
Ontological Deep Data Cleaning

Scott N. Woodfield1, Spencer Seeger1, Samuel Litster1,
Stephen W. Liddle1, Brenden Grace1, and David W. Embley1,2

1 Brigham Young University, Provo, Utah 84602, USA
2 FamilySearch International, Lehi, Utah 84043, USA

Abstract. Analytical applications such as forensics, investigative jour-
nalism, and genealogy require deep data cleaning in which application-
dependent semantic errors and inconsistencies are detected and resolved.
To facilitate deep data cleaning, the application is modeled ontologically,
and real-world crisp and fuzzy constraints are specified. Conceptual-
model-based declarative specification enables rapid development and mod-
ification of the usually large number of constraints. Several field tests
serve as evidence of the prototype’s ability to detect errors and either re-
solve them or provide guidance for user-involved resolution. The results
of a user study show the value of declarative specification for rapidly
developing and modifying deep data cleaning applications.

Keywords: data quality, data cleaning, declarative constraint specifica-
tion, conceptual-model-based deep data cleaning.

1 Introduction

Data cleaning improves data quality by detecting and removing errors and in-
consistencies [10]. Deep data cleaning includes data cleaning but adds general
constraints that serve to detect application-dependent semantic errors and in-
consistencies. These general constraints can be either crisp or fuzzy and are often
expressed probabilistically. Ontologies, which are shared, commonly agreed upon
conceptualizations of a domain of interest [6], are a natural framework for these
crisp and fuzzy semantic constraints. Within an ontology their purpose is to
accurately characterize objects and data instances and their interrelationships.
As such, they become the basis for ontological deep data cleaning.

In this paper we illustrate the principles and possibilities of ontological deep
data cleaning in the realm of genealogy—an application not only for family
history enthusiasts, but also for studying inherited diseases and for establishing
public policy such as for intergenerational poverty. Among other possible applica-
tions, the particular data cleaning application we study is automatic information
extraction from scanned and OCR’d historical documents, which exacerbates the
data cleaning problem. Not only does the system have to wrangle with human
errors in deciphering, reasoning about, and entering information taken from his-
torical documents, but also the often wildly spurious errors computers make in
automatic data extraction.



2 S.N. Woodfield, et al.

Fig. 1. Text Snippet from The Ely Ancestry [12], Page 421.

To illustrate ontologically deep data cleaning within our application, consider
the sample page in Figure 1 taken from The Ely Ancestry [12]. When processed
by an ensemble of information extraction engines [2], most of the genealogical
information on the page was correctly extracted. The ensemble, however, did
incorrectly associate Mary Ely and Gerard Lathrop (the first two numbered
children in Figure 1) with four parents: Mary Eliza Warner, Joel M. Gloyd, Abi-
gail Huntington Lathrop, and Donald McKenzie. The constraint checker in our
implemented data cleaning tool not only flagged Mary Ely and Gerard Lathrop
as having more than two parents, but also flagged Mary Eliza Warner as likely
being too young to be the mother of Mary and Gerard since she would have
respectively been only about 10 and 12 years old at the time of their births.
After detection, our data-cleaning system considers the possibility of retracting
assertions to correct problems and in this case can automatically retract the
assertions linking Mary Ely and Gerard Lathrop to incorrect parents.

Preparation of data for import into a target repository is only one part of
our genealogical deep cleaning application. Upon import, the first problem en-
countered is to reconcile the new data with the old. As a specific example, when
we imported the data in Figure 1, a search for duplicates revealed that the three



Ontological Deep Data Cleaning 3

Mary Elys asserted to be mothers of Abigail, William, and Charles Lathrop to-
gether with a particular Mary Ely in the repository and another Mary Eli in the
repository were all possible duplicates. Our data cleaning system checks potential
duplicates by doing a temporary merge and asking if any ontological constraints
are violated. None were, and the temporary merge became permanent. A check
for merging Mary Ely, the daughter of Abigail in Figure 1, with these merged
Mary Elys failed based on the ontological constraint that it is impossible to be
one’s own ancestor. Our data cleaning tool can also generally check assertions in
the repository. As Figure 2 shows, our cleaning system detected that Abigail’s
third great-grandmother, Sarah Sterling, died before a child of hers was born.
When a violation is detected, the tool explains what may be wrong as Figure 2
shows.

