Efficiently Querying Contradictory and
Uncertain Genealogical Data

LarsE. Olson

David W. Embley
Department of Computer Science
Brigham Y oung University
Provo, UT 84602
{ olsonle,embley} @cs.byu.edu

1. Introduction

In doing genedogica research, it is common to find multiple sources of information that provide
contradictory or uncertain data. Often, users cannot resolve the conflicting data and wish to keep all
possible vaues, and may aso wish to add degrees of certainty to the uncertain data so that the most
probable interpretations can be given. Most smple databases require the conflicts and uncertainty to be
resolved, and are therefore not well suited for genealogy data.

As an example, suppose we are collecting genealogica information, and for a particular person we
find two possible dates of birth (such as*4 or 5 December 1394”) or an imprecise date of birth (such as
“December 1394,” with amonth and year but no day). There may be no way of ever finding out the true
date of birth, athough we may be more confident in one date than another. Since we typicaly want to
have as much identifying and certainty information as possible, the database should store as much asit can,
even though doing so may violate a condraint.

Given that genedlogicd datais contradictory and uncertain, two interesting questions regarding
queriesimmediatdy arise. (1) What is the complexity of querying the data? (2) How do wefind avdid
subset of the data that is consistent with the congraints, and if more than one such subset exists, how can
we efficiently determine which is mogt likely? In Sections 2, 3, and 4, we give brief answersto these
questions. An in-depth study is under way [O02] to verify the correctness of these answers.

2. Conflicting and Uncertain Data

Databases that dlow adigunction (the “OR”) of vauesin place of single vaues are cdled
digunctive databases. Some theoretical foundations and proposed models of digunctive databases
aready exist (see for example [IV89], [AG85], and [KW85]). It has been proven in [IV89], however,

This material is based upon work supported by the National Science Foundation under Grant #0083127

that queries on digunctive databases in general have CoNP-complete time complexity (i.e. dl known
agorithms require an exponentid amount of time based on the problem sze). Thus, usng an unrestricted
digunctive database makes querying the dataintractable. Based on atheorem presented in [LY'Y95],
however, we present away to handle genedlogica data so that many queries, if not most, become
tractable. Furthermore, the theorem aso gives us away to determine which queries remain intractable,
which gives us the opportunity to handle these queries heurigicdly (i.e. usng aquick estimate) or under
reasonably bounded extents.

The idea of the theorem is based on the notion of digunctive graphs, that is, graphs with hyperarcs
that represent digunctions. Figure 1 shows an example of a digunctive graph, dong with one of its
possible interpretations (where each hyperarc is replaced by one of the possible arcsit can represent).
Digunctions can occur on the head side of the arc (such asthe arc from ato {b,c}) or onthetal sde
(such asthe arc from {c,d} tof) or on both sdes. Since only one of the digunctive heads or tails can
hold, each digunction gives rise to a different interpretation. There are multiplicatively many
interpretations, which iswhy digunctive data naturaly leads to intractability.

Digunctive graph Possible interpretation
b

\.e E\ae
a 2/’ a g/’

d of

o
e
—r

Figure 1: An example of adisunctive graph (left) containing two digunctive arcs, and one of the four
possible interpretations of the graph (right).

[LYY95] condders the problem of computing the trangitive closure of anode x in adigunctive
graph, which is defined as the set of dl nodesy such that in every possible interpretation of the digunctive
graph, there exists a path from x to y. For the graph shown in Figure 1, for example, the trangitive closure
of nodeaistheset {a, d, €}. Thetheorem statesthat if each digunctive arc of the graph containsa
digunction only in the head of the arc (rather than in the tail), computing the trangitive closure isa
polynomid-time agorithm; otherwise, it is CoNP-complete.

To provide for uncertainty, we use weighted digunctive graphs. We can place weights on
digunctive heads or tails. Thus, for example, if we place 0.7 on the head pointing to b in Figure 1, we are
saying that we believe with 70% confidence that (a,b) holds. Heads and tails without weights may be
assgned default weights.

Table Person:
ID# Name Birth Date BIrtITDZ ace Marriage Date
12 Mar. 1840 1 15 Jun. 1869 (0.5)
1 John Doe or or or
12 Mar. 1841 2(0.8) 16 Jun. 1869 (0.7)
Table Place:
ID# City State
Commerce
1 or Ilinois
Nauvoo
2 Quincy [llinois

Figure 2: Genealogy database to be converted to a digunctive graph, including certainty
measures for some values. Note that attribute Birth Place ID# is a foreign key referencing table
Place.

