherty Genealogy. ListReader
(HMM) took 2 minutes 11 seconds to run on the Kilbarchan Parish Register and 59
minutes 18 seconds to run on Shaver-Dougherty Genealogy. The CRF took 9 seconds
on Kilbarchan Parish Register and 52 seconds on Shaver-Dougherty Genealogy.

6. DISCUSSION AND FUTURE WORK
The errors ListReader (HMM) produces include both precision and recall errors (false
positives and false negatives). The most important errors include missing whole
records or large segments of records belonging to undiscovered templates. For exam-
ple, on Page 31 of the Kilbarchan Parish Register, ListReader misses the first part of
the third record, namely “Cordoner, James, par., and Florence Landiss, par. of Paisley”,
because the “par-and” delimiter occurs in only one record cluster and is therefore not
recognized as a field group delimiter in our three-page test set. This issue contributes
mostly to errors in recall as it causes ListReader to completely miss many fields. It
also contributes to a few errors of precision as it causes ListReader to propose a record
boundary in the wrong place (just past the missing information).

ListReader (HMM), as compared to ListReader (Regex), does relatively well in re-
call for the same reason it does relatively poorly in precision—by matching more text.
By design, it uses only one “feature” per word token, and that feature is easily de-
rived from the text, itself, without large knowledge resources. This is in contrast to our
implementation of the CRF which, instead of removing information as our HMM does,
the feature extractors add information. This makes the comparison CRF a less scalable

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:33

option in terms of development cost over multiple domains or text genres compared to
our HMM whose main operating principle could be stated as “carefully throwing out
the right kind of information.” The technique of using semantic or lexical resources is
somewhat more complicated in our work because of OCR errors that make dictionary
matching more difficult. We thus do not currently rely on them.

On the other hand, adding semantic constraints to the HMM would likely help pre-
vent some of its precision errors, such as labeling an “m.” as a surname at the begin-
ning of a line whose other text matched a known record pattern. Future work should
investigate adding such semantic features or constraints to ListReader in a way that is
cost-effective, for example using self-training, co-training, or bootstrapping that learns
semantic categories from the input text, itself. We could also train ListReader from
examples labeled automatically by other extractors, from wrappers trained on other
books, or from examples that match a database of known facts such as the work in
[Dalvi et al. 2010], with the added costs associated with those resources. Since the final
mapping from HMM states to labels and predicates is the only step currently needing
human labeled examples, adding a technique that utilizes automatically-labeled ex-
amples would make our approach completely unsupervised and scalable in terms of
supervision cost.

Looking further ahead to applying ListReader to arbitrary lists, we should con-
sider those that are less structured and more like natural language. The current
implementation assumes that any given field group delimiter (and, in turn, every
connected field group) has a fixed semantics regardless of where in a record it oc-
curs, and regardless of whether that field group delimiter may appear in more than
one location. For example, we see a few records in the Kilbarchan Parish Regis-
ter of the following form “\nMarshall, William, in Lochermilne, and Jean Reid,
in Killallan\n”. ListReader will ask for a label from the user for only one of the “in”
field groups and therefore will label them both as the same, e.g. both associated with
the husband or both associated with the wife, but not each associated with the correct
spouse. Future versions of ListReader should overcome this limitation while preserv-
ing the labeling efficiency, for example by learning that the “and” delimiter separates
field groups associated with the husband and the wife which should allow ListReader
to then distinguish between the two “in” field groups during parsing, labeling, and
mapping.

7. RELATED WORK
Having described and evaluated ListReader, we now compare it with related
research—wrapper induction in support of information extraction from semi-
structured documents (Subsection 7.1) and unsupervised learning for extraction mod-
els (Subsection 7.2).

7.1. Automated Information Extraction from Lists
In general, related projects in the web wrapper induction literature [Chang et al. 2006]
are almost universally applied to clean text—mostly to structured HMTL documents,
and sometimes to semi-structured lists—allowing them to learn record patterns from
as little as one page of input. The information extraction task of these systems is simi-
lar to ListReader’s in that they extract, label, and group fields together that belong
to the same record, and there can be multiple isolated records on a page. On the
other hand, unlike ListReader, many wrapper induction approaches look for contigu-
ous records, and those approaches that, like ListReader, are based on limited user
input do not work with plain text (non-HTML) input and do not recognize multiple
orderings of extracted fields. Those that work with plain text, like ListReader, use

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:34 T. Packer and D. Embley

syntactic and semantic features such as part of speech tags and WordNet categories,
which ListReader does not need to use.