Fig. 2. Detected Genealogical Problem with Recommended Solutions.

Although our approach to data cleaning corresponds with the central ideas
of detecting and removing errors [4, 10, 11], it differs from other data cleaning re-
search in two fundamental ways: (1) it is deep—centered on ontological semantic
constraints; and (2) for applications that of necessity must accommodate dirty
data, it applies to cleaning the repository post-import as well as to cleaning pre-
import and on-import. Aspects of our approach have similarities with other data
cleaning research: ontological reasoning for data cleaning [1], duplicate detection
[9], entity resolution [7], and declarative cleaning operators [4].

The contributions of this paper include the following:

1. A definition of deep data cleaning based on ontologies that include real-world
crisp and fuzzy constraints.

2. Post-import data cleaning for repositories that necessarily include erroneous,
incomplete, and inconsistent data.

3. A prototype implementation in the context of a large application, including:
(a) instance data cleaning in preparation for deep data cleaning;
(b) conceptual-model-based declaration of ontological constraints to ease the

programming of deep data cleaning applications; and
(c) resolution of issues either automatically or with user-guided assistance.

We provide details of these contributions in Section 2 in which we describe our
large-scale application and repository, and in which we discuss our pre-, on-, and
post-import deep data cleaning tools. In Section 3 we report on experimental



4 S.N. Woodfield, et al.

field tests and on a user study involving our proposed declarative specification.
We make concluding remarks in Section 4.

2 Deep Data Cleaning

Our large-scale application is about family history. Its repository includes ge-
nealogical information along with photos, stories, and memories about ancestors.
Discovering, analyzing, and organizing family histories is necessarily investiga-
tive, requiring researchers to gather and organize clues from census records,
obituaries, parish records, and many other sources. Source information is not al-
ways accurate, is sometimes unreadable, and is often non-existent. Researchers
inevitably draw some conclusions that are incomplete and inaccurate. Auto-
matic extraction only exacerbates the problem. Of necessity, deep data cleaning
is required both to clean data for import into the repository and to clean data
already residing in the repository.

2.1 Application System

FamilySearch [3] hosts Family Tree, a wiki-like repository of genealogical in-
formation that allows world-wide collaboration on a single, shared, ancestry of
humankind. Family Tree contains over 1.2 billion person records. Among other
collections of interest to family historians, FamilySearch also hosts historical
records containing 6.2 billion searchable names. Most of these historical records,
typically hand-written, have been indexed for search by more than a million
registered volunteers. Advances in automatic indexing (equivalent to automated
information extraction) are being recognized as a possible way (perhaps the only
way) to keep up with indexing the vast number of documents.

Among other work on automated information extraction, our Fe6 project [2],
which includes the data cleaning tools we present here, is aimed at automati-
cally extracting genealogical information from FamilySearch’s growing collection
of over 360,000 family history books that have been scanned and OCR’d. Fig-
ure 1 is one among the many millions of pages of these books. Targets for the Fe6
extracted information are (1) the historical records collection of indexed docu-
ments and (2) Family Tree, but for the tree only if the generated information is
manually checked and entered.

Once entered into these repositories, the information becomes searchable.
Figure 3 shows a search for the person record of Abigail Huntington Lathrop in
Family Tree. A click on Abigail’s name takes the user to a page containing all
her family information along with all the sources that document the informa-
tion. Figure 4 shows a snippet of one of these sources which was automatically
generated as a result of extraction and cleaning by the Fe6 system. Figure 5
shows the result of running a similar query for Abigail in the historical records
repository. The human-indexed information for the image is at the bottom of
the figure.



Ontological Deep Data Cleaning 5

Fig. 3. Query for Abigail Huntington Lathrop in Family Tree.

Fig. 4. Highlighted Source for Abigail Huntington Lathrop in Family Tree.

2.2 Pre-Import Data Cleaning

Fe6 stands for Forms-based ensemble of extraction tools with 6 pipeline phases.
It is the pre-import pipeline that extracts information from the pages of a book
and prepares it for import into FamilySearch repositories. The six pipeline phases
include: (1) prepare book data for processing, (2) extract data with an ensemble
of extraction engines, (3) merge, clean, and semantically check extracted data,
(4) provide for human checking and correction within a forms motif, (5) enhance
data by standardizing values and inferring additional information, and (6) gener-
ate documents for import. Both shallow and deep data cleaning occur in Phases
3 and 4 with some follow-on data cleaning in Phase 5. For completeness, we
briefly mention shallow data cleaning, but explicate deep data cleaning and its
connection to ontological conceptual models as the focus of this paper.

