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ABSTRACT

ONTOLOGY GENERATION, INFORMATION HARVESTING

AND SEMANTIC ANNOTATION FOR MACHINE-GENERATED

WEB PAGES

Cui Tao

Department of Computer Science

Doctor of Philosophy

The current World Wide Web is a web of pages. Users have to guess possible

keywords that might lead through search engines to the pages that contain infor-

mation of interest and browse hundreds or even thousands of the returned pages in

order to obtain what they want. This frustrating problem motivates an approach

to turn the web of pages into a web of knowledge, so that web users can query the

information of interest directly. This dissertation provides a step in this direction and

a way to partially overcome the challenges. Specifically, this dissertation shows how

to turn machine-generated web pages like those on the hidden web into semantic web

pages for the web of knowledge. We design and develop three systems to address the

challenge of turning the web pages into web-of-knowledge pages: TISP (Table Inter-

pretation for Sibling Pages), TISP++, and FOCIH (Form-based Ontology Creation

and Information Harvesting). TISP can automatically interpret hidden-web tables.



Given interpreted tables, TISP++ can generate ontologies and semantically anno-

tate the information present in the interpreted tables automatically. This way, we

can offer a way to make the hidden information publicly accessible. We also provide

users with a way where they can generate personalized ontologies. FOCIH provides

users with an interface with which they can provide their own view by creating a

form that specifies the information they want. Based on the form, FOCIH can gener-

ate user-specific ontologies, and based on patterns in hidden-web pages, FOCIH can

harvest information and annotate these pages with respect to the generated ontology.

Users can directly query on the annotated information. With these contributions,

this dissertation serves as a foundational pillar for turning the current web of pages

into a web of knowledge.
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Chapter 1

Introduction

The World Wide Web serves as a powerful resource for every community.

More and more users tend to go online to search for valuable facts or knowledge.

The current web, however, is a web of linked pages, instead of a web of facts. Users

have to guess possible keywords that might lead through search engines to the pages

that contain information of interest. A search engine usually returns thousands of

result pages and users have to manually traverse them to find the information they

are looking for. This process sometimes can be frustrating.

This frustrating problem motivates an approach to turn the web of pages into

a web of knowledge, so that web users can query the information of interest directly.

More specifically, the approach superimposes a web of knowledge over the web of

pages, allowing users to query the information and then, if desired, taking them

directly to the information within a page. This web of knowledge can be realized by

transforming web pages into populated conceptual models. We can use a conceptual

model to describe the domain a user is interested in and then locate the information

of interest on each web page and annotate it with respect to the conceptual model.

After we have populated the conceptual model, we can freely query the annotated

data.

There are many challenges we have to overcome to achieve this goal. First,

creating a conceptual model or an ontology is non-trivial. It not only requires domain

expertise, but also requires an understanding of conceptual modeling and a specific
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ontology language. In order to cover the vast amount of information available online,

we might need hundreds of thousands of domain ontologies. In addition, different

users have different views even for the same domain. Therefore, they may want

their data represent and queried in different ways. To satisfy this desire, we need

user-specific ontologies to describe each user’s view. All of this makes the ontology

creation process even more challenging. Second, to annotate millions of available

online pages is cumbersome, especially if we want to annotate with respect to each

user’s individual view. A way to automate both ontology creation and semantic

annotation appears to be necessary if the vision of a web of knowledge is to become

reality.

This dissertation provides a step in this direction and a way to partially over-

come the challenges. Specifically, this dissertation aims at turning machine-generated

web pages like those on the hidden web into semantic web pages for the web of knowl-

edge. Hidden-web pages are usually generated dynamically from a pre-defined tem-

plates in response to submitted queries. Hence, pages from the same hidden-web site

usually share similar structures. We call this kind of pages sibling pages. In addition,

a lot of information on the hidden web is presented in tables. We use these hidden

web tables in sibling pages as resources to do our research. These tables provide

valuable information about what people think is reasonable to represent a domain.

We can therefore leverage the representations to generate domain ontologies auto-

matically. Further, if we annotate information stored in these tables, we can offer a

way to make the hidden information publicly accessible. In addition, we provide users

with an interface with which they can provide their own view by creating a form that

specifies the information they want. Based on the form, we can generate user-specific

ontologies, and based on patterns in sibling pages, we can harvest information and

annotate these pages with respect to the generated ontology.
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To address the challenges of automatic ontology generation and semantic an-

notation based on tables, our first step is to automatically interpret the tables. To

interpret a table is to properly associate table category labels with table data values.

We have created a table interpretation system called TISP (Table Interpretation for

Sibling Pages), which offers a solution for automatically interpret sibling tables. TISP

compares them to identify and connect nonvarying components (category labels) and

varying components (data values). Experimental results show that TISP can success-

fully identify sibling tables, generate structure patterns, interpret tables using the

generated patterns, and automatically adjust the structure patterns as it processes a

sequence of hidden-web pages.

With the ability to automatically interpret hidden-web tables, our next steps

are to automatically generate ontologies from these tables and annotate the data in

these tables with respect to the generated ontologies. We extended TISP and im-

plemented TISP++. TISP++ can automatically generate OWL ontologies based on

hidden-web tables and then automatically annotate information in the tables with

respect to the generated ontologies. Being able to interpret tables leads immedi-

ately to a conceptualization of the data in these interpreted tables and thus also to a

way to semantically annotate these interpreted tables with respect to the ontological

conceptualization. Labels in nested table structures yield ontological concepts and

interrelationships among these concepts, and associated data values become anno-

tated information. The semantically annotated data leads immediately to queryable

data in our envisioned web of knowledge.

TISP and TISP++ provide a fully automatic process to transform facts em-

bedded within hidden-web tables into facts accessible by standard query engines.