Choices in wrapper formalism include sets of left and right field context expres-
sions ([Kushmerick 1997], [Ashish and Knoblock 1997]), xpaths ([Dalvi et al. 2010]),
finite state automata ([Lerman et al. 2001]), and conditional random fields ([Elmeleegy
et al. 2009], [Gupta and Sarawagi 2009]). These formalisms generally rely on consis-
tent landmarks that are not available in OCRed lists for three reasons: OCRed list text
is less consistently structured than machine-generated HTML pages, OCRed text does
not contain HTML tags, and field delimiters and content in OCRed documents often
contain OCR and typographical errors. Furthermore, none of these projects address
all of the steps necessary to complete the process of the current research such as list
finding, record segmentation, and field extraction.

The wrapper induction work most closely related to ListReader is IEPAD [Chang
et al. 2003]. IEPAD consists of a pipeline of four steps: token encoding, PAT tree con-
struction, pattern filtering, and rule composing. Like ListReader, IEPAD must deal
with a trade-off between coarsely encoding the text to reduce the noise enough to find
patterns and finely encoding the text to maintain all the distinctions specified by the
output schema. Also, PAT trees are related to suffix trees and share similar time and
space properties. However, we note some important differences. The algorithmic com-
plexity of IEPAD’s wrapper construction phase appears to be quadratic because of its
reliance on multiple string alignment, while ListReader’s is linear. ListReader must
use a different means of encoding (conflating) text than IEPAD so it can preserve
more fine grained structure. IEPAD apparently cannot extract fields that are not ex-
plicitly delimited by some kind of HTML tag and looks only for contiguous records.
Also, it appears that IEPAD users must identify pages containing target information;
a ListReader user does not need to do so. IEPAD requires users to select patterns
because the system may produce more than one pattern for a given type of record.
ListReader automatically selects patterns among a set of alternatives. IEPAD users
must also provide labels for each pattern, which is similar to the work of ListReader
users, but is likely more difficult because it forces users to interpret induced patterns
rather than original text, which raises the required user skill level. ListReader also
minimizes the amount of supervision needed to extract a large volume of data by in-
tegrating an interactive labeling process into grammar induction, something IEPAD
does not do. Lastly, ListReader reduces the cost of extracting information because of
its unique combination of global pattern detection and active sampling—it focuses a
user’s effort on the most common patterns first, a valuable property not explored in
any related information-extraction research.

7.2. Unsupervised Learning for Extraction Models
There are many wrapper induction projects applied to web pages that have a strong
element of unsupervised machine learning, such as [Kushmerick 1997], [Ashish and
Knoblock 1997], [Dalvi et al. 2010], and [Lerman et al. 2001]. These and other related
research projects do not solve our targeted problem. Most do not address lists, specif-
ically, and none address plain OCRed text. As Gupta and Sarawagi say ([Gupta and
Sarawagi 2009]), the vast majority of methods of extraction of records from unstruc-
tured lists assume the presence of labeled unstructured records for training and a few
assume a large database of structured records. None of these projects address all of
the steps necessary to complete the process of the current research such as list finding,
record segmentation, field extraction, and mapping to an expressive ontology.

A common and mathematically motivated means of unsupervised HMM induction
is the Baum-Welch algorithm, an instance of the iterative Expectation-Maximization
algorithm (EM). Baum-Welch finds the MLE parameters of an HMM in either unsu-

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:35

pervised or semi-supervised learning scenarios. In either case, text without manually-
provided labels are assigned those labels that are most probable given the current
HMM parameters, and those HMM parameters are in turn set from the most prob-
able label distributions given the parameters set on the previous iteration. Grenager
et al. ([Grenager et al. 2005]) use EM to train an HMM in both unsupervised and
semi-supervised scenarios to extract fields from plain text records, including bibli-
ographic citations and classified advertisements. They supplement EM with a few
domain-dependent biases to prefer diagonal (self) transitions and recognize boundary
tokens (punctuations). They report that the accuracy of the unsupervised approach
starts low but is improved with the added biases. Furthermore, before adding the bi-
ases, their semi-supervised approach performed worse than supervised learning given
the same number of hand-labeled examples, according to our reproduction of their
work. The fields they extract are coarse-grained, such that a sequence of author names
in a bibliographic citation is considered one homogeneous segment. Our work differs
from theirs in that we set the HMM parameters from record structure proposed by a
separate phrase grammar that we induce automatically and separately (without any
connection to the HMM). We also extract more fine-grained information, e.g. individ-
ual person names and parts of those names, to improve the richness of the resulting
data.6 Therefore, their self-transition bias would not be appropriate in our work. Also,
Grenager et al. assume that list records have been found and extracted before their
process begins, which we do not assume for ours. Unlike the semi-supervised part of
their work, we do not perform any training of the HMM’s structure or parameters
using hand labeled data which may be a more scalable approach given a large input
corpus.