To see how to map conflicting and uncertain data to digunctive graphs, consder the digunctive
database in Figure 2. We can transform this data into a digunctive graph by drawing arcs from each of the
key vauesto their corresponding attributes, usng digunctive arcs where necessary. We dso add arcs
representing foreign keys by drawing arcs to the actual nodes in the table being referenced. We can attach
labelsto each arc to represent the attributes. Figure 3 shows the transformed graph.

Person o John Doe

/70 12 Mar 1840 Place
1]
/'4 S 12 Mar 1841 /. Commerce

! < T—>e Nauvoo
n‘/\a T~

____»e lllinois

15 Jun 1869 16 Jun 1869 ‘<,

) e Quincy

Figure 3: Database from Figure 2 transformed into a digjunctive graph.

3. Query Processing with Digunctive Graphs

Condgder the query, “In what sate was the person with ID#1 born?” (which can be written as
Tsad 01p=1PErson »« Place) in reationa agebranotation.) To answer this query, we compute the
trangtive closure of the node labeled ID#1 and return the node corresponding to the attribute “ State,”
which inthis caseislllinois. We can guarantee that no arcs with digunctive tails will gppeer for a database
such asthisif weingg that no digunctions for primary-key attributes occur (e.g. the rdation will never
contain “1D#1 or ID#2” for asingle object) and that foreign keys only reference primary-key attributesin
other tables. Since the only arcs created in the transformation originate from these object identifiers, we
will never have a digunctive tail, and therefore this type of query can be answered in polynomid time.

Not al queries can be answered this easily, however. If we consder the query, “In what city and
state was the person with ID#1 born?” (which can be written as 7y s 01p=1PErSON >< Place)), we till
return Illinois as the date, but we find no city inthe closure (as[L Y'Y 95] definesit). The correct response
to this query depends on what the user realy meansin the query, which could be one of three desired
answers.

« What vaues do we know without a doubt?
« What aredl the possible vaues for each atribute?
e What arethe mogt likdly vaues?

For the first question, since we do have doubt about the correct city, the correct responseisto
return nothing for the city and lllinois for the state, and thus the trangtive closure does indeed give the
correct solution. For the second question, it should return Commerce, Nauvoo, and Quincy as possible
citiesand lllinois as the date. To return this answer, we perform another smple transformation on the
graph by replacing dl digunctive arcs with regular arcsto dl the possible attributes, as Figure 4 shows.
This graph becomes a degenerate case in which there are no digunctions, and thus computing the closure
isdill in polynomid time. Section 4 discusses the complexity of answering the third question.

Person
o John Doe

® 12 Mar 1840 Place

—B+xth-Dat: »>e 12 Mar 1841 ® Commerce
1
l\/:O Nauvoo

x o . .
15 Jun 1869 16 Jun 1869 ‘<,_>h lllinois

5 7> Quincy

Figure 4. Graph from Figure 3 transformed to consider all possible values as true. The certainty measures
have been omitted.

When a query requires sdection on non-key attributes, such as, “Find the names of dl people born
in Nauvoo between 1841 and 1844” (which can be Written &S mtnane Oirthpate - 1841 . BirthDate - 1844, City = Nawvoo
(Person =« Place)), rather than on a key attribute, such as the queries dready discussed, we can lill
guarantee polynomid running time. We compute the closure for every possible ID# (which is bounded by
the number of nodes n in the graph, and thus the running timeis bounded by n * P(n) where P(n)
represents the time required to compute the closure for one node). For each ID#, if the Date fals within
the specified range and the City attribute is“Nauvoo,” we add the Name attribute to the answer. Again,
this answer will vary depending on whether the user wants what is definitely known, what al the possible
answers are, or what the most likely answer is.

Most genedogica queries can be handled in this manner to achieve polynomid running time, but
there are some exceptions. Aslong as tables are appropriately joined on object identifiers, the digunctions
will dways be in the heads of the arcs, but some queries require joins on other attributes. Consider, for

example, the query, “Which people have the same birth date?” (which can be written 8s mp; name, p2.Name
(Person Pls<p; girthpate = p2.girthoae PE'SON P2).) A portion of the graph needed to solve this query might
look like Figure 5. Notice that to answer this query, sncethe join attribute is not the key attribute, we
must add digunctive arcs from the join attributes to the corresponding object identifiers. This creates arcs
with digunctionsin the tail, and cannot therefore be solved using a polynomid-time dgorithm. Again, the
correct response to this query depends on whether the user wants what is definitely known, what dl the
possible answers are, or what the most likely answer is. If the user wants what is definitely known, we can
offer partid answers by smply removing dl the digunctive arcs entirely, or by asking the user to limit the
search space. If apartia answer is not acceptable, we can at least detect when such aquery is CoNP-
complete, warn the user if the Size of the graphislarge, and ask how we should proceed. If the user wants
an enumeration of dl the data for each attribute, we can make the same trandformation we performed in
Figure 4, and the query will be polynomid.

Person P1 John Doe
12 Mar 1840 Person P2
ID #1 ID #2
12 Mar 1841 >a
James Doe
®
13 Mar 1840

Figure5: Query including ajoin on a non-key attribute.

4. Uncertainty in Digunctive Graphs

In generd, determining which vaues are the mogt likely, based on certainty measures and given
condraints, can be adifficult problem to solve. In our particular gpplication of genedlogy, most
digunctions gppear to be mutualy independent. Determining whether John Do€ s birth date was in 1847
or 1848, for example, probably will not affect the choice of whether his great-grandfather’ s name was
Joshua or Jacob. Digunctions that are not mutualy independent can usualy be limited to immediate family
relaions. For example, determining the correct birth dates of a grandchild and a grandparent can be
decided by comparing the possible birth dates of the grandchild with the grandchild’ s parents (an

immediate family relation) and the grandchild’ s parents with the grandparents (dso immediate family
relaions). Thuswe can usudly limit our search space to parents, shlings, and children. It isimportant to
note that limiting the search space will only yied locally optima answers, which could be the same as (or
very closeto) the globdly optima answer, but cannot be guaranteed to be so.

person P1 person P2 person P3
ID #1 ® ID#1 ® ID #1~»®
ID #2 © ID#2 ® ID #2>@
ID #3 ® ID#3>e® ID#3 ®
ID#4 o ID #4™ o ID#4 e

Figure 6: Graph creating al immediate family connections, including certainty measures. Other attributes,
such as Birth Date, have been omitted to keep the diagram simple.

Assauming there are n values in the database, each arc in the digunctive graph can have a branching
factor of k, whichisa most (and probably considerably lessthan) n. We can make connections between
al the people in the database with their parentsin a graph of depth 2. We can make connections with their
sblings by inverting the connections on the parent graph to find dl the children. The resulting graph hasa
depth of 3, as Figure 6 shows. Since each person appears once at each depth leve, there are at most n
arcs between nodes of depth 1 and nodes of depth 2. Similarly, there are at most n arcs between depth 2
and depth 3. Since each arc has a branching factor of k, we have a most nk possible choices between
depth 1 and depth 2, and another nk between depth 2 and depth 3. The total possible choices are n?k?,
which isbounded by n*. Thus, a brute-force backtracking algorithm to caculate the likelihood of each
possibility (and pick the most likely choices), using standard techniques for processing uncertainty such as
those explained in [GC97], can be done in polynomid time.

5. Conclusion

In agenedlogy application, it is possble to modd digunctive datain such away that most queries
on the data only require polynomia execution time. Some queries are il intractable, but we can detect
these queries and ether execute them when the problem size is reasonably small, or otherwise offer the
user heurigtics to give partid answers and locally optima answers.

Bibliography

[AGS5]

[GC97]

[1V89]

[KW85]

[LYY95]

[002]

S. Abiteboul and G. Grahne, “Update Semantics for Incomplete Databases’, Proceedings
of the 11" International Conference on Very Large Databases (VLDB), Aug. 21-23,
1985, Stockholm, Sweden, pp. 1-12.

N. van Gyseghem and R. de Cduwe, “The UFO Database Modd: Deding with
Imperfect Information”, Fuzzy and Uncertain Object-Oriented Databases. Concepts
and Models, ed. R. de Caluwe, World Scientific Publishing Co. Pte. Ltd., 1997, pp. 123-
185.

T. Imidinski and K. Vadaparty. “Complexity of Query Processing in Databases with OR-
Objects,” Proceedings of the Eighth ACM Symposium on Principles of Database
Systems (PODS), March 29-31, 1989, Philadelphia, Pennsylvania, pp. 51-65.

A. M. Kdler and M. W. Wilkins, “On the Use of an Extended Relational Mode to
Handle Changing Incomplete Information”, | EEE Transactions on Software
Engineering, Vol. 11, No. 7, July 1985, pp. 620-633.

J Lobo, Q. Yang, C. Yu, G. Wang, and T. Pham, “Dynamic Maintenance of the
Trandtive Closurein Digunctive Graphs,” Annals of Mathematics and Artificial
Intelligence, Val. 14, 1995, pp. 151-176.

L. Olson, “Permitting Condraint Violationsin Data Storage for Integrated Data
Repositories,” Master's Thesis, 2002, in progress.