However, the ontologies are generated based on tables as specified in the hidden-

web pages, and the information needs to be queried in the way the tables represent

it. Users do not have control over the representation of the concepts, relationships,
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and constraints of the generated ontologies. To facilitate user-oriented, personalized

information gathering and querying, we created FOCIH.

FOCIH (Form-based Ontology Creation and Information Harvesting, pro-

nounced foh·s̄i) is a system that provides for personalized information harvesting—

personalized in the sense that the user can specify the ontology into which the infor-

mation is to be harvested. The form-based part of the name emphasizes the means

by which a user creates the ontology—namely by creating a form to be filled in by

the system as it harvests information. FOCIH allows a user to generate a form that

describes the information the user wishes to harvest. Given a form, FOCIH can

generate an extraction ontology, match information with the user’s view, and collect

information from hidden-web tables automatically. In addition, as an aid to initiating

forms, FOCIH can reverse engineer existing tables or ontologies to forms, use them

directly, or allow users to make modifications until they have their desired ontological

view. By doing so, FOCIH opens a door for annotating information in hidden-web

tables with any view—not just the way web-site tables represent it, but according to

any view users want—either user created, or based on other tables or on any existing

ontology.

The contributions of the dissertation are:

1. it provides a solution to automatic interpretation for sibling tables on the hidden

web;

2. it offers a way to automate ontology generation given an interpreted table;

3. it enables automatic semantic annotation for interpreted tables;

4. it gives users a way, without knowing ontology languages, to create ontologies

based on their own view;

5. it facilities automatic or semi-automatic information harvesting; and
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6. it allows us to create a web of knowledge and superimpose it over hidden-web

pages with sibling tables.

We present the details of these contributions in this dissertation as follows.

Chapter 2 explains how TISP automatically interprets sibling pages from the hid-

den web. This chapter is mainly based a paper published in Proceedings of the 26th

International Conference on Conceptual Modeling (ER’07) [52]. Chapter 3 explains

how TISP++ generates ontologies based on the interpreted tables and how it anno-

tates information with respect of the generated ontologies and allows the information

to be queried. This chapter is mainly based on an invited paper to be published

in Data & Knowledge Engineering [51]. Chapter 4 explains how FOCIH generates

user-specific ontologies and how it harvests and annotates information with respect of

user-specific views. This chapter is partially based on a paper published in Proceed-

ings of the First International Workshop on Conceptual Modelling for Life Sciences

Applications (CMLSA’07) [53]. Chapter 5 concludes the dissertation and discusses

future work.
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Chapter 2

Automatic Hidden-Web Table Interpretation

2.1 Introduction

The World Wide Web serves as a powerful resource for every community. Much

of this online information, indeed, the vast majority, is stored in databases on the

so-called hidden web.1 Hidden-web information is usually only accessible to users

through search forms and is typically presented to them in tables. Automatically

understanding hidden-web pages is a challenging task. In this paper, we introduce a

domain independent, web-site independent, unsupervised way to automatically inter-

pret tables from hidden-web pages.

Tables present information in a simplified and compact way in rows and

columns. Data in one row/column usually belongs to the same category or pro-

vides values for the same concept. The labels of a row/column describe this category

or concept.

Although a table with a simple row and column structure is common, tables

can be much more complex. Figure 2.1 shows an example. Tables may be nested or

conjoined as are the tables in Figure 2.1. Labels may span across several cells to give

a general description as does Identification and Location in Figure 2.1. Sometimes

tables are rearranged to fit the space available. Label-value pairs may appear in

1There are more than 500 billion hidden-web pages. The surface web, which is indexed by
common search engines only constitutes less than 1% of the World Wide Web. The hidden web is
several orders of magnitude larger than the surface web [32].
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Figure 2.1: A Sample Table from WormBase [62].

multiple columns across a page or in multiple rows placed below one another down a

page. These complexities make automatic table interpretation challenging.

To interpret a table is to properly associate table category labels with table

data values. Using Figure 2.1 as an example, we see that Identification, Location, and

Function are labels for the large rectangular table. Inside the right cell of the first row

is another table with headers IDs, NCBI KOGs, Species, etc. Nested inside of this

cell are two tables with labels CGC name, Sequence name, Other name(s), WB Gene

ID, Version, and Gene Model, Status, Nucleotides (coding/transcript), Protein, and

Amino Acids. Most of the rest of the text in the large rectangular table comprises the

data values. If we look more closely, however, we may conclude that some category

8



(Identification.IDs.CGC name) 7→
cdk-4-(Cyclin-Dependent Kinase family)
(via person: Michael Krause);

(Identification.IDs.Sequence name) 7→ F18H3.5 ;
...
(Identification.Gene model(s).Amino Acids, 2 ) 7→ 406 aa;
...

Figure 2.2: Interpretation for the Tables in Figure 2.1 (Partial).

labels are interleaved in the text. For example, via person appears to be a label under

CGC name, as does Entrez Genes and Ace View beside NCBI.

Once category labels and data values are found, we want to properly asso-

ciate them. For example, the associated label for the value F18H3.5 should be the

sequences of labels Identification, IDs, and Sequence name. Given the source table in

Figure 2.1, we match category labels with values as Figure 2.2 shows. We associate

one or more sequences of labels with each data value in a table. Borrowing notation

from Wang [59], the left hand side of the arrow is a sequence of one or more table la-

bels, and the right hand side of the arrow is a data value. For the first two label-value

pairs in Figure 2.2, there is only one label sequence. The third, however, has two:

Identification.Gene model(s).Amino Acids and 2. Each label sequence represents a

dimension. In general, a table may have one, two, three, or more dimensions. If

a table has multiple records (usually multiple rows) and if the records do not have

labels, we add record numbers. The table under Identification.Gene model(s), for ex-

ample, has two records (two rows), but no row labels. We therefore label records with

sequence numbers—the first record 1 and the second record 2. Thus, the label-value

association becomes (Identification.Gene model(s).Amino Acids, 2 ) 7→ 406 aa where

Identification.Gene model(s).Amino Acids is the label for the first dimension, and 2

is the row label for the second dimension.