Elmeleegy et al. ([Elmeleegy et al. 2009]) present an algorithm to automatically con-
vert a source HTML list into a table, with no hand-labeled training data and no out-
put labeling of fields or columns. They segment fields in records automatically using
the following sources of information to predict which words should be split and which
should remain together: (1) sets of “data type” regular expressions including common
numeric entity patterns, (2) an n-gram language model producing internal cohesive-
ness and external in-cohesiveness scores, and (3) a thresholded count of the number
of cells matched in a corpus of extracted table cells. They combine these sources of
evidence using a weighted average. They also correct errors in the first pass of seg-
mentation by counting fields, forcing all records to be segmented into no more than the
most common number of fields, and aligning shorter records using a modification of the
Needleman-Wunsch algorithm. Like Grenager et al., they perform field segmentation
and alignment but do not appear to perform list discovery or record segmentation as
we do. They also do not label fields or fully extract information, and they target HTML
lists which may contain additional formatting clues not present in our OCR text. Un-
like us, they assume that the order of fields does not change between list entries. Un-
supervised techniques like theirs target web-scale applications and they also rely on
a web-scale corpus. Therefore, they avoid hand-labeling of training data. Their source
table data is a massive collection of tables from the web. Using massive amounts of
web data is a common technique among recent web wrapper research that rely on the
sheer size of the web as a key resource for their system. We do not use web-scale data
resources. They assume there are not many optional fields in their input data which
is not true of our data. Forcing the number of fields/columns to equal the mode of the

6The benefits of a fine-grained ontology include the following: (1) it can allow an ontology user to evolve the
schema without either retraining the extraction model or manually restructuring individual fields within
the resulting database and (2) it can improve the accuracy and versatility of downstream processes such as
querying, record linkage, and ontology mapping.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:36 T. Packer and D. Embley

field count per row discovered in the first pass will not work correctly for many lists
because there can be optional fields which do not often occur.

Gupta and Sarawagi ([Gupta and Sarawagi 2009]) convert HTML source lists on
the web into tables that match and augment an incomplete user-provided table. Their
unsupervised approach first ranks lists with a Lucene query, based on the words in
the user-provided table. Second, they label candidate fields in the source list records
as training data by marking text in the list records that match text in the columns
of the user-provided table. Third, they train a separate CRF for each source list using
the automatically labeled records of the list and then apply the CRF to the rest of
the records of that list. This effectively produces tables from the lists. They finally
merge and rank the rows of the resulting tables and returns the top ranked rows of
the final table to the user. Rows that repeat often in source lists and which are given
high confidence scores by the CRF are ranked high. This work is similar to ours in
that they train a statistical sequence model on the text of lists labeled by a separate,
automatic process. It differs from ours in that their source text (web pages) have no
OCR errors and have more structure making it easier to find lists, segment records,
and identify fields. They do not need to complete a mapping from text fields to ontology
predicates, they only need to align user-provided fields with fields in a list record. They
do not seem to (or need to) segment records in lists before extracting fields. They have
a much larger source of potential lists than we do and only need to find some with high
accuracy, not all of them. In our project, we evaluate against an ideal of extracting all
list records from a book. This work, as well as the other two, do not extract richly- and
explicitly-structured data suitable for ontology population as we do.

8. CONCLUDING REMARKS
ListReader addresses the problem of extracting information from OCRed lists for on-
tology population. It requires little effort to apply to a new book, is specialized to recog-
nize and model list structures, and is tolerant of OCR errors. Our HMM implementa-
tion of ListReader demonstrates a novel way to set the structure and parameters of an
HMM automatically for the task of populating an expressive conceptual model with in-
formation from lists in OCRed text. It also demonstrates a way to minimize the work
necessary for completing the HMM wrapper by manually associating automatically-
selected HMM states with ontology predicates. ListReader performs well in terms
of accuracy, user labeling cost, time and space complexity, and required knowledge
engineering—outperforming the comparison systems in terms of most criteria includ-
ing the most important measure: accuracy achieved relative to minimal manual anno-
tation cost.

APPENDIX: Example Pages
For reference, we append an example page from The Ely Ancestry in Figure 23, from
the Shaver-Dougherty Genealogy in Figure 24, and three pages from the Kilbarchan
Parish Register in Figures 25, 26, and 27.

ACKNOWLEDGMENTS

We would like to thank FamilySearch.org for supplying data from its scanned book collection and for their
encouragement in this project. We would also like to thank the members of the BYU Data Extraction Re-
search Group, and particularly Stephen W. Liddle, for coding the Annotator used for ground truthing and
for interactively supplying labels for ListReader and for their support in supplying additional tools and
resources for completing our ListReader project.

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:37

154 THE ELY ANCESTRY.
FIFTH GENERATION.

5. Betsy.

6. William.

7. Phebe.

8. Richard.

1555. Elias Mather, b. 1750, d. 1788, son of Deborah Ely and Rich-

ard Mather; m. 1771, Lucinda Lee, who was b. 1752, dau. of Abner Lee
and EHzabeth Lee. Their children :

—

1. Andrew, b. 1772.

2. Clarissa, b. 1774.

3. Elias, b. 1776.

4. William Lee, b. 1779, d. 1802.

5. Sylvester, b. 1782.

6. Nathaniel Griswold, b. 1784, d. 1785.

7. Charles, b. 1787.

1556. Deborah Mather, b. 1752, d. 1826, dau. of Deborah Ely and
Richard Mather; m. 1771, Ezra Lee, who was b. 1749 and d. 1821, son

of Abner Lee and Elizabeth Lee. Their children :

—

1. Samuel Holden Parsons, b. 1772, d. 1870, m. Elizabeth Sullivan.

2. Elizabeth, b. 1774, d. 1851, m. 1801 Edward Hill.

3. Lucia, b. 1777, d. 1778.

4. Lucia Mather, b. 1779, d. 1870, m. John Marvin.

5. Polly, b. 1782.

6. Phebe, b. 1783, d. 1805.

7. William Richard Henry, b. 1787, d. 1796.

8. Margaret Stoutenburgh, b. 1794.

Ezra Lee was born at Lyme, Conn., in the year 1749, and died there on the

29th of Oct., 182 1.

He was an officer of the Revolutionary Army, trusted by Washington, and

beloved by his fellow officers for his calm and faithful courage and patriotic de-

votion.

In August, 1776, Captain Ezra Lee was selected by General Samuel H. Par-

sons, with the approval of General Washington, to affix an infernal machine called

a "marine turtle," invented by one David Bushnell, to a British ship, the "Eagle,"

then in New York harbor.

The attempt was gallantly made, but was only partially successful, owing to

the ship's thick copper sheathing.

Captain Lee remained in the water several hours, returned in safety to the

^Americans and was congratulated by General Washington, who afterwards em-
ployed him on secret service.

Not long after the attempt upon the "Eagle," Captain Lee essayed to blow
up a British frigate, then stationed in the Hudson River, near Bloomingdale, with

Bushnell's machine, but the attempt was discovered and failed of success.

Captain Lee served at Trenton, Brandywine and Monmouth.—^Appleton's

Cyclopedia, Vol. IIL, page 662.

Fig. 23. Page from The Ely Ancestry, Page 367

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:38 T. Packer and D. Embley

SNIDER FAMILY 367

1) Mary Ann-b. ca 1840 in Doddridge Co.-mar. Cox. Samuel
In Doddrfldge Co.-nr ofd. or ch. (she never moved to Roane Co.)
JL) William 28-2
__3) Alfred 28-3
J) Israel 28-4
_5) Mandeville 28.5
_6) Eliza 28-6
_J) Louise 28-7

8) Leommius James-b. 13 Sep 1857 at Meathouse (Doddridge
MR)-nr of mar., d. or ch. (in 1880, the census inumerator noted
that L. James was an idiot)
_9) Edward Tunstill 28-9

28-2 Snider, William-b.l3 Jan 1841 in Doddridge Co.-mar. 1)
Lowe, Elizabeth 9 Apr 1868 (Roane MR); 2) Ryan, Nancy J. 21 Jul
1922 (Roane MR)-d. 6 May 1932 on Big Lick. Roane Co.-bur.
Snider Cem.-ch. 10:

1) Florence E.-b. 31 Jan 1869 at Buffalo Run. Roane Co.-
mar. Daugherty. William Henry 26 Mar 1891 (Roane MR)-d. 9 Dec
1940 at Pad. Roane Co.-ch 11: (see ID 24-4-3 ; Chapter 4)
JL) Charles T. 28-2-2
_3) William Albert 28-2-3
_4) Lloyd Nathaniel 28-2-4
_5) John Everett C, 28-2-5
_6) Ida B.-b. ca Mar 1877-nr of mar., d. or ch.
J l) Daniel W. 28-2-7

8) Clendennen--b. I Aug 1881 (Roane BRJ-mar. Hersman
Lonia May 19 Nov 1903 (Roane MRJ-nr ofd. or ch.
_9) Louise Della -b . ca Mar 1883-mar. Boley. David D. 24 Nov
1909 (Roane MR)-nr ofd. or ch.