In Phase (2) Fe6 tools perform several types of shallow data cleaning:

– merge data extracted by the ensemble of extraction engines based on ex-
tracted text being located at the same source page coordinates;

– resolve end-of-line hyphens (e.g. “Donald McKen- zie” in Figure 1 becomes
“Donald McKenzie”);

– check name forms and fix when feasible (e.g. “William Gerard Lathrop,
Boonton” in Figure 1, which is an improper name form extracted by one of
the extraction engines, is transformed to “William Gerard Lathrop”);

– check for OCR errors and fix when feasible (e.g. In Figure 1, Theodore’s
birth year, “i860” is transformed to “1860”);

– parse dates, converting them to Julian dates for ease of computation.



6 S.N. Woodfield, et al.

Fig. 5. Results of a Query for Abigail Huntington Lathrop in FamilySearch Records.

Fig. 6. Abigail Huntington Lathrop in Census Record with Indexed Information.

Given this cleaned data stored in the ontological model in Figure 7, our
Constraint Enforcer tool performs deep data cleaning. Formally, each object
set in the conceptual model is a one-place predicate (e.g. Person(x) and Birth-
Date(x) in Figure 7) and each n-ary relationship set is an n-place predicate (e.g.
Person(x1) was born on BirthDate(x2) and Person(x1) married Spouse(x2) on
MarriageDate(x3) at MarriagePlace(x4)). Thus, we are able to specify deep data
cleaning detection rules as Datalog-like inference rules. Added to the predicates
that come from the target conceptual model, we have predicates whose instance
values can be computed from the populated predicates in the conceptual model
(e.g. Age(x), computed from date differences). To obtain the probability dis-
tributions for fuzzy constraints, we define discrete functional predicates (e.g. a
distribution over the age at which people die). We populate these distributions
by sampling the vast store of data in FamilySearch’s Family Tree.

As an example, the following rule gives the likelihood of a child being born
to a couple a number of years after (or before) the couple’s marriage.

Child(x1) is a child of Person(x2)
Child(x1) was born on BirthDate(x3)
Person(x2) married Spouse(x4) on MarriageDate(x5) at MarriagePlace(x6)
Years(x7) = YearOf (x3) − YearOf (x5)
child being born Years(x7) after marriage date of parent Person(x2) has Probability(x8)
⇒
Child(x1) being born Years(x7) after marriage date of parent Person(x2) has Probability(x8).

When Constraint Enforcer applies this rule to the information extracted from
Figure 1, we see, as one example, that Mary Eliza Warner and Joel M. Gloyd
are unlikely to be the parents of Mary Ely and Gerard Lathrop, who were re-
spectively born 14 and 12 years before their presumed parents were married.

When a constraint violation is detected, we can always report it, and we can
sometimes automatically resolve it. Reporting takes place in Phase 4, as Figure 8



Ontological Deep Data Cleaning 7

Fig. 7. Target Ontology Expressed as a Conceptual Model.

shows. A user can edit extraction results using COMET [2], our Click Only, or
at least Mostly, Extraction Tool. COMET lets users fill in fields of form records
on the left by clicking on text in a page on the right. (In Phase 1, we align
the OCR’d text with the image text so that it is superimposed over the OCR’d
text.) The Fe6 extraction engines prepopulate records with data, and Constraint
Enforcer adds warning icons for each record field for which it finds a constraint
violation. When a user hovers over a record, COMET highlights its fields and
the corresponding text in the page and also displays warning icons, if any. When
a user clicks on a warning icon, COMET pops up an explanation window. The
middle explanatory note of the three warning messages in Figure 8 corresponds
to the rule above in which the non-lexical object set values are replaced by
names of persons and lexical object set values are parenthetically added to their
object set name. Thus, for example, in the third antecedent statement in the rule
above, the non-lexical object sets Person and Spouse in Figure 7 are replaced
respectively by “Mary Eliza Warner” and “Joel M. Gloyd”, and the lexical object
sets MarriageDate and MarriagePlace have parenthetically appended to them
“1850” and the special null designator “unknown” respectively.

When an implication rule is violated, one or more of the antecedent predicate
assertions must be incorrect—indeed, for our application, one of the antecedent
assertions obtained from the Fe6 extraction engines. Except for the case of only
one such assertion, the task of automatically determining which one(s) are in
error is non-trivial. The top explanatory note in Figure 8, however, does not
come from an implication rule, but rather from the participation constraint in
Figure 7 stating that a child has exactly two parents. Because family history
books group families together, it is reasonable to assume that children belong to
the closest set of parents when extracted parents either all precede or follow the



8 S.N. Woodfield, et al.

Fig. 8. Messages Resulting from a Click on the Mary Ely Yellow Warning Icon.

children. Thus, we are able to automatically reject the assertions linking Mary
and Gerard to Mary Eliza Warner and Joel M. Gloyd.

Following Phase 4, Fe6 tools perform some additional shallow data cleaning:

– standardize dates (e.g. “Nov. 4, 1898” becomes “4 November 1898”);
– standardize names (e.g. when names are extracted as last-name-first, the

name components are reordered);
– infer additional information, making Person-Spouse relationships symmetric

and filling in object and relationship instances in Figure 7 for InferredGen-
der, InferredBirthName (e.g. “Maria Jennings Lathrop” in addition to her
extracted name “Maria Jennings” in Figure 1), InferredMarriedName (e.g.
“Abigail Huntington Lathrop McKenzie”), and InferredFormalName (e.g.
“Mrs. Mary Augusta Andruss Lathrop”) along with name component parts
(e.g. Title: “Mrs.”, GivenName: ”Mary” and ”Augusta”, and Surname: “An-
druss” and “Lathrop”).

In Phase 6, Fe6 generates for import into FamilySearch’s historical records
repository a GedcomX [5] file for the page being processed that contains all the
object and relationship instances stored in the conceptual model in Figure 7. It
also adds to the GedcomX file the bounding box information obtained in Phase 1
for each extracted text element. In Phase 6, Fe6 also generates for import into
Family Tree two files for each person: (1) a file containing the information in
the person’s instance graph stored in the conceptual model in Figure 7 and (2)
a PDF file containing a marked-up image of the page, like the one in Figure 4,
which highlights the person’s extracted information.

2.3 Post-Import Data Cleaning

We program post-import deep data cleaning with a conceptual-model-equivalent
language [8].3 Figure 9 shows an example. The first three statements indicate

3 We could have programmed pre-import deep data cleaning with the same language,
but the language itself was developed as we worked on programming the Fe6 pipeline.
Henceforth, pre-import deep data cleaning is being programmed with this language.



Ontological Deep Data Cleaning 9

how the conceptual model in Figure 7 is specified. Each statement declares a re-
lationship set in the model in which its related object sets are capitalized nouns.
Colons specify is-a hierarchies; if an object set name resolves (possibly through
transitivity) to String, it is lexical (e.g. Birthdate:String) and is otherwise non-
lexical. Participation constraints for a statement’s relationship set declaration
are in square brackets (e.g. the “[2]” in Figure 9 specifies that Child, which is a
specialization of Person, participates in the relationship with exactly 2 Persons,
who are a child’s parents). General constraints for the model are specified in EN-
SURE statements. The ENSURE statement in Figure 9 is one of the ontological
constraints defined for the conceptual model’s representation of the ontology. Its
name is “I am not my own ancestor” with which it can be referenced. Its body
is a Datalog-like statement, defining the constraint. Note the use of relationship
set names in general constraints.

Person[1] was born on Birthdate:String[1:*];

Child:Person[2] is a child of Person[0:*];

Person[0:*] married Spouse[1:*] on MarriageDate:String[1:*]

at MarriagePlace:String[1:*];

...

ENSURE I am not my own ancestor BEGIN

IF Child(c) is a child of Person(p) THEN

Person(p) is an ancestor of Descendant:Person(c);

IF Person(p) is an ancestor of Descendant(d) AND

Child(c) is a child of Person(d) THEN

Person(p) is an ancestor of Descendant(c);

IF Person(p) is an ancestor of Descendant(p) THEN

Person(p) is an ancestor of Descendant(p) has Probability(prob)

WHERE prob = PROBABILITY OF PersonIsOwnAncestor(p);

END;

Fig. 9. Conceptual-Model-Equivalent Language

The language is fully declarative, which allows a user to easily change both
the model and the constraints. Thus, it is easily configurable to accommodate
additional concepts such as an occupation that might be of interest or to ac-
commodate a host of GedcomX FactTypes (e.g Adoption, BarMitzva, ...). More
importantly for ontological deep data cleaning, it provides for ease of adding,
deleting, and modifying constraints.