Although automatic table interpretation can be complex, if we have another

page, such as the one in Figure 2.3, that has essentially the same structure, the

9



Figure 2.3: A Second Sample Table from WormBase.

system might be able to obtain enough information about the structure to make

automatic interpretation possible. We call pages that are from the same web site

and have similar structures sibling pages.2 The two pages in Figures 2.1 and 2.3 are

sibling pages. They have the same basic structure, with the same top banners that

appear in all the pages from this web site, with the same table title (Gene Summary

for some particular gene), and a table that contains information about the gene.

Corresponding tables in sibling pages are called sibling tables. If we compare the two

large tables in the main part of the sibling pages, we can see that the first columns

of each table are exactly the same. If we look at the cells under the Identification

2Hidden-web pages are usually generated dynamically from a pre-defined templates in response
to submitted queries, therefore they are usually sibling pages
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label in the two tables, both contain another table with two columns. In both cases,

the first column contains identical labels IDs, NCBI KOGs, ..., Putative ortholog(s).

Further, the tables under Identification.IDs also have identical header rows. The data

rows, however, vary considerably. Generally speaking, we can look for commonalities

to find labels and look for variations to find data values.

Given that we can find most of the label and data cells in this way, our next

task is to infer the general structure pattern of the web site and of the individual

tables embedded within pages of the web site.3 With respect to identified labels, we

look below or to the right for value associations; we may also need to look above or

to the left. In Figure 2.1, the values for Identification.Gene Model(s).Gene Model are

below, and the values for Identification.Species are to the right.

Although we look for commonalities to find labels and look for variations to

find data values, we must be careful about being too strict. Sometimes there are

additional or missing label-value pairs. The two nested tables whose first column

header is Gene Model in Figures 2.1 and 2.3 do not share exactly the same structure.

The table in Figure 2.1 has five columns and three rows, while the table in Figure 2.3

has six columns and two rows. Although they have these differences, we can still

identify the structure pattern by comparing them. The top rows in the two tables are

very similar. Observe that the table in Figure 2.3 only has an additional Swissprot

column inserted between the Protein and Amino Acids columns. It is still not difficult,

however, to tell that the top rows are rows for labels.

In addition to discovering the structure pattern for a web site, we can also

dynamically adjust the pattern if the system encounters a table that varies from the

pattern. If there is an additional or missing label, the system can change the pattern

by either adding the new label and marking it optional or marking the missing label

3“Structure patterns” are the pattern expressions (path expressions and regular expressions) we
use to identify the location of tables within an HTML page and to associate table labels with table
values.
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optional. For example, if we had not seen the extra Swissprot column in our initial

pair of sibling pages, the system can add Swissprot as a new label and mark it as

optional. The basic label-value association pattern is still the same.

We call our system TISP (Table Interpretation with Sibling Pages). We present

the details of TISP and our contribution to table interpretation by sibling page com-

parison in the remainder of the paper as follows. Section 2.2 provides the details

about how TISP analyzes a source page to recognize all HTML tables and how it

decomposes nested tables, if any. Section 2.3 introduces the matching algorithms we

use. Section 2.4 describes how we interpreted various matching results and find data

tables. Section 2.5 explains how TISP infers the general structure patterns of a web

site and therefore how it interprets the tables from the site. Section 2.5 also explains

how to automatically adjust the generated patterns when variations are encountered.

In Section 2.6, we report the results of experiments we conducted involving sites for

car advertisements, and molecular biology. Section 2.7 discusses related work. In

Section 2.8, we make concluding remarks.

2.2 Initial Table Processing

The tags <table> and </table> delimit HTML tables in a web document. In each

HTML table, there may be tags that specify the structure of the table. The tag

<th> is designed to declare a header, <tr> is designed to declare a row, and <td>

is designed to declare a data entry. Unfortunately, we cannot count on users to

consistently apply these tags as they were originally intended. Most table designers

simply use the <td> tag for every table entry without regard to whether it is a

header or a data value. In addition, a web page designer might (1) use table tags

for layout (i.e. to line up columns and rows of symbols, or values, or statements

with no thought of table headers, values. and their associations), or (2) not use

HTML tags to represent a table (i.e. use verbatim layout of symbols, values, and
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statements to form a table). For the first case, TISP needs to determine that the

object delimited by HTML table tags is not a table. For the second case, the solution

requires techniques beyond those discussed in this paper. We consider this to be

interesting future research, and proceed with our discussion of HTML tables.

After obtaining a source document, TISP first parses the source code and lo-

cates all HTML components enclosed by <table> and </table> tags (tagged tables).

When tagged tables are nested inside of one another, TISP finds them and unnests

them. In Figure 2.1, there are several levels of nesting in the large rectangular table.

The first level is a table with two columns. The first column contains Identification,

Location, and Function, and the second column contains some complex structures.

Figure 2.1 shows only the first three rows of this table — one row for Identification,

one for Location, and one for Function. (For the purpose of being explicit in this

paper, we assume that these three rows are the only rows in this table.) The second

column of the large rectangular table in Figure 2.1 contains three second-level nested

tables, the first starting with IDs, the second with Genetic Position, and the third

with Mutant Phenotype. In the right most cell of the first row is another table. There

are also two third-level nested tables.