10) D. B. (m) stillborn-) Jul 1895 at Walton (Roane BR)

28-3 Snider, Alfred-b. ca 1843 in Doddridge Co.-mar. 1)
McCluster. Mahulda: 2) Radar. MaryC. 17 Feb 1898 (Roane MR)--
d. nr-ch. 12 (per 1910 Census record):
_1) Mary E.-b. 20 Aug 1867 (Roane BR)-mar. nr-d, \& Mai
1983-ch. nr
JL) John F.-b. 2 Oct 1869 (Roane BRY- mar. nf-d. 17 Jan
1937-bur. Snodgrass Cem.-ch. nr
__3) Robert E. Lee-b. 8 Mar 1871 (Roane BR)--mar. nr-d. 31
May 1906-ch.nr.
__4) Susan A.-b. 12 Feb 1872 (Roane BRJ-mar. nr-d. 15 Dec
1892-ch. nr
_5) Lucy E. (or Hulda)--b. 20 Apr 1873 (Roane BR)--mar.
Vineyard. Wm. H. 4 Apr 1897 (Roane MR)»nr ofd. or ch.
_6) Martha E.-b, 28 Feb 1877 (Roane BR)-nr of mar., d. or ch.
J l) James E.-b. ca 1878-nr of mar., d. or ch.
,̂ _8) Fannie H.-b. 28 Feb 1880 (Roane BR)-nr of mar., d. or ch.

Fig. 24. Page from Shaver-Dougherty Genealogy, Page 154

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:39

Register of Marriages and Baptisms. 31

Jean, 6 Mar. 1698.
Ann, 25 Oct. 1701.

Cordoner, James, par., and Florence Landiss, par. of Paisley
m. 13 June 1679

Cordoner, John, and Catherine Adam m. 21 April 1656
Cordonnar, John, par., and Jean Craufurd, par. of Beith

m. Beith, 16 June 1659
Cordoner, John, and Issobell Speir, in Walkmilne of Johnstoun

m. 16 July 1673
Jean, 17 May 1674.
James, 6 Oct. 1676.
Agnes, 24 Jan. 1679.
Jonat, 24 June 1681.
John, 15 July 1683.

Cordoner, John, and Margaret Cochran, in Nether Walkmilne
William, 13 Mar. 1681.

Cordner, John, and Jonet Cochran, in Walkinshaw, 1688 in
Walkmiln of Johnstoun m. 22 April 1680

Jonet, 3 Dec. 1682.
Thomas, 7 Aug. 1688.
Margaret, 16 Dec. 1692.
Jean, 16 Feb. 1696.

Cordonar, William, and jean Cochran m. 7 Feb. 1651
Cordoner, William

William, 1 Aug. 1651.
William, 2 Jan. 1653.
Janet, 26 Feb. 1654.

Cordoner, William, in Achindinane
John, 10 Nov. 1654.

Cordonar, William, in Over Wakmilne of Johnstoun
Margaret, 27 July 1655.
Jean, 25 Sept. 1657.
Margaret, 24 June 1660.

Cordonner, William, in Achinames.
Jane, 23 April 1658.
James, 29 May 1659.

Cordownar, William, in Nether Walkmylne
Thomas, 25 Sept. 1657.

Cordoner, William, and Issobell Young, in Auchnames
Jean, 2 Oct. 1674.

Cordoner, William, at the Wakmilns of Johnstoun
Margaret, 9 Dec. 1688.

Cordoner, William, and 1 liza Orr, in Netherwalkmilne of Johnstoun
Agnes, 15 Feb. 1691.
Jean, 10 Feb. 1693.
Eliza, 28 July 1695.
Jean, 31 July 1698.

Corss, John, and Jean Patison
Jonet, 28 July 1682.