On import into Family Tree, the first check is for potential duplicates. Given
potential duplicates x and y, the check loads the instance graphs of x and y
into the conceptual model defined in Figure 9. (Instance graphs are hypergraphs
since relationships are not always binary.) It then conflates the Person object
identifiers for x and y and runs the model’s constraints against the resulting
instance graph.



10 S.N. Woodfield, et al.

As an example, consider merging the instance graphs obtained from Figure 1
for Mary Ely (the first numbered child on the page) and Mary Ely (the mother
of Abigail Huntington Lathrop). As Person-IDs, let Mary Ely (the child) be P1,
Mary Ely (Abigail’s mother) be P2, and Abigail be P3. Conflating P1 and P2 (as
P1·2), yields a new graph with many relationships. Figure 10 shows the graph
reduced to just those edges connected to P1·2 plus the edges connecting person
objects to names. Among the many relationships are (P3:Person, P1·2:Person)
since Abigail is a child of Mary Ely (her mother) and (P1·2:Person, P3:Person)
since Mary Ely (the child) is a child of Abigail. We now have a cycle which
the ENSURE constraint in Figure 9 will detect and thus will state that the
probability of such an occurrence is zero—i.e. “I am not my own ancestor” is
false, a clear violation, and so the proposed merge should be rejected.

Fig. 10. Instance Graph with Mary Elys Conflated.

Beyond import, even when the input data is clean and even when duplicates
are correctly detected and merged, there is no guarantee that the data in Family
Tree is clean. (Over 4.3 million users have contributed to the creation of the tree,
each in his or her own way based on available data or even just on memories of
family lore.) To aid in cleaning Family Tree, we have implemented a tool, called
Tree Sweeper, which runs over the ancestry of a given person in Family Tree. It
imports into the conceptual model in Figure 9 the instance graphs of ancestors
in the tree up to a specified generation. Then, given the ontological constraints
of the model, it detects and reports encountered problems. As Figure 2 shows, a
Tree Sweeper run over the ancestry of Abigail Huntington Lathrop in Figure 1
raised a red flag about Sara Sterling, Abigail’s great-grandmother. Tree Sweeper
can also detect fictitious persons in Family Tree, most likely created by improper
merges of presumed duplicates. An analysis of the person’s instance graph is
often sufficient to detect bogus persons.



Ontological Deep Data Cleaning 11

3 Experimental Evaluation

We have conducted several field tests of Constraint Enforcer and of Tree Sweeper,
and we have conducted a user study to assess how well people with varying
computer expertise can modify ENSURE rules.

3.1 Field Tests

Constraint Enforcer Error-Detection. Early in our work on deep data cleaning,
we wanted to know how well and with what coverage Constraint Enforcer iden-
tifies errors made by the Fe6 extraction engines. We selected three pages of three
different books, ran the extraction engines against them, and without using the
Constraint Enforcer identified all semantic extraction errors. We then wrote and
tested constraint rules to catch all these errors. Thereafter, we applied Constraint
Enforcer to extraction results from four other randomly chosen pages from each
of the three books. The extraction engines filled 1201 fields in 479 records. The
Constraint Enforcer marked 239 of these filled-in fields as potentially erroneous.
Hand-checking, we found that 12 of these fields were erroneously marked and
that Constraint Enforcer failed to mark 25 fields filled in with erroneous data—
thus yielding accuracy scores of 94.1% precision and 90.5% recall.4 As a result of
this field test, we realized that coding, modifying, and even discarding constraint
rules would be the main impediment to increasing accuracy. This observation
provided impetus for making constraint rules easy to specify, resulting in the de-
velopment of the latest version of our model-equivalent programming language.

Error Detection: Tree Sweeper vs. FamilySearch. To evaluate the efficacy of
Tree Sweeper, we compared its error detection capability with FamilySearch’s,
which runs as an error reporting background process in Family Tree. We ran-
domly chose four persons in Family Tree and collected the records of all their
ancestors up to the eighth generation, yielding a sample size of 423 persons. Ta-
ble 1 shows the results of running Tree Sweeper over these 423 person records and
the errors reported by FamilySearch within these records. Tree Sweeper found 17
more crisp errors (31% more) than did FamilySearch. In addition, Tree Sweeper
found 17 probabilistically unlikely (fuzzy) errors. FamilySearch does not consider
fuzzy errors. Thus, for example, a 12-year-old mother is considered impossible,
but a 13-year-old mother is not an error. Tree Sweeper uses a distribution when
evaluating a mother’s age at the birth of her first child. It establishes an un-
likely threshold and an error threshold, both of which are percentages. The Tree
Sweeper error threshold for a mother’s age at the birth of her first child was
0.01% and the unlikely threshold was 1%. This capability is enabled by the use
of distributions in Tree Sweeper to measure the probability that a constraint has
been violated rather than using a single crisp error threshold.

Merge Problem Detection. Wanting to determine the extent to which merge
problems occur in Family Tree, we sampled 51 people randomly from the tree
and found that 9.8% were formed by merging. Next, we sampled 140 people

4 See [14] for additional details of this field test.



12 S.N. Woodfield, et al.

Table 1. Error Detection: Tree Sweeper vs. FamilySearch.

Crisp Fuzzy

Number of people in sample 423 423

Number of errors found 72 17

Errors per person 16.9% 4.0%

Errors Found & Percent

Tree Sweeper 68, 94.4% 17, 100%

FamilySearch 55, 76.4% 0, 0.0%

Errors found by Tree Sweeper
17 17

but not by FamilySearch

Errors found by FamilySearch
4 0

but not by Tree Sweeper

Errors found by both 51 0

with reported errors and found that 76% of them had been formed by merging.
There is a significant difference in the merge percentages, implying that there is a
correlation between people with errors and whether they are merged individuals.
This observation, however, does not suggest causality. To investigate further we
evaluated the 18 individuals who had three or more reported errors. Of these
18, 15 were merged individuals. Further evaluation of those 15 showed that 6 of
the merges were erroneous. Thus, a significant number of errors are caused by
improper merging, but there are certainly other factors to be considered.

3.2 User Study: Declarative vs. Imperative Specification

In our Error Detection field test in Section 3.1, we found that FamilySearch and
Tree Sweeper each had one false positive. In Tree Sweeper’s case, it reported
that a person was probably too old to get married. The problem occurred be-
cause of our misinterpretation of the distribution we were using. We thought it
represented the probability of a person marrying at a given age. Instead, it was
the probability of a person’s age when married for the first time.

The underlying conceptual model of Tree Sweeper, including general con-
straints, was designed to be easy to write, understand, and modify. To evaluate
this claim, we performed an experiment involving the solution of our misun-
derstanding of Tree Sweeper’s marrying age distribution. We conducted an ex-
periment with 31 subjects. Three of the participants were experts in reading,
writing, and modifying the text-based conceptual modeling language; the others
had never seen the language.

In the experiment each subject was given a one-page tutorial on the lan-
guage. Examples were included. Next subjects were shown how to modify the
syntax of an unrelated constraint. The subjects were then given a second page
describing the problem and the erroneous marrying-age constraint. After read-



Ontological Deep Data Cleaning 13

ing the description, they started a timer and began modifying the constraint to
solve the problem. When they thought they were finished, they presented their
solution to the proctor who indicated whether their solution was correct or not.
If incorrect, they were to modify their solution and resubmit. This submission
process repeated until they had correctly modified the constraint. We used two
metrics: time to correctly modify the constraint and the number of tries it took
to be successful. Table 2 shows the results.

Table 2. Declarative vs. Imperative Coding.

Group (Nr. Subjects) Avg. Time Avg. Tries Max Time Max Tries

Experts (3) 1.0m 1.0 1m 1
Computer Scientists (12) 1.8m 1.3 3m 2
Non-Computer Scientists (6) 3.2m 1.3 5m 2
Uncategorized Subjects (9) 2.3m 1.6 5m 3

Overall 2.1m 1.3 5m 3

At an α-level of 0.05, we determined that experts were faster than com-
puter scientists, and computer scientists were faster than non-computer scien-
tists. Even the worst subject took only five minutes and three tries. We have
no timing data for this specific modification in FamilySearch. However, based
on experiments run to determine modification time of imperatively written code
[13], we conjecture that the modification time for this error would take much
longer. Moreover, Tree Sweeper’s deployment time is comparatively orders of
magnitude faster. We need only copy the modified text file containing the model
to the deployment site. This takes just a few minutes. In contrast, FamilySearch
must re-compile, link, and deploy in a subsequent release.