We treat each tagged table as an individual table and assign an identifying

number to it. If the table is nested, we replace the table in the upper level with its

identifying number. By so doing, we are able to remove nested tables from upper level

tables. As a result, TISP decomposes the page in Figure 2.1 into the set of tables in

Figure 2.4.

2.3 Table Matching

To compare and match tables, we first transform each HTML table into a DOM

tree [18]. Tree1 in Figure 2.5 shows the DOM tree for Table 7 in Figure 2.4, and

Tree2 in Figure 2.5 shows the DOM tree for its corresponding table in Figure 2.3.
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Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Figure 2.4: Decomposition for the Tables in Figure 2.1.

Tai [50] gives a well acknowledged formal definition of the concept of a tree

mapping for labeled ordered rooted trees:

Let T be a labeled ordered rooted tree and let T [i ] be the ith node in level order

of tree T. A mapping from tree T to tree T ′ is defined as a triple (M, T, T ′), where

M is a set of ordered pairs (i, j ), where i is from T and j is from T ′, satisfying the

following conditions for all (i1, j1), (i2, j2) ∈ M, where i1 and i2 are two nodes from

T and j1 and j2 are two nodes from T ′:

(1) i1 = i2 iff j1 = j2;

(2) T [i1] comes before T [i2] iff T ′[j1] comes before T ′[j2] in level order;

(3) T [i1] is an ancestor of T [i2] iff T ′[j1] is an ancestor of T ′[j2].
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Tree1

Tree2

Figure 2.5: Trees for Table 7 in Figure 2.4 and its Sibling Table in Figure 2.3.

According to this definition, each node appears at most once in a mapping — the order

between sibling nodes and the hierarchical relation between nodes being preserved.

The best match between two trees is a mapping with the maximum number of ordered

pairs.

We use a simple tree matching algorithm introduced in [64] which was first

proposed to compare two computer programs in software engineering. It calculates

the similarity of two trees by finding the best match through dynamic programming

with complexity O(n1n2), where n1 is the size (number of nodes) of T and n2 is the

size of T ′. This algorithm counts the matches of all possible combination pairs of

nodes from the same level, one from each tree, and finds the pairs with maximum

matches. The simple tree match algorithm returns the number of these maximum
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matched pairs. The highlighted part in tree1 in Figure 2.5 shows the matched nodes

for tree1 with respect to tree2 in Figure 2.5. The highlighted nodes indicate a match.

2.4 Sibling Table Identification

In our research, we use the results of the simple tree matching algorithm for three

tasks: (1) we filter out those HTML tables that are only for layout; (2) we identify

the corresponding tables (sibling tables) from sibling pages; and (3) we match nodes

in a sibling table pair.

For each pair of trees, we use the simple tree matching algorithm to find the

maximum number of matched nodes among the two trees. We call this number the

match score. For each table in one source page, we obtain match scores. Sibling

tables should have a one-to-one correspondence. Based on the match scores, we use

the Gale-Shapley stable marriage algorithm [27] to pair sibling tables one-to-one from

two sibling pages.

For each pair of tables, we calculate the sibling table match percentage, 100

times the match score divided by the number of nodes of the smaller tree. The match

percentage between the two trees in Figure 2.5, for example, is 19 (match score)

divided by 27 (tree size of Tree2), which, expressed as a percentage, is 70.4%.

We classify table matches into three categories: (1) exact match or near exact

match; (2) false match; and (3) sibling-table match. We use two threshold boundaries

to classify table matches: a higher threshold between exact or near exact match

and sibling-table match, and a lower threshold between sibling-table match and false

match. Usually a large gap exists between the range of exact or near exact match

percentages and the range of sibling-table match percentages, as well as between the

range of sibling-table match percentages and the range of false match percentages.

After some observation, we set the upper threshold at 90% and the lower threshold

at 20%.
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In our example, Tables 1, 2, and 3 have match percentages of 100% with their

sibling tables. The match percentages for Tables 4, 5, 6 and 7, and their corresponding

sibling tables, are 66.7%, 58.8%, 69.2%, and 70.4% respectively. Our example has

no false matches. A false match usually happens when a table does not have a

corresponding table in the sibling page. In this case, we save the table. When more

sibling pages are compared, we might find a matching table.

2.5 Structure Patterns

The first component of a structure pattern for a table specifies the table’s location in

a web page. To specify the location, we use XPath [63], which describes the path of

the table from the root HTML tag of the document. For example, The location for

Table 7 in Figure 2.4 is:

/html/table[4]/tbody/tr[1]/td[2]/table[2]/tbody/tr[1]/td[2]. An XPath simply lists

the nodes (HTML tag names) of a path in a DOM tree for the HTML document

where [n] designates the nth sibling node in the ordered subtree.

The second component of a structure pattern specifies the label-value pairs for

a table and thus provides the interpretation. We now give the details about how we

identify the proper label-value pattern template (Section 2.5.1) and use it to generate

the specific label-value-pair pattern for the table (Section 2.5.2). We then explain how

TISP uses the generated pattern to extract label-value pairs from the table and how

TISP produces an interpretation for the table (Section 2.5.3). Combinations of basic

patterns are also possible; we thus also explain how to generate and use combination

patterns (Section 2.5.4). Finally, we explain how TISP dynamically adjusts a pattern

to accommodate table variations it may encounter as it extracts label-value pairs from

sibling tables in the web site (Section 2.5.5).
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Pattern 1:

< table > (< tbody >)? < tr > (< (td|th) > {L})n (< tr > (< (td|th) > {V })n )+

Pattern 2:

< table > (< tbody >)?( < tr >< (td|th) > {L}(< (td|th) > {V })n )+

Pattern 3:

< table > (< tbody >)? < tr > (< (td|th) > {L})n

( < tr >< (td|th) > {L}(< (td|th) > {V })(n−1) )+

Figure 2.6: Some Basic Pre-defined Pattern Templates.