Couper, James, and Issobell Load m. 30 Nov. 1682
Couper, James, par. of Erskine, and Mary Black, par. 30 Mar. 1744
Coupar, William, in Kilbarchan, and Janet Caldwell p. 29 Dec. 1768

John, 6 Nov. 1769.
Cowan, Daniel, in town par. of Paisley, and Margaret Dougal

p. 15 Jan. 1763
Craig, James, par. of Kilbryde, and Jonet Cordonar, par.

m. 28 June 1658
Craig, James, Moreland in Forehouse, and Jonet Reid

m. Lochwinnoch, 18 Jan. 1693
James, 31 May 1695.
Margaret, 19 Sept. 1697.

Fig. 25. Page from Kilbarchan Parish Register, Page 31

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:40 T. Packer and D. Embley

32 Parish of Kilbarchan.

Craig, James, and Mary Barr
John, 30 May 1743.'

Craig, James, and Elizabeth Story, 1751 in Law
Elizabeth, 14 Aug. 1748.
Margaret, 3 Feb. 1751.
Robert, born 29 July 1753.
John, 25 Jan. 1756.

Craig, James, and Mary M'Dowall, in Monkland p. 8 Dec. 1749
Janet, born 12 July 1751.
James, 8 April 1757.

Craig, John, par. of Beith, and Marione Speir m. 18 Dec. 1672
Craig, John, and Janet Reid, in Forehouse

Mary, 20 Oct. 1673.
Craig, John, and Isobell Merchant m. 15 June 1682
Craig, John, and Elizabeth Kirk, who came from Ireland

Elizabeth, 12 Oct. 1690.
Craig, John, and Marion Clark, in Sweinlees, par. of Paisley

Samuel, 14 June 1691.
Craig, John, par. of Neilstoun, in Cartside, and Margaret King

m. 8 Feb. 1694
Robert, 6 Dec. 1694.
Mary, 4 Dec. 1698.

Craig, John, and Margaret Robison
Katherine, 18 Jan. 1741.

Craig, John, par., and Elizabeth Storie, in Abbey par. of Paisley
p. 30 May 1747

Craig, Thomas, in Kilbarchan, and Elizabeth M'Caslane
Agnes, born 8 July 1759.

Craig, Thomas, in Kilbarchan, and Janet Crawford p. 29 May 1762
Thomas, born 8 Jan. 1764.

Craig, William, and Agnes Duff m. 25 May 1654
Craig, William, in Kirktoune

William, 30 Sept. 1655.
Jean, 25 July 1658.

Craig, William, and Marion Broune, in Locherside
Marion, 14 May 1676.

Craig, William, and Margaret Dick, in Kirkton, 1692 in
Locherside, 1695 par. of Houstoun m. 29 April 1681

William, 5 Feb. 1682.
Elizabeth, 2 Sept. 1692.
Janet, 28 April 1695.

Craig, William, and Agnes Park, in Milne of Johnstoun
m. 12 Nov. 1689

Jean, 28 Dec. 1690.
William, 4 Mar. 1692.
James, 28 Oct. 1694.
Mary, 18 April 1697.
William, 5 Jan. 1701.

Craig, William, in Braes, and Janet Ken-
Jane, born 18 Dec. 1757.
James, born 6 May 1760.

Craig, William, in Halhill, and Janet Inglis
Jane, born 20 Nov. 1763.

Craig, William, and Anne Lang p. 7 June 1771
Crawford, Alexander, and Janet Whithill p. 18 July 1772
Crawford, Duncan, and Mary Neil p. 6 April 1753
Crawford, John in Houstoun

Marion, 18 Feb. 1653.
Daniel, 9 Feb. 1655.

Crauford, John, par. of Beith, and Anna Lyle, par.
rp, Kilellan, 31 July 1683

Fig. 26. Page from Kilbarchan Parish Register, Page 32

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:41

96 Parish of Kilbarchan.

Rose, Robert, in Linwood
Elizabeth, 2 Nov. 1655.
James, 22 Aug. 1658.

Rosse, Robert, in Meikle Fultoune
Robert, 12 May 1661.

Ross, Robert, of Kirkland, and Katherine Hamilton, 1688 in
Linwood m. 26 April 1677

Grissell, 31 Dec. 1682.
Elizabeth, 9 Dec. 1688.
Agnes, 4 Dec. 1692.

Ross, Robert, and Mary Colquhoun, in Linwood
Christian, 4 June 1697.

Russide, David, in Hill, and Margaret Stuart
Anne, born 7 Sept. 1767.

Sandilands, Thomas, surgeon in Kilbarchan, and Janet Lewis
Margaret, born 9 Feb. 1751.
John, born 8 Mar. 1753.

Sclatter, John, and Jonet Cochran, in Lochwinnoch
Margaret, 4 Feb. 1683.