4 Concluding Remarks

Ontological deep data cleaning relies on a plethora of declaratively specified crisp
and fuzzy constraints. It is particularly useful for investigatory applications in
which the data in the application’s repository is never complete, consistent, and
error free and in which data cleaning is needed both pre- and post-data import.

Our prototype implementation within a genealogical information-extraction
application is declarative—based on a conceptual-model-equivalent program-
ming language. Field tests bespeak its usefulness in discovering and providing
guidance for fixing discovered errors. A user study indicates that a broad spec-
trum of users can quickly learn the language and effectively modify its constraint
rules.

In future work, (1) we intend to enhance and deploy Tree Sweeper as an
app to aid users in their quest to clean their ancestry in Family Tree. (2) After
additional work in which we need to code the temporary conflation of merge-
proposed individuals and test and enhance the accuracy of proposed ontological



14 S.N. Woodfield, et al.

constraints, we plan to offer it as a background sanity check for the merge opera-
tion in FamilySearch. (3) Since the Fe6 extraction engines are capable of reading
documents [2], an interesting future possibility is to have them read source docu-
ments like those in Figures 4 and 6 and determine whether the evidence supports
the conclusions posted in Family Tree.

References

1. Dolby, J., Fan, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Murdock,
W., Srinivas, K., Welty, C.: Scalable cleanup of information extraction data using
ontologies. In: Proceedings of the 6th International Semantic Web Conference, pp.
100–113. Busan, Korea (2007)

2. Embley, D., Liddle, S., Lonsdale, D., Woodfield, S.: Ontological document reading:
An experience report. Enterprise Modelling and Information Systems Architec-
tures: International Journal of Conceptual Modeling pp. 133–181 (February 2018)

3. FamilySearch. http://familysearch.org
4. Galhardas, H.: Data cleaning and transformation using the AJAX framework. In:

Lämmel, R., Saraiva, J., Visser, J. (eds.) Generative and Transformational Tech-
niques in Software Engineering, pp. 327–343. Springer, Berlin, Germany (2006)

5. Gedcom X. http://www.gedcomx.org/
6. Gruber, T.: A translation approach to portable ontology specifications. Knowledge

Acquisition 5(2), 199–220 (1993)
7. Kang, H., Getoor, L., Shneiderman, B., Bilgic, M., Licamele, L.: Interactive en-

tity resolution in relational data: A visual analytic tool and its evaluation. IEEE
Transactions on Visualization and Computer Graphics 14(5) (2008)

8. Liddle, S., Embley, D., Woodfield, S.: Unifying modeling and programming through
an active, object-oriented, model-equivalent programming language. In: Proceed-
ings of the Fourteenth International Conference on Object-Oriented and Entity-
Relationship Modeling (OOER’95). pp. 55–64. Gold Coast, Queensland, Australia
(December 1995)

9. Low, W., Lee, M., Ling, T.: A knowledge-based approach for duplicate elimination
in data cleaning. Information Systems 26(8), 585–606 (December 2001)

10. Rahm, E., Do, H.: Data cleaning: Problems and current approaches. IEEE Data
Engineering Bulletin 23(4), 3–13 (2000)

11. Raman, V., Hellerstein, J.: Potter’s Wheel: An interactive data cleaning system.
In: Proceedings of the 27th International Conference on Very Large Data Bases.
pp. 381–390. VLDB’01, Rome, Italy (September 2001)

12. Vanderpoel, G.: The Ely Ancestry: Lineage of RICHARD ELY of Plymouth, Eng-
land. The Calumet Press, New York, New York (1902)

13. Woodfield, S.: An experiment on unit increase in problem complexity. IEEE Trans-
actions on Software Engineering SE-5(2), 76–79 (March 1979)

14. Woodfield, S., Lonsdale, D., Liddle, S., Kim, T., Embley, D., Almquist, C.: Prag-
matic quality assessment for automatically extracted data. In: Proceedings of ER
2016. pp. 212–220. Gifu, Japan (November 2016)