2.5.1 Pattern Templates

We use regular expressions to describe table structure pattern templates. If we tra-

verse a DOM tree, which is ordered and labeled, in a preorder traversal, we can layout

the tree labels textually and linearly. We can then use regular-expression-like notation

to represent the table structure patterns (see Figure 2.6). In both templates and gen-

erated patterns we use standard notation: ? (optional), + (one or more repetitions),

and | (alternative). In templates, we augment the notation as follows. A variable

(e.g. n) or an expression (e.g. n-1) can replace a repetition symbol to designate a

specific number of repetitions. A pair of braces { } indicates a leaf node. A capital

letter L is a position holder for a label and a capital letter V is a position holder

for value. The part in a box is an atomic pattern which we use for combinational

structural patterns in Section 2.5.4.

Figure 2.6 shows three basic pre-defined pattern templates. Pattern 1 is for

tables with n labels in the first row and with n values in each of the rest of the rows.

The association between labels and values is column-wise; the label at the top of the

column is the label for all the values in each column. Pattern 2 is for tables with

labels in the left-most column and values in the rest of the columns. Each row has a

label followed by n values. The label-value association is row-wise; each label labels

all values in the row. Pattern 3 is for two-dimensional tables with labels on both

the top and the left. Each value in this kind of table associates with both the row

header label and the column header label. As future work, we could define additional
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patterns and experiment with them or allow users to define additional patterns, but

the patterns and combinations of patterns we have constitute a large majority of

HTML tables.

2.5.2 Pattern Generation

To check whether a table matches any pre-defined pattern template, TISP tests each

template until it finds a match. When we search for a matching template, we only

consider leaf nodes and seek matches for labels and mismatches for values. Variations,

however, exist and we must allow for them. In tables, labels or values are usually

grouped. We are seeking for a structure pattern instead of classifying individual cells.

Sometimes we find a matched node, but all other nodes in the group are mismatched

nodes and agree with a certain pattern in; in such case TISP should ignore the

disagreement and assume the matched node is a mismatched node of values too.

Specifically, we calculate a template match percentage between a pre-defined pattern

template and a matched result, 100 times the number of leaf nodes that agree with a

pattern template divided by total number of leaf nodes in the tree. We calculate the

template match percentage between a table and each pre-defined structure template.

A match must satisfy two conditions: (1) it must be the highest match percentage,

and (2) the match percentage must be greater than a threshold, which we set at 80%.

Consider the mapped result in Figure 2.5 as an example. The highlighted

nodes are matched nodes in tree1. Comparing the template match percentage for

this mapped result for the three pattern templates in Figure 2.6, we obtain 93.3%,

53.3%, and 80% respectively. Pattern 1 has the highest match percentage, and it is

greater than the threshold. Therefore we choose Pattern 1.

We now impose the chosen pattern, ignoring matches and mismatches. Note

that for tree1 in Figure 2.5, the first branch matches the part in Pattern 1 in the first

box, and the second and the third branch each match the part in the second box,
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/html/table[4]/tbody/tr[1]/td[2]/table[2]/tbody/tr[1]/td[2]
< table >< tr >
< td > Gene Model
< td > Status
< td > Nucleotides(coding/transcript)
< td > Protein
< td > Amino Acids
(< tr >
< td > VGene Model
< td > VStatus
< td > VNucleotides(coding/transcript)
< td > VProtein
< td > VAmino Acids)

+

Figure 2.7: Structure Pattern for Table 7 in Figure 2.4.

where n is five. For Pattern 1, when n=1, we have a one-dimensional table; and when

n>1, we have a two-dimensional table for which we must generate record numbers.

After TISP matches a table with a pre-defined pattern template, it generates

a specific structure pattern for the table by substituting the actual labels for each

L and by substituting a placeholder VL for each value. The subscript L for a value

V designates the label for the label-value pair for each record in a table. Figure 2.7

shows the specific structure pattern for Table 7 in Figure 2.4.

2.5.3 Pattern Usage

With a structure pattern for a specific table, we can interpret the table and all its

sibling tables. The XPath gives the location of the table, and the generated pattern

gives the label-value pairs. The pattern must match exactly in the sense that each

label string encountered must be identical to the pattern’s corresponding label string.

Any failure is reported to TISP. (In Section 2.5.5, we explain how TISP reacts to a

failure notification.)

When the pattern matches exactly, TISP can generate an interpretation for

the table. For our example, the chosen pattern is Pattern 1 (a table with column

headers and one or more data rows). Thus, TISP needs to add another dimension

and add row numbers. Since the table is inside of other tables, TISP recursively

searches for the tables in the upper levels of nesting and collects all needed labels.
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Figure 2.8: An Example for Pattern Combination from MutDB.

2.5.4 Pattern Combinations

It is possible that TISP cannot match any pre-defined template. In this case, it

looks for pattern combinations. Using Figure 2.8 as an example, assume that TISP

matches all cells in the first and third column, but none in the second and forth

column. Comparing the template match percentage for this mapped result for the

three pattern templates in Figure 2.6, we obtain 50%, 75%, and 68.8% respectively.

None of them is greater than the threshold, 80%. The first two columns, however,

match Pattern 2 perfectly, as do the last two columns.

Patterns can be combined row-wise or column-wise. In a row-wise combi-

nation, one pattern template can appear after another, but only the first pattern

template has the header: < table > (< tbody >)?. Therefore, a row-wise combined

structure pattern has a few rows matching one template and other rows matching

another template. In a column-wise combination, we combine different atomic pat-

terns. If a pattern template has two atomic patterns, both patterns must appear

in the combined pattern, in the same order, but they can be interleaved with other

atomic patterns. If one atomic pattern appears after another atomic pattern from a

different pattern template, the < tr > tag at the beginning is removed. Figure 2.9

shows two examples of pattern combinations. Example 1 combines Pattern 2 and

Pattern 1 row-wise. Example 2 combines Pattern 2 with itself column-wise. This

second pattern matches the table in Figure 2.8, where n = m = 1, and the plus (+)

is 4.