Sklaitter, Peter, 1655 in Linwood
John, 3 July 1653.
Jonet, 30 May 1655.
Robert, 30 July 1658.
David, 7 April 1661.

Scott, , in Plainlees, and Margaret Barbour
— . 31 July 1709-

Scott, Alexander, and Agnes Greive, in Kilmacolm
James, June 1683

Scott, Archibald, par. of Largs, and Elizabeth Houstoun, par.
in Kirktoun, 1695 *° Craigends, 1698 in Kirktoun m. 31 Dec. 1691

Archibald, 24 Feb. 1693.
Francis, 4 Aug. 1695.
Catherine and Anna, 15 Nov. 1698.
John, 3 Jan. 1701.

Scott, John, in Kilbarchan, and Isabella Cumming, par. of
Lochwinnoch p. 29 July 1749

Archibald, 17 June 1750.
Janet, born 23 Oct. 1752.

Scott, John, and Janet Wilson p. 19 April 1766
Semple or Sempill, Andrew, and Margaret Waterstoune m. 24 Feb. 1654
Semple, Andrew, in Craigens

Jane, 31 Dec. 1655.
Semple, Andrew, at Mill of Cart

James, 28 Dec. 1656.
Semple, Andro, in Erskinefauld

Elizabeth, 21 April 1661.
Semple, Francis, yr., of Beltrees, and Jean Campbell, par. of

Lochgilphead m. Lochgilphead 3 April 1655
Robert, 11 April 1656.
James, 10 May 1657.

Semple, Hugh, in the Kirktoune
Thomas, 2 Nov. 1651.
Robert, 16 July 1653.
Hew, 18 Mar. 1655.

Semple, Hew, in Boghouse
William, 3 April 1657.

Semple, Hugh, of Waterstoune
James, 8 Mar. 1660.
Marie, 20 July 1662.

Sempill, Hugh, in Mossend, and Elizabeth Hall
Hugh, 17 June 1705.

Fig. 27. Page from Kilbarchan Parish Register, Page 96

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:42 T. Packer and D. Embley

REFERENCES
Naveen Ashish and Craig A. Knoblock. 1997. Semi-automatic wrapper generation for Internet information

sources. In Proceedings of the Second IFCIS International Conference on Cooperative Information Sys-
tems, 1997. COOPIS ’97. 160–169.

Moses S. Beach, William Ely, and G. B. Vanderpoel. 1902. The Ely Ancestry. The Calumet Press, New York,
New York, USA.

Gavin C. Cawley. 2011. Baseline Methods for Active Learning. Journal of Machine Learning Research-
Proceedings Track 16 (2011), 47–57. http://jmlr.org/proceedings/papers/v16/cawley11a/cawley11a.pdf

Chia-Hui Chang, Chun-Nan Hsu, and Shao-Cheng Lui. 2003. Automatic Information Extraction from Semi-
structured Web Pages by Pattern Discovery. Decision Support Systems 35 (2003), 129–147.

Chia Hui Chang, Mohammed Kayed, M.R. Girgis, and K.F. Shaalan. 2006. A Survey of Web Information
Extraction Systems. IEEE Transactions on Knowledge and Data Engineering 18, 10 (Oct. 2006), 1411–
1428. DOI:http://dx.doi.org/10.1109/TKDE.2006.152

Trevor A. Cohn. 2007. Scaling conditional random fields for natural language processing. Ph.D. Dissertation.
Citeseer. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1265&rep=rep1&type=pdf

Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. 2010. Automatic Wrappers for Large Scale Web Extrac-
tion. Proceedings of the VLDB Endowment 4 (2010), 219–230.

Charles Elkan and Keith Noto. 2008. Learning Classifiers from Only Positive and Unlabeled Data. In Pro-
ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’08). ACM, New York, NY, USA, 213–220. DOI:http://dx.doi.org/10.1145/1401890.1401920

Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. 2009. Harvesting relational tables from lists on the
web. Proceedings of the VLDB Endowment 2 (2009), 1078–1089.

Francis J. Grant (Ed.). 1912. Index to the Register of Marriages and Baptisms in the Parish of Kilbarchan,
1649 - 1772. J. Skinner and Company, Ltd., Edinburgh, Scotland.

Trond Grenager, Dan Klein, and Christopher D. Manning. 2005. Unsupervised Learning of Field Segmenta-
tion Models for Information Extraction. In Proceedings of the Forty-third Annual Meeting on Association
for Computational Linguistics. Ann Arbor, Michigan, USA, 371–378.

Yong Zhen Guo, Kotagiri Ramamohanarao, and Laurence A. F. Park. 2008. Error Correcting Output Coding-
Based Conditional Random Fields for Web Page Prediction. In Web Intelligence and Intelligent Agent
Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, Vol. 1. IEEE, 743–746.
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4740540

Rahul Gupta and Sunita Sarawagi. 2009. Answering table augmentation queries from unstructured lists on
the web. Proceedings of the VLDB Endowment 2 (2009), 289–300.

Robbie A. Haertel, Eric K. Ringger, James L. Carroll, and Kevin D. Seppi. 2008. Return on Investment
for Active Learning. In Proceedings of the Neural Information Processing Systems Workshop on Cost
Sensitive Learning.

P. Bryan Heidorn and Qin Wei. 2008. Automatic Metadata Extraction from Museum Specimen Labels. In
Proceedings of the 2008 International Conference on Dublin Core and Metadata Applications. Berlin,
Germany, 57–68.

Weiming Hu, Wei Hu, Nianhua Xie, and S. Maybank. 2009. Unsupervised Active Learning Based on Hi-
erarchical Graph-Theoretic Clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 39, 5 (Oct. 2009), 1147–1161. DOI:http://dx.doi.org/10.1109/TSMCB.2009.2013197

Nicholas Kushmerick. 1997. Wrapper induction for information extraction. Ph.D. Dissertation. University of
Washington, Seattle, Washington, USA.

Kristina Lerman, Craig Knoblock, and Steven Minton. 2001. Automatic data extraction from lists and tables
in web sources. In IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, Vol. 98.

Yanliang Li, Jing Jiang, Hai Leong Chieu, and Kian Ming A. Chai. 2011. Extracting Relation Descriptors
with Conditional Random Fields. Proceedings of the 5th International Joint Conference on Natural Lan-
guage Processing (2011), 392–400.

Stephen Marsland. 2003. Novelty detection in learning systems. Neural computing surveys 3, 2 (2003), 157–
195. http://seat.massey.ac.nz/personal/s.r.marsland/pubs/ncs.pdf

Andrew Kachites McCallum. 2002. MALLET: A Machine Learning for Language Toolkit. (2002). http://
mallet.cs.umass.edu/

Thomas L. Packer and David W. Embley. 2014. Scalable Recognition, Extraction, and Structuring of Data
from Lists in OCRed Text using Unsupervised Active Wrapper Induction. Technical Report. Department
of Computer Science, Brigham Young University, Provo, Utah. 1–48 pages. http://deg.byu.edu/papers
(Submitted to TKDD).

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

http://jmlr.org/proceedings/papers/v16/cawley11a/cawley11a.pdf
http://dx.doi.org/10.1109/TKDE.2006.152
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.1265&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1401890.1401920
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4740540
http://dx.doi.org/10.1109/TSMCB.2009.2013197
http://seat.massey.ac.nz/personal/s.r.marsland/pubs/ncs.pdf
http://mallet.cs.umass.edu/
http://mallet.cs.umass.edu/
http://deg.byu.edu/papers

Unsupervised Training of HMM Structure and Parameters for OCRed List Recognition 00:43

Burr Settles. 2012. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 6, 1
(June 2012), 1–114. DOI:http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018

Harvey E. Shaffer. 1997. Shaver/Shafer and Dougherty/Daughery Families also Kiser, Snider and Cottrell,
Ferrell, Hively and Lowe Families. Gateway Press, Inc., Baltimore, MD.

Esko Ukkonen. 1995. On-line construction of suffix trees. Algorithmica 14, 3 (1995), 249–260.
DOI:http://dx.doi.org/10.1007/BF01206331

Received Month 0000; revised Month 0000; accepted Month 0000

ACM Transactions on Knowledge Discovery from Data, Vol. 0, No. 0, Article 00, Publication date: 0000.

http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018
http://dx.doi.org/10.1007/BF01206331

	Introduction
	Unsupervised Pattern Discovery
	Text Conflation
	Record Pattern Search
	Field Group Discovery
	Final Record and Field Group Template Selection

	HMM Construction
	Field Group Template State Generation
	Field Group Template Parameter Setting
	Connecting the Pieces

	Labeling and Final Extraction
	Active Sampling
	Mapping Data to Ontology

	Evaluation
	Data
	CRF Comparison System
	Experimental Procedure and Metrics
	Results

	Discussion and Future Work
	Related Work
	Automated Information Extraction from Lists
	Unsupervised Learning for Extraction Models

	Concluding Remarks

