
Factoring Web Tables v17 Page 1 of 10

Factoring Web Tables

David W. Embley1, Mukkai Krishnamoorthy2,
George Nagy2, Sharad Seth3

1Brigham Young University, Provo, UT, USA

2Rensselaer Polytechnic Institute, Troy, NY, USA
3University of Nebraska – Lincoln, Lincoln, NE, USA

embley@cs.byu.edu, mskmoorthy@gmail.com,
nagy@ecse.rpi.edu, seth@cse.unl.edu

Abstr act. Automatic interpretation of web tables can enable database-like
semantic search over the plethora of information stored in tables on the web.
Our table interpretation method presented here converts the two-dimensional
hierarchy of table headers, which provides a visual means of assimilating
complex data, into a set of strings that is more amenable to algorithmic analysis
of table structure. We show that Header Paths, a new purely syntactic
representation of visual tables, can be readily transformed (“factored”) into
several existing representations of structured data, including category trees and
relational tables. Detailed examination of over 100 tables reveals what table
features require further work.

Keywords: table analysis, table headers, header paths, table syntax, category
trees, relational tables, algebraic factorization.

1 Introduction

The objective of this work is to make sense of (analyze, interpret, transform) tables
the best we can without resorting to any external semantics: we merely manipulate
symbols. Remaining firmly on the near side of the semantic gap, we propose a
canonical table representation based on Header Paths that relate column/row headers
and data cells. We show that this “canonical” representation is adequate for
subsequent transformations into three other representations that are more suitable for
specific data/information retrieval tasks. The three targets for transformations are

Visual Table (VT). The VT provides the conventional two-dimensional table that
humans are used to. Header and contents rows and columns may, however, be jointly
permuted in the VT generated from Header Paths, and it does not preserve style
attributes like typeface and italics.

Category Tree (CT). The CT is an “abstract data structure” proposed by X. Wang in
1996[1]. It is a convenient format for storing tables in an internal XML format and
thus can also be used for information exchange.

Relational Table (RT). RT provides the link to standard relational databases and their
extensive apparatus for storing and retrieving data from a collection of tables.

Factoring Web Tables v17 Page 2 of 10

Header Paths are a general approach to tables and capture the essential features of
two-dimensional indexing. A Well Formed Table (WFT) is a table that provides a
unique string of Header Paths to each data cell. If the Header Paths of two distinct
data cells are identical, then the table is ambiguous. Although the concept of Header
Paths seems natural, we have not found any previous work that defines them or uses
them explicitly for table analysis. Our contribution includes extracting Header Paths
from web tables, analysis of Header Paths using open-source mathematical software,
and a new way of transforming them into a standard relational representation.

We have surveyed earlier table processing methods--most directed at scanned
printed tables rather than HTML tables--in [2]. An excellent survey from a different
perspective was published by Zanibbi et al [3]. More recent approaches that share our
objectives have been proposed in [4], [5], and [6]. Advanced approaches to document
image analysis that can be potentially applied to tables are reported in [7] and [8].

After providing some definitions, we describe a simple method of extracting
Header Paths from CSV versions of web tables from large statistical sites. Then we
show how the structure of the table is revealed by a decomposition that incorporates
algebraic factoring. The next section on analysis illustrates the application of Header
Paths to relational tables. Our experiments to date demonstrate the extraction of
header paths, the factorization, and the resulting Wang categories. Examination of the
results suggests modifications of our algorithms that will most increase the fraction of
automatically analyzed tables, and enhancements of the functionality of the
interactive interface necessary to correct residual errors.

2 Header Paths

We extract Header Paths from CSV versions of web tables imported into Excel,
which is considerably simpler than extracting them directly from html [9]. The
transformation into the standard comma-separated-variables format for information
exchange is not, however, entirely lossless. Color, typeface, type size, type style
(bold, italics), and layout (e.g. indentations not specified explicitly in an HTML style
sheet) within the cells are lost. Merged table cells are divided into elementary cells
and the cell content appears only in the first element of the row. Anomalies include
demoted superscripts that alter cell content. Nevertheless enough of the structure and
content of the web tables is usually preserved for potentially complete understanding
of the table. Some sites provide both HTML and CSV versions of the same table.

An example table is shown in Fig. 1a. The (row-) stub contains Year and Term, the
row header is below the stub, the column header is to the right of the stub, and the 36
delta (or data, or content) cells are below the column header. Our Python routines
convert the CSV file (e.g. Figs. 1b and 1c) to Header Paths as follows:

1. Identify the stub header, column header, row header, and content regions.
2. Eliminate blank rows and almost blank rows (that often designate units).
3. Copy into blank cells the contents of the cell above.
4. Copy into blank cells the contents of the cell to the left.
5. Underscore blanks within cells and add quote marks to cell contents.
6. Mark row headers roots in the stub with negative column coordinates.
7. Add cell identifiers (coordinates) to each cell.
8. Trace the column and row Header Paths.

reverse for rows

Factoring Web Tables v17 Page 3 of 10

 (a) (b)

Year,Term,Mark,,,,,EOL,,Assignments,,,Examinations,,GradeEOL,,Ass1,Ass2,Ass3,Midterm,Final,
EOL1991,Winter,85,80,75,60,75,75EOL,Spring,80,65,75,60,70,70,Fall,80,85,75,55,80,75EOL
1992,Winter,85,80,70,70,75,75EOL,Spring,80,80,70, 70,75,75EOL,Fall,75,70,65,60,80,70EOL

 (c)

Fig. 1. (a) A table from [1] used as a running example. (b) Its CSVversion. (c) CSV file string.

Step 1 can partition a table into its four constituent regions only if either the stub
header is empty, or the content cells contain only digits. Otherwise the user must click
on the top-left (critical) delta cell. Fig. 2 shows the paths for the example table.

The paths to the body of the table (delta cells) are traced in the same way. The
combination of Header Paths uniquely identifies each delta cell. The three Wang
Categories for this table are shown in Fig. 3. The algorithm yielded paths for 89 tables
on a random sample of 107 tables from our collection of 1000 web tables. Most of the
rejected tables had non-empty stub headers and blank separators or decimal commas.

colpaths =
 (("<0,2>Mark"*"<1,2>Assignments"*"<2,2>Ass1")
+("<0,3>Mark"*"<1,3>Assignments"*"<2,3>Ass2")
+("<0,4>Mark"*"<1,4>Assignments"*"<2,4>Ass3")

 +("<0,5>Mark"*"<1,5>Examinations"*"<2,5>Midterm")
+("<0,6>Mark"*"<1,6>Examinations"*"<2,6>Final")
+("<0,7>Mark"*"<1,7>Grade"*"<2,7>Grade"));

rowpaths =
(("<-2,3>Year"*"<-1,3>1991"*"<0,3>Term"*"<1,3>Winter")
+("<-2,4>Year"*"<-1,4>1991"*"<0,4>Term"*"<1,4>Spring")
+("<-2,5>Year"*"<-1,5>1991"*"<0,5>Term"*"<1,5>Fall")
+("<-2,6>Year"*"<-1,6>1992"*"<0,6>Term"*"<1,6>Winter")
+("<-2,7>Year"*"<-1,7>1992"*"<0,7>Term"*"<1,7>Spring")
+("<-2,8>Year"*"<-1,8>1992"*"<0,8>Term"*"<1,8>Fall"));Fig.

 Fig. 2. Column Header and Row Header Paths for the table of Fig. 1.

Year
 1991
 1992

Term
 Winter
 Spring
 Fall

Mark
 Assignments
 Ass1
 Ass2
 Ass3
 Examinations
 Midterm
 Final
 Grade*Grade

Fig. 3. Wang Categories for the table of Fig. 1.

Ass1 Ass2 Ass3 Midterm Final

Winter 85 80 75 60 75 75

Spring 80 65 75 60 70 70
Fall 80 85 75 55 80 75

Winter 85 80 70 70 75 75
Spring 80 80 70 70 75 75

Fall 75 70 65 60 80 70
1992

Grade
ExaminationsAssignments

Mark

1991

Year Term
Year Term Mark

Assignm Examina Grade
Ass1 Ass2 Ass3 MidtermFinal

1991 Winter 85 80 75 60 75 75
Spring 80 65 75 60 70 70
Fall 80 85 75 55 80 75

1992 Winter 85 80 70 70 75 75
Spring 80 80 70 70 75 75
Fall 75 70 65 60 80 70

Factoring Web Tables v15 Page 4 of 10

3 Algebraic Formulation and Factorization

The column and row Header Paths can be thought of as providing indexing
relationships respectively, to the set of columns and rows in the table; their cross-
product narrows these relationships to individual entries in the table. In this section,
we develop an algebra of relations for Header Paths, which allows interpreting them
in terms of categorical hierarchies using standard symbolic mathematical tools. As the
essential formalism for row Header Paths is the same as it is for column Header Paths,
we limit the exposition below to column Header Paths. We will use the example table
shown in Fig. 1a with its column and row Header Paths shown in Fig. 2.

In our algebra of relations for column Header Paths, the domain of the relations is
the set Γ of all columns in the table. Each cell c in the column header covers a subset
of the columns in Γ. By identifying cells with their labels, the column-covering
relation can be extended to cell labels. (NB: relational algebra is used in a different
sense in the relational database community.)

In the example, the label Assignments covers columns 1, 2, and 3, and the label
Mark covers all of Γ. These cell-label relations can be combined, using the union and
intersection operations, to define new relations. We use the symbols + and *,
respectively, for the union and intersection operations. Thus, the expression
Assignments+Grade covers columns 1, 2, 3, and 6 and the expression
Examinations*Midterm covers just column 4. We call the first a sum and the second a
product relation. It will be seen that the collection of Header Paths, described in the
previous section, can be represented as a sum of products (SOP) expression in our
algebra. We will call this SOP an indexing relation on Γ because it covers all columns
in Γ and each product term covers one column in Γ. This SOP is also an irredundant
relation because each column is uniquely covered by one product term.

The notions of indexing and irredundancy can be extended to arbitrarily nested
expressions by expanding the expression into its SOP-equivalent. For example,
Mark*(Assignments*Ass1+Examinations*(Midterm+Final)) is an irredundant indexing
relation on the column set {1,4,5}.

We will use the term decomposition to refer to converting a relational expression
into a hierarchy of sub-expressions that are joined together by the union and
intersection operations. Equivalent terms, simplification (in contrast to expansion) and
Horner nested representation [10], are also used in the literature to denote the same
concept. Now, we can formulate the problem of recovering a categorical structure of
the column header as the decomposition of the column Header Paths expression into
an equivalent expression E satisfying the following constraints:

(a) E is an indexing relation on Γ;
(b) E is irredundant ;
(c) E is minimal in the occurrence of the total number of labels in the

expression.

A benefit of this formulation is that the decomposition problem for algebraic
expressions has attracted attention for a long time from fields ranging from symbolic
mathematics [11,12,13] to logic synthesis [14,15] and programs incorporating the
proposed solutions are widely available [16,17]. In this work, we adopt Sis, a system
for sequential circuit synthesis, for decomposition of header-path expressions [16].

Factoring Web Tables v15 Page 5 of 10

Sis represents logic functions to be optimized in the form of a network with nodes
representing the logic functions and directed edges (a,b) to denote the use of the
function at node a as a sub-function at node b. An important step in network
optimization is extracting, by means of a division operation, new nodes representing
logic functions that are factors of other nodes. Because all good Boolean division
algorithms are computationally expensive, Sis uses the ordinary algebraic division.
The basic idea used is to look for expressions that are observed many times in the
nodes of the network and extract such expressions.

Some caution is in order for this formulation because seemingly identical labels in
two cells may carry different meaning. In our experience with many web tables,
however, identical labels in the same row of a column header (or the same column of
a row header) do not need to be differentiated for our Boolean-algebraic formulation.
This is because either they carry the same meaning (e.g. repeated labels like Winter in
the example table) or the differences in their meaning are preserved by other labels in
their product terms. To illustrate the last point, assume ITEMS*TOTAL and
AMOUNT*TOTAL are two product terms in a Header Paths expression, where the two
occurrences of TOTAL refer to a quantity and a value, respectively. In the factored
form, these two terms might appear as TOTAL*(ITEMS+AMOUNT), where the cell
with label TOTAL now spans cells labeled ITEMS and AMOUNT, thus preserving the
two terms in the Header Paths expression. On the other hand, suppose the column
HEADER PATHS expression included TOTAL*MALES + TOTAL*FEMALES +
TOTAL*TOTAL as a subexpression, where the last term spans the two rows
corresponding to the first two terms. In Boolean algebra, the sub-expression could be
simplified to TOTAL and the resulting expression would no longer cover the two
columns covered by the first two terms. With the row indices attached to labels, the
subexpression becomes: TOTAL1*MALES + TOTAL1*FEMALES + TOTAL1*TOTAL2,
which cannot be simplified so as to eliminate one or more terms.

We illustrate the decomposition obtained by Sis for the column Header Paths of
the example table:

Input Order = Mark Assignments Ass1 Ass2 Ass3 Examinations Midterm
 Final Grade
colpaths = Mark*[Examinations*[Final + Midterm]
 + Assignments* [Ass3 + Ass2 + Ass1] + Grade]

Note that Sis does not preserve the input order in the output equations, but because
the order is listed in the output, we can permute the terms of the output expression
according to the left-to-right, top-to-bottom order of the labels occurring in the table:

colpaths=Mark*[Assignments*[Ass1+Ass2+Ass3] +
 [Examinations*[Midterm + Final]] + Grade]

Similarly, the rowpaths expression produces the following output:

rowpaths = Year*[1991+1992]*Term*[Winter+Spring+Fall]

We apply a set of Python regular expression functions to split each equation into a list
of product terms and convert each product term into the form of [root, children]. A
virtual header is inserted whenever a label for the category root is missing in the table,
e.g. if the right-hand side of colpaths were missing “Mark*”, we would insert a virtual

Factoring Web Tables v15 Page 6 of 10

header for the missing root. Then, the overall equation of the table can be printed out
recursively in the form of Wang categories trees, as illustrated in Fig. 3. Further, we
produce a canonical expression for the three categories in the form in Fig. 4, which is
used in the generation of relational tables:

Fig. 4. Canonical expression for the table of Fig. 1.

Currently, we don’t have an automated way of verifying the visual table (VT) in CSV
form against the category tree (CT) form obtained by factorization. Instead, we do the
verification by comparing the following common characteristic features of the two
forms: the number of row and column categories, and for each category: fanout at the
root level, the total fanout, and whether the root category has a real or virtual label.
The data for CT are unambiguous and readily derived. For VT, however, we derive it
by labor-intensive and error-prone visual inspection, which limits the size and the
objectiveness of the experiment. Still, we believe, the result demonstrates the current
status of the proposed scheme for automated conversion of web tables.

Of 89 tables for which Header Paths were generated, 66 (74%) have correct row
and column categories. Among the remaining 23 tables, 18 have either row or column
category correct, including two where the original table contained mistakes (duplicate
row entries). Both human and computer found it especially difficult to detect the
subtle visual cues (indentation or change in type style) that indicate row categories.
Since in principle the decomposition is error-free given the correct Header Paths, we
are striving to improve the rowpath extraction routines.

4 Generation of Relational Tables

Given the headers of a table, factored into canonical form as explained in Section 3
along with their accompanying data (the delta cells), we can transform the table into a
relational table for a relational database. We can then query the table with SQL or
any other standard database query language. Given a collection of tables transformed
into relations, we may also be able to join tables in the collection and otherwise
manipulate the tables as we do in a standard relational database.

Our transformation of a factored table assumes that one of the Wang categories
provides the attributes for the relational table while the remaining categories provide
key values for objects represented in the original table. Without input from an oracle,
we do not know which of the Wang categories would serve best for the attributes. We
therefore transform a table with n Wang category trees into n complementary
relational tables—one for each choice of a category to serve as the attributes.

The transformation from a factored table with its delta cells associated with one of
its categories is straightforward. We illustrate with the example from Wang [1] in
Fig. 1a This table has three categories and thus three associated relational tables
(attributes can be permuted). We obtain the relational table in Fig. 5 using the
factored expression in Fig. 4 and the data values from the original table in Fig. 1.

Mark*(Assignments*(Ass1+Ass2Ass3)+Examinations*(Midterm+Final)+Grade)
+ Year*(1991+1992)
+ Term*(Winter+Spring+Fall)

Factoring Web Tables v15 Page 7 of 10

Fig. 5. Relational table for the table of Fig. 1.

In Fig. 5, R is the title of the table (“The_average_marks_for_1991_to_1992”),
Y is Year, T is Term, K is Mark, A is Assignment, 1–3 are Assignment numbers,
E is Examinations, M is Midterm, L is Final, G is Grade, 91 and 92 are year values, and
the terms are W for Winter, S for Spring, and F for Fall.

The key for the table is {Y, T}, a composite key with two attributes because we
have two categories for key values. Since YT is the key, the objects for which we
have attribute values are terms in a particular year, e.g., the Winter 1991 term. The
attributes values are average marks for various assignments and examinations and for
the final grade for the term.

In general, the algorithmic transformation to a relational table is as follows:
(1) Create attributes from the first category-tree expression by concatenating labels
along each path from root to leaf (e.g., Mark*(Assignments*(Ass1+ ... becomes the
attribute Mark_Assignments_Ass1). (2) Take each root of the remaining category-tree
expressions as additional attributes, indeed as (composite) primary-key attributes
(e.g., Year and Term as attributes with the composite primary key {Year, Term}).
(3) Form key values from the (cross product of) the labels below the root of the
category-tree expressions (e.g., {1991, 1992} × {Winter, Spring Fall}). (4) Fill in the
remaining table values from the delta-cell values in the original table as indexed by
the header labels (e.g. for the attribute Mark_Assignment_Ass1 and the composite key
value Year = 1991 and Term = Winter, the delta-cell delta-cell value 85).

Given the relational table in Fig. 5, we can now pose queries with SQL:

Query 1: What is the average grade for Fall, 1991?
 select K_G
 from R
 where Y = 91 and T = “F”

With abbreviated names spelled out, the query takes on greater meaning:
 select Mark_Grade
 from The_average_marks_for_1991_to_1992
 where Year = 1991 and Term = “Fall”

The answer for Query 1 is:

Mark_Grade

75

R(Y T K_A_1 K_A_2 K_A_3 K_E_M K_E_L K_G)
91 W 85 80 75 60 75 75
91 S 80 65 75 60 70 70
91 F 80 85 75 55 80 75
92 W 85 80 70 70 75 75
92 S 80 80 70 70 75 75
92 F 75 70 65 60 80 70

Factoring Web Tables v15 Page 8 of 10

Query 2: What is the overall average of the final for each year?

 select Year, avg(Mark_Examinations_Final)
 from The_average_marks_for_1991_to_1992
 group by Year

The answer for Query 2 is:

Commuting the expression in Fig. 4 to let Term*(Winter+Spring+Fall) be first and

stand for the attributes, and to let the Year expression be second and the Mark
expression be third, this yields the relational table in Fig. 6a.
R (Y K T_W T_S T_F)
 91 A_1 85 80 80
 91 A_2 80 65 85
 91 A_3 75 75 75
 91 E_M 60 60 55
 91 E_L 75 70 80
 91 G 75 70 75
 92 A_1 85 80 75
 92 A_2 80 80 70
 92 A_3 70 70 65
 92 E_M 70 70 60
 92 E_L 75 75 80
 92 G 75 75 70

 (a) (b)
Fig. 6. (a) A second relational table for the table of Fig. 1. (b) A third relational table.

In this relational table the key is YK, the composite key Year-Mark. Thus, we have
Year-Mark objects with Term attributes. Although less intuitive than our earlier
choice, it certainly makes sense to say that the Winter term average mark for the 1991
Assignment #1 is 85.

Selecting the first expression above, Mark(Assignments(Ass1+Ass2+Ass3)+
Examinations(Midterm+Final)+Grade), for the attributes yields a third table as
Fig. 6b shows. In this relational table the key is TK, the composite key Term-Mark.
Thus, we have Term-Mark objects with Year attributes. Here, again, although less
intuitive than our first choice, it makes sense to say that the 1991 average mark for the
Winter term Assignment #1 is 85.

Year Avg(Mark_Examinations_Final)
1991 75.0
1992 76.7

R (

Factoring Web Tables v15 Page 9 of 10

5 Discussion

We propose a natural approach for table analysis based on the indexing of data cells
by the column and row header hierarchies. Each data cell is defined by paths through
every header cell that spans that data cell. Automated extraction of paths from CSV
versions of web tables must first locate the column and row headers via identification
of an empty stub or by finding the boundaries of homogeneous rows and columns of
content cells. It must also compensate for the splitting of spanning cells in both
directions, and for spanning unit cells. We define a relational algebra in which the
collection of row or column Header Paths is represented by a sum-of-products
expression, and we show that the hierarchical structure of the row or column
categories can be recovered by a decomposition process that can be carried out using
widely available symbolic mathematical tools.

We demonstrate initial results on 107 randomly selected web tables from our
collection of 1000 web tables from large sites. The experiments show that in 83% of
our sample the header regions can be found using empty stubs or numerical delta
cells. We estimate that the header regions can be found in at least a further 10%-15%
with only modest improvements in our algorithms. The remainder will still require
clicking on one or two cells on an interactive display of the table.

Most of the extracted column Header Paths are correct, but nearly 25% of the row
Header Paths contain some mistake (not all fatal). The next step is more thorough
analysis of indentations and of header roots in the stub. Interactive path correction is
far more time consuming than interactive table segmentation. An important task is to
develop adequate confidence measures to avoid having to inspect every table.

In addition to algorithmic extraction of an index, we show how to manipulate sum-
of-products expressions along with a table’s delta-cells to yield relational tables that
can be processed by standard relational database engines. Thus, for tables our
algorithms can interpret, we automate the process of turning human-readable tables
into machine-readable tables that can be queried, searched, and combined in a
relational database.

Acknowledgments. This work was supported by the National Science Foundation
under Grants # 044114854 (at Rensselaer Polytechnic Institute) and 0414644
(at Brigham Young University) and by the Rensselaer Center for Open Software. We
are thankful to students Landy Zhang, Douglas Mosher, Stephen Poplasky (RPI),
Dongpu Jin (UNL), and Spcncer Machado (BYU) for collecting and analyzing data
and for coding the transformation algorithms.

References

1. X. Wang, "Tabular Abstraction, Editing, and Formatting," Ph.D Dissertation, University

of Waterloo, Waterloo, ON, Canada, 1996.
2. Embley, D.W., Hurst, M., Lopresti, D., Nagy, G. 2006. Table Processing Paradigms: A

Research Survey. Int. J. Doc. Anal. Recognit. 8 (2-3), Springer, Heidelberg, 66-86.
3. Zanibbi, R., Blostein, D., Cordy, J.R. 2004. A survey of table recognition: Models,

observations, transformations, and inferences. International Journal of Document
Analysis and Recognition, 7(1), Springer, Heidelberg, 1–16.

Factoring Web Tables v15 Page 10 of 10

4. Krüpl, B., Herzog, M., Gatterbauer, W., Using visual cues for extraction of tabular data

from arbitrary HTML documents. Proceedings. of the 14th Int’l Conf. on World Wide
Web, 1000-1001, 2005.

5. A. Pivk, P. Ciamiano, Y. Sure, M. Gams, V. Rahkovic, R. Studer, Transforming arbitrary
tables into logical form with TARTAR. Data and Knowledge Engineering 60(3), 567-
595, 2007.

6. Silva, E.C., Jorge, A.M., Torgo, L., Design of an end-to-end method to extract
information from tables. Int. J. Doc. Anal. Recognit. 8(2), Springer, 144–171, 2006.

7. F. Esposito, S. Ferilli, N. Di Mauro & T.M.A. Basile. Incremental Learning of First
Order Logic Theories for the Automatic Annotations of Web Documents. Proceedings of
the 9th International Conference on Document Analysis and Recognition (ICDAR-2007),
ISBN 0-7695-2822-8, ISSN 1520-5363, 1093-1097, Curitiba, Brazil, September 23-26,
IEEE Computer Society, Los Alamitos, CA, 2007.

8. F. Esposito, S. Ferilli, T.M.A. Basile & N. Di Mauro. Machine Learning for Digital
Document Processing: From Layout Analysis To Metadata Extraction. In S. Marinai, H.
Fujisawa (Eds.), Machine Learning in Document Analysis and Recognition, Studies in
Computational Intelligence series, Vol. 90, ISBN 978-3-540-76279-9, pp. 79-112,
Springer, Berlin, 2008.

9 R. C. Jandhyala, G. Nagy, S. Seth, W. Silversmith, M. Krishnamoorthy,
 R. Padmanabhan, 2009. From tessellations to table interpretation. In L. Dixon et al.
(Eds.): Calculemus/MKM 2009, Springer-Verlag, Berlin, vol. 5625 of Lecture Notes in
Artificial Intelligence, 422-437, 2009.

10 http://www.mathworks.com/help/toolbox/symbolic/horner.html
11 R. J. Fateman, “Essays in Symbolic Simplification”. MIT-LCS-TR-095, 4-1-1972,

downloaded 11/10/10 from: http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-
095.pdf.

12 D.E. Knuth, "4.6.2 Factorization of Polynomials". Seminumerical Algorithms. The Art of
Computer Programming. 2 (Third ed.). Reading, Massachusetts: Addison-Wesley. pp.
439–461, 678–691, 1997.

13 E. Kaltofen, "Polynomial factorization: a success story". In ISSAC 2003 Proc. 2003
Internat. Symp. Symbolic Algebraic Comput. [-12], pages 3-4, 2003.

14. R.K. Brayton and C. McMullen. The Decomposition and Factorization of Boolean
Expressions. In Proceedings of the International Symposium on Circuits and Systems,
pages 49-54, May 1982.

15 J. Vasudevamurthy and J. Rajski. A Method for Concurrent Decomposition and
Factorization of Boolean Expressions. In Proceedings of the International Conference on
Computer-Aided Design, pages 510-513, November 1990.

16. E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P.R.
Stephan, R.K. Brayton and A.L. Sangiovanni-Vincentelli, SIS: A System for Sequential
Circuit Synthesis, University of California at Berkeley, Memorandum No. UCB/ERL
M92/41, Electronics Research Laboratory, College of Engineering, University of
California, Berkeley, CA 94720, May 1992, downloaded 11/4/10 from:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/ERL-92-41.pdf.

17 (Quickmath-ref) http://www.quickmath.com/webMathematica3/quickmath/page.jsp?s1
=algebra&s2=factor&s3=advanced, last accessed November 12, 2010.