The initial search for combinations is similar to the search for single patterns.

TISP checks patterns until it finds mismatches, it then checks to see whether the
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Example 1:
< table > (< tbody >)?
(< tr >< (td|th) >{L}(< (td|th) > {V })n)+

< tr > (< (td|th) > {L})m(< tr > (< (td|th) > {V })m)+

Example 2:
< table > (< tbody >)?
(< tr >< (td|th) >{L}(< (td|th) > {V })n< (td|th) >{L}(< (td|th) > {V })m)+

Figure 2.9: Two Examples of Pattern Combinations.

mismatched part matches with some other pattern. TISP first searches row-wise for

rows of labels and then uses these rows as delimiters to divide the table into several

groups. If it cannot find any row of labels, it repeats the same process column-wise.

TISP then tries to match each sub group with a pre-defined template. This process

repeats recursively until all sub-groups match with a template or the process fails to

finding any matching template.

For the example in Figure 2.8, TISP is unable to find any rows of labels, but

finds two columns of labels, the first and third column. It then divides the table into

two groups using these two columns and tries to match each group with a pre-defined

template. It matches each group with Pattern 2. Therefore, this table matches

column-wise with Pattern 2 used twice.

2.5.5 Dynamic Pattern Adjustment

Given a structure pattern for a table, we know where the table is in the source

document (its XPath), the location of the labels and values, and the association

between labels and values. When TISP encounters a new sibling page, it tries to locate

each sibling table following the XPath, and then tries to interpret it by matching

it with the sibling table structure pattern. If the encountered table matches the

structure pattern regular expression perfectly, we successfully interpret this table.

Otherwise, we might need to do some pattern adjustment. There are two ways to

adjust a structure pattern: (1) adjust the XPath to locate a table, and (2) adjust the

generated structure pattern regular expression.
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< table >< tr >< td >Gene Model< td >Status < td >Nucleotides(coding/transcript)
< td >Protein (< td >Swissprot)? < td >Amino Acids
(< tr > < td > VGene Model< td > VStatus < td > VNucleotides(coding/transcript)
< td > VProtein(< td > VSwissprot)? < td > VAmino Acids)

+

Figure 2.10: Structure Pattern for the Table in Figure 2.3.

Although sibling pages usually have the same base structure, some variations

might exist. Some sibling pages might have additional or missing tables. Thus,

sometimes, following the XPath, we cannot locate the sibling table for which we are

looking. In this case, TISP searches for tables at the same level of nesting, looking

for one that matches the pattern. If TISP finds one, it obtains the XPath and adds

it as an alternative. Thus, for future sibling pages, TISP can (in fact, always does)

check all alternative XPaths before searching for another alternative XPath. If TISP

finds no matching table, it simply continues its processing with the next table.

We adjust a table pattern when we encounter a variation of an existing table.

There might be additional or missing labels in the encountered variation. In this case,

we need to adjust the structure pattern regular expression, to add the new optional

label or to mark the missing label as optional. Consider the table that starts with

Gene Model in Figure 2.3 (the sibling table of Table 7 in Figure 2.4) as an example.

The table matches the pattern in Figure 2.7 until we encounter the label Swissprot.

If we skip Swissprot, the next label Amino Acids matches the structure pattern. In

this case, we treat Swissprot as an additional label, and we add it as an optional label

as Figure 2.10 shows.

2.6 Experimental Results

We tested TISP using source pages from commercial data, scientific data, and geopo-

litical data. We picked pages from each field: car advertisements for commercial data,

molecular biology for scientific data, and interesting information about US states and

about countries for geopolitical data. Most of the source pages were collected from
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popular and well-known web sites such as cars.com, NCBI database, Wormbase, MTB

(Mouse Tumor Biology Database), CIA’s World Factbook, and U.S. Geological Sur-

vey (usgs.gov). We tested more than 2,000 tables found in 275 sibling pages in 35

web sites. Most pages from the molecular biology domain and the geopolitical do-

main have relatively complicated structures. Seven out of ten sites in the geopolitical

domain and eight out of ten sites in the molecular biology domain contained multiple

data tables per page. Two of the geopolitical sites and eight of the molecular biology

sites contained nested HTML tables.

For each web site, we randomly chose two sibling pages for initial pattern

generation. For the initial two sibling pages, we tested (1) whether TISP was able

to recognize HTML data tables and discard HTML tables used only for layout, (2)

whether it was able to pair all sibling tables correctly, and (3) whether it was able

to recognize the correct pattern template or pattern combination. For the remaining

sibling pages from the same web site, we tested (1) whether TISP was able to interpret

tables using the recognized structure patterns, (2) whether it correctly detected the

need for dynamic adjustment, and (3) whether it recognized new structure patterns

correctly.

We collected 75 sibling pages from 15 different web sites in the car-

advertisements domain for a total of 780 HTML tables.4 TISP correctly discarded

all uses of tables for layout and successfully paired all sibling tables. There were no

nested tables in this domain. Most of the web sites contained only one table pattern,

except for one site that had three different patterns. Two web sites contained tables

with structure combinations. Of the 17 pairs of sibling tables, TISP recognized 16

correctly. The one pattern TISP failed to recognize correctly contained too many

value cells that included the same value (values such as unknown, general car, auto,

dealer, and empty spaces). TISP considered them as labels, and thus could not match

4The sibling pages in this domain are usually very regular. Indeed, we found no table variations
in any of the sites we considered. We therefore only tested five pages per site.
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(a)

Crime in New York by Year

(b)

Figure 2.11: Two Partially Misinterpreted Ta-
bles.

the table with any pre-defined pattern template or detect any pattern combination.

TISP successfully interpreted all tables from the generated patterns. No adjustments

were needed, neither for any path nor for any label.

For the geopolitical information domain, we tested 100 sibling pages from

10 different web sites with 884 HTML tables. TISP correctly paired 100% of all

data tables and correctly discarded all layout tables. For initial pattern generation,

TISP was able to recognize all 22 structure patterns successfully. As TISP processed

additional sibling pages, it found one additional sibling table and correctly interpreted

it. There were no path adjustments, but there were 22 label adjustments — all of

them correct. For two sets of sibling tables, TISP recognized the correct patterns,

but failed to recognize some implicit information that affects the meaning of the

tables. Therefore it interpreted these tables only partially correctly. Figure 2.11

shows these two cases. There are actually two HTML tables in Figure 2.11a. The

header Geography Mongolia is in one HTML table, and the rest of information is in
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another HTML table. Because it separated tables using HTML tags, TISP was not

able to determine the relationship between these two HTML tables. TISP correctly

interpreted Figure 2.11b as Pattern 3. It, however, did not recognize the relationship

between Murders and per 100,000 and between Rapes and per 100,000.

We collected 100 sibling pages from 10 different web sites in the molecular

biology domain for a total of 862 HTML tables. Among these tables, TISP falsely

classified three pairs of layout tables as data tables. TISP, however, successfully

eliminated these false sibling pairs during pattern generation because it was unable

to find a matching pattern. No false patterns were generated. TISP was able to

recognize 28 of 29 structure patterns. TISP missed one pattern because the table

contained too many empty cells. If it had considered empty cells as mismatches,

TISP would have correctly recognized this pattern. As TISP processed additional

sibling pages, it found 5 additional sibling tables and correctly interpreted all but one

of them. The failure was caused by labels that varied across sibling tables causing

them, in some cases, to look like values. There were 5 path adjustments and 12 label

adjustments — all of them correct. One table was interpreted only partially correctly

because TISP considered the irrelevant information To Top as a header.

For measuring the overall accuracy of TISP, we computed precision (P), recall

(R), and an F-measure (F = 2PR/(P+R)). In its table recognition step, TISP cor-

rectly discarded 155 of 158 layout tables and discarded no data tables. It therefore

achieved an F-measure of 99.0% (98.1% recall and 100% precision). TISP later dis-

carded these three layout tables in its pattern generation step, but it also rejected two

data tables, being unable to find any pattern for them. It thus achieved an F-measure

of 99.4% (100% recall and 98.8% precision). For table interpretation, TISP correctly

recognized 69 of 74 structure patterns. It therefore achieved a recall of 93.2%. Of the

72 structure patterns it detected, 69 were correct. It therefore achieved a precision
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of 95.8%. Overall the F-measure for table interpretation was 94.5% for the sites we

tested.

We discuss the time performance of TISP in two phases: (1) initial pattern

generation from a pair of sibling pages and (2) interpretation of the tables in the rest

of the sibling pages. The time for the pattern generation given a pair of sibling pages

consists of: (1) the time to read and parse the two pages and locate all the HTML

tables, (2) the time for sibling table comparisons, and (3) the time to select from

pre-defined structure templates and generate a pattern. The complexity of parsing

and locating HTML tables is O(n), where n is the number of HTML tags. The simple

tree matching algorithm has time complexity O(m1m2), where m1 and m2 are the

numbers of nodes of the two sibling trees. To find the best match for each HTML

table, we need to compare each table with all the HTML tables in its sibling page. The

time complexity is O(km1m2), where k is the number of HTML tables in the sibling

page. The time complexity for finding the correct pattern for each matched sibling

table is O(pl), where p is the number of pattern templates and l is the number of leaf

nodes in the HTML table. If pattern combinations are involved, the complexity of

template discovery increases exponentially since for each subgroup we must consider

every template and find the best match. We conducted the experiment on a Pentium

4 computer running at 3.2 GHz. The typical actual time needed for the pattern

generation for a pair of sibling pages was below or about one second. The actual time

reached a maximum of 15 seconds for a complicated web site where pages had more

than 20 tables.

The time for table interpretation for a single sibling web page when no ad-

justment is necessary consists of: (1) the time for locating each table and (2) the

time for processing the table with a pattern. The complexity of locating a table is

O(p), where p is the number of path possibilities leading to the table. Each path

possibility is itself logarithmic with respect to the number of nodes in the DOM tree

27



for the pages. The complexity of matching a located table with the corresponding

pattern is O(el), where e is the number of pattern entries (an entry could be either a

pattern label or a pattern value) of the pattern and l is the number of leaf nodes in

the HTML table’s DOM tree. The time to do adjustments ranges from the time to

do a simple label adjustment, which is constant, to the time required to re-evaluate

all sibling tables, which is the same as the time for initial pattern generation. Over-

all, the typical actual time needed for interpreting tables in one page was below one

second. The actual time reached a maximum of 19 seconds for a complicated web

page with several tables and several adjustments.

2.7 Related Work

2.7.1 Sibling Page Comparison

Other researchers have also tried to take advantage of sibling pages. RoadRunner [13]

compares two HTML pages from one web site and analyzes the similarities and dis-

similarities between them in order to generate extraction wrappers. It discovers data

fields by string mismatches and discovers iterators and optionals by tag mismatches.

EXALG [4] uses equivalence classes (sets of items that occur with the same frequency

in sibling pages) and differentiating roles to generate extraction templates for the sib-

ling pages. DEPTA [67] compares different records in a page instead of sibling pages

and tries to find the extraction template for the record. This approach first tries to

find individual data records by using a few heuristics. It then uses a tree edit distance

algorithm to compare different data records and tries to find the extraction region.

The approach in [37] compares sibling pages to filter out general headers and footers

and other constant non-data areas of a page. It then makes various comparisons

among main pages and linked pages to find record segmentations.
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TISP fundamentally differs from these approaches. The first three [4, 13, 67]

focus on finding data fields, and the technique in [37] focuses on record segmentation.

They do not discover labels or try to associate data and labels. TISP focuses on

table interpretation. It looks for a table pattern in addition to data fields. Further-

more, TISP also tries to find the general structure pattern for the entire web site. It

dynamically adjusts the structure pattern as it encounters new, yet-unseen structures.

2.7.2 Table Interpretation

Automated table processing is typically done in two steps: (1) table recognition —

find the data table, and (2) table interpretation — find and associate labels and

values. Recent surveys [22, 66] describe the vast amount of research that has been

done in table processing and illustrate the challenges of automated table processing.

Most of this work is about tables in imaged documents, but some is about HTML

tables. Since we focus in this paper only on HTML tables, we limit the related work

we discuss to only HTML table processing.

Several researchers have tried to differentiate data tables from tables for lay-

out [9, 12, 28, 60]. They have tried to use machine learning methods [12, 60], visual

level features [28, 29], and linguistic features [9]. TISP provides a unique way to do

this task when sibling pages are available. By considering the match percentage be-

tween tables, we were able to filter out all the layout tables in the car and geopolitical

domain and only failed to filter out three pairs of tables out of more than 800 HTML

tables from the molecular biology domain (These three false positives were also fil-

tered out during the process of pattern generation). The approaches [9, 12, 28, 60]

were able to achieve F-measures of 86.5% [9], 95.5% [12], 90.0% [28], and 87.6% [60].

By way of a comparison, TISP was able to achieve an F-measure of 99.4%. TISP

techniques, of course, only work when sibling pages and tables are available. Further,

the experimentation was for different data sets, so these comparative results should
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not be construed as being definitive. The results only give an indication of about

where the techniques might stand with respect to each other.

Several papers have discussed the HTML table interpretation problem. Some

table interpretation systems work based on simple assumptions and heuristics (e.g.

[9, 24, 25, 31, 38]). These simple assumptions (labels are either the first few rows or

the first few columns) are easily broken in complex tables such as nested tables (e.g.

Figure 2.1) or tables with combination structures (e.g. Figure 2.8). The approach in

[43] presents a table interpretation system for automatic generation of F-logic frames

for tables. It considers many linguistic features in a table such as alphabetic features,

numeric features, number ranges, and data formats. It calculates differences among

different regions of a table to detect the orientation of a table and to locate label cells

and value cells. The average F-measure of this approach is around 50%. The tech-

nique in [55] learns lexical variants from training examples and uses a vector space

model to deal with non-exact matches among labels. It also uses a few heuristics

to find the association among labels and values, achieving an F-measure of 91.4%.

The approach in [29] uses visual boxes instead of HTML tags to interpret HTML

tables. It achieves an F-measure of 52.1% (the precision value was 57% and the recall

value was 48%). By way of comparison, TISP is able to achieve an F-measure of

94.5%. Of course, TISP only works when sibling tables are available. On the other

hand, when applicable, TISP has the advantage over machine learning because it is

unsupervised and document and web-site independent. TISP has no need for training

data and works for all domains and web sites where sibling pages with sibling tables

are available. Here again, these comparative results should not be construed as being

definitive since the various research groups used different data sets for experimen-

tation. Furthermore, the measurements here are for solving variations of the same

problem, not identical problems.
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2.8 Concluding Remarks

In this chapter we introduced TISP, which provides a way to automatically interpret

tables in hidden-web pages—pages which are almost always sibling pages. By com-

paring data tables in sibling pages, TISP is able to find the location of table labels

and data entries, and pair them to infer the general pattern for all sibling tables from

the same site. Our experiments using source pages from three different domains—

car advertisements, molecular biology, and geopolitical information—indicate that

TISP can succeed in properly interpreting tables in sibling pages. TISP achieved an

F-measure for sibling table interpretation of 94.5%.

Several directions remain to be pursued. For TISP and table interpretation,

we would like to do the following. (1) We assumed that information in one table

cell is either a table label or a table value. There could be structured information

within a cell, however, such as the label via person and the value Michael Krause in

Figure 2.1. As a future work on table interpretation, we would like to analyze cell

content to find structured information within cells. (2) Some web pages use lists as

tables; we would like to consider them too. (3) We would also like to be able to deal

with the case in Figure 2.11a, where we need to join adjacent HTML tables to form

a single table, and we would like to improve TISP so that it can interpret tables with

factored labels, where part of a label has been removed and placed in a higher level

heading, such as those in Figure 2.11b.
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Chapter 3

Information Conceptualization and Semantic Annotation

3.1 Introduction

One goal of the semantic web is to enable automatic targeted access to online infor-

mation that can be useful to a user. This might include activities such as finding the

availability and price of a specific car, reserving and ticketing travel itineraries, look-

ing for family history information, studying basic knowledge for a scientific domain, or

conducting research based on online databases. Much of this online information, in-

deed, the vast majority, is stored in databases on the so-called hidden web. Currently

tools for retrieving and querying hidden-web data are in their infancy, and much

human intervention is needed to hard-code and hand-specify their functionality.

To increase the use of the hidden-web data, we need a more automatic way of

making it machine-interpretable, and we need to annotate it with a more systematic

description of respective semantic domains. This goal can be realized when the infor-

mation on the web is annotