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1.  Introduction
In doing genealogical research, it is common to find multiple sources of information that provide

contradictory or uncertain data.  Often, users cannot resolve the conflicting data and wish to keep all
possible values, and may also wish to add degrees of certainty to the uncertain data so that the most
probable interpretations can be given.  Most simple databases require the conflicts and uncertainty to be
resolved, and are therefore not well suited for genealogy data.

As an example, suppose we are collecting genealogical information, and for a particular person we

find two possible dates of birth (such as “4 or 5 December 1394”) or an imprecise date of birth (such as
“December 1394,” with a month and year but no day).  There may be no way of ever finding out the true
date of birth, although we may be more confident in one date than another.  Since we typically want to
have as much identifying and certainty information as possible, the database should store as much as it can,
even though doing so may violate a constraint.

Given that genealogical data is contradictory and uncertain, two interesting questions regarding
queries immediately arise.  (1) What is the complexity of querying the data?  (2) How do we find a valid
subset of the data that is consistent with the constraints, and if more than one such subset exists, how can
we efficiently determine which is most likely?  In Sections 2, 3, and 4, we give brief answers to these
questions.  An in-depth study is under way [O02] to verify the correctness of these answers.

2.  Conflicting and Uncertain Data
Databases that allow a disjunction (the “OR”) of values in place of single values are called

disjunctive databases.  Some theoretical foundations and proposed models of disjunctive databases
already exist (see for example [IV89], [AG85], and [KW85]).  It has been proven in [IV89], however,
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Figure 1:  An example of a disjunctive graph (left) containing two disjunctive arcs, and one of the four
possible interpretations of the graph (right).

that queries on disjunctive databases in general have CoNP-complete time complexity (i.e. all known
algorithms require an exponential amount of time based on the problem size).  Thus, using an unrestricted
disjunctive database makes querying the data intractable.  Based on a theorem presented in [LYY95],
however, we present a way to handle genealogical data so that many queries, if not most, become
tractable.  Furthermore, the theorem also gives us a way to determine which queries remain intractable,
which gives us the opportunity to handle these queries heuristically (i.e. using a quick estimate) or under
reasonably bounded extents.

The idea of the theorem is based on the notion of disjunctive graphs; that is, graphs with hyperarcs

that represent disjunctions.  Figure 1 shows an example of a disjunctive graph, along with one of its
possible interpretations (where each hyperarc is replaced by one of the possible arcs it can represent). 
Disjunctions can occur on the head side of the arc (such as the arc from a to {b,c}) or on the tail side
(such as the arc from {c,d} to f) or on both sides.  Since only one of the disjunctive heads or tails can
hold, each disjunction gives rise to a different interpretation.  There are multiplicatively many
interpretations, which is why disjunctive data naturally leads to intractability.

[LYY95] considers the problem of computing the transitive closure of a node x in a disjunctive
graph, which is defined as the set of all nodes y such that in every possible interpretation of the disjunctive
graph, there exists a path from x to y.  For the graph shown in Figure 1, for example, the transitive closure
of node a is the set {a, d, e}.  The theorem states that if each disjunctive arc of the graph contains a
disjunction only in the head of the arc (rather than in the tail), computing the transitive closure is a
polynomial-time algorithm; otherwise, it is CoNP-complete.



Table Person:

ID# Name Birth Date Birth Place
ID#

Marriage Date

1 John Doe
12 Mar. 1840

or
12 Mar. 1841

1
or

        2 (0.8)

15 Jun. 1869 (0.5)
or

16 Jun. 1869 (0.7)

! ! ! ! !

Table Place:

ID# City State

1
Commerce

or
Nauvoo

Illinois

2 Quincy Illinois

! ! !

Figure 2:  Genealogy database to be converted to a disjunctive graph, including certainty
measures for some values.  Note that attribute Birth Place ID# is a foreign key referencing table
Place.

To provide for uncertainty, we use weighted disjunctive graphs.  We can place weights on
disjunctive heads or tails.  Thus, for example, if we place 0.7 on the head pointing to b in Figure 1, we are
saying that we believe with 70% confidence that (a,b) holds.  Heads and tails without weights may be
assigned default weights.

To see how to map conflicting and uncertain data to disjunctive graphs, consider the disjunctive

database in Figure 2.  We can transform this data into a disjunctive graph by drawing arcs from each of the
key values to their corresponding attributes, using disjunctive arcs where necessary.  We also add arcs
representing foreign keys by drawing arcs to the actual nodes in the table being referenced.  We can attach
labels to each arc to represent the attributes.  Figure 3 shows the transformed graph.
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Figure 3:  Database from Figure 2 transformed into a disjunctive graph.

3.  Query Processing with Disjunctive Graphs
Consider the query, “In what state was the person with ID#1 born?” (which can be written as

BState(FID=1Person ® Place) in relational algebra notation.)  To answer this query, we compute the
transitive closure of the node labeled ID#1 and return the node corresponding to the attribute “State,”
which in this case is Illinois.  We can guarantee that no arcs with disjunctive tails will appear for a database
such as this if we insist that no disjunctions for primary-key attributes occur (e.g. the relation will never
contain “ID#1 or ID#2” for a single object) and that foreign keys only reference primary-key attributes in
other tables.  Since the only arcs created in the transformation originate from these object identifiers, we
will never have a disjunctive tail, and therefore this type of query can be answered in polynomial time.

Not all queries can be answered this easily, however.  If we consider the query, “In what city and

state was the person with ID#1 born?” (which can be written as BCity,State(FID=1Person ® Place)), we still
return Illinois as the state, but we find no city in the closure (as [LYY95] defines it).  The correct response
to this query depends on what the user really means in the query, which could be one of three desired
answers:
     • What values do we know without a doubt?

     • What are all the possible values for each attribute?

     • What are the most likely values?
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Figure 4:  Graph from Figure 3 transformed to consider all possible values as true.  The certainty measures
have been omitted.

For the first question, since we do have doubt about the correct city, the correct response is to
return nothing for the city and Illinois for the state, and thus the transitive closure does indeed give the
correct solution.  For the second question, it should return Commerce, Nauvoo, and Quincy as possible
cities and Illinois as the state.  To return this answer, we perform another simple transformation on the
graph by replacing all disjunctive arcs with regular arcs to all the possible attributes, as Figure 4 shows. 
This graph becomes a degenerate case in which there are no disjunctions, and thus computing the closure
is still in polynomial time.  Section 4 discusses the complexity of answering the third question.

When a query requires selection on non-key attributes, such as, “Find the names of all people born

in Nauvoo between 1841 and 1844” (which can be written as BName FBirthDate $ 1841  ̧BirthDate # 1844  ̧City = Nauvoo

(Person ® Place)), rather than on a key attribute, such as the queries already discussed, we can still
guarantee polynomial running time.  We compute the closure for every possible ID# (which is bounded by
the number of nodes n in the graph, and thus the running time is bounded by n * P(n) where P(n)
represents the time required to compute the closure for one node).  For each ID#, if the Date falls within
the specified range and the City attribute is “Nauvoo,” we add the Name attribute to the answer.  Again,
this answer will vary depending on whether the user wants what is definitely known, what all the possible
answers are, or what the most likely answer is.

Most genealogical queries can be handled in this manner to achieve polynomial running time, but
there are some exceptions.  As long as tables are appropriately joined on object identifiers, the disjunctions
will always be in the heads of the arcs, but some queries require joins on other attributes.  Consider, for
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Figure 5:  Query including a join on a non-key attribute.

example, the query, “Which people have the same birth date?” (which can be written as BP1.Name, P2.Name

(Person P1®P1.BirthDate = P2.BirthDate Person P2).)  A portion of the graph needed to solve this query might
look like Figure 5.  Notice that to answer this query, since the join attribute is not the key attribute, we
must add disjunctive arcs from the join attributes to the corresponding object identifiers.  This creates arcs
with disjunctions in the tail, and cannot therefore be solved using a polynomial-time algorithm.  Again, the
correct response to this query depends on whether the user wants what is definitely known, what all the
possible answers are, or what the most likely answer is.  If the user wants what is definitely known, we can
offer partial answers by simply removing all the disjunctive arcs entirely, or by asking the user to limit the
search space.  If a partial answer is not acceptable, we can at least detect when such a query is CoNP-
complete, warn the user if the size of the graph is large, and ask how we should proceed.  If the user wants
an enumeration of all the data for each attribute, we can make the same transformation we performed in
Figure 4, and the query will be polynomial.

4.  Uncertainty in Disjunctive Graphs
In general, determining which values are the most likely, based on certainty measures and given

constraints, can be a difficult problem to solve.  In our particular application of genealogy, most
disjunctions appear to be mutually independent.  Determining whether John Doe’s birth date was in 1847
or 1848, for example, probably will not affect the choice of whether his great-grandfather’s name was
Joshua or Jacob.  Disjunctions that are not mutually independent can usually be limited to immediate family
relations.  For example, determining the correct birth dates of a grandchild and a grandparent can be
decided by comparing the possible birth dates of the grandchild with the grandchild’s parents (an



ID #1

ID #2

ID #3

ID #4
0.3

0.7

child = parent-1

0.3

0.7

person P1

ID #1

ID #2

ID #4

person P2

ID #1

ID #2

ID #3

ID #4

person P3

ID #3

parent

1.0
1.0

Figure 6:  Graph creating all immediate family connections, including certainty measures.  Other attributes,
such as Birth Date, have been omitted to keep the diagram simple.

immediate family relation) and the grandchild’s parents with the grandparents (also immediate family
relations).  Thus we can usually limit our search space to parents, siblings, and children.  It is important to
note that limiting the search space will only yield locally optimal answers, which could be the same as (or
very close to) the globally optimal answer, but cannot be guaranteed to be so.

Assuming there are n values in the database, each arc in the disjunctive graph can have a branching

factor of k, which is at most (and probably considerably less than) n.  We can make connections between
all the people in the database with their parents in a graph of depth 2.  We can make connections with their
siblings by inverting the connections on the parent graph to find all the children.  The resulting graph has a
depth of 3, as Figure 6 shows.  Since each person appears once at each depth level, there are at most n
arcs between nodes of depth 1 and nodes of depth 2.  Similarly, there are at most n arcs between depth 2
and depth 3.  Since each arc has a branching factor of k, we have at most nk possible choices between
depth 1 and depth 2, and another nk between depth 2 and depth 3.  The total possible choices are n2k2,
which is bounded by n4.  Thus, a brute-force backtracking algorithm to calculate the likelihood of each
possibility (and pick the most likely choices), using standard techniques for processing uncertainty such as
those explained in [GC97], can be done in polynomial time.



5.  Conclusion
In a genealogy application, it is possible to model disjunctive data in such a way that most queries

on the data only require polynomial execution time.  Some queries are still intractable, but we can detect
these queries and either execute them when the problem size is reasonably small, or otherwise offer the
user heuristics to give partial answers and locally optimal answers.
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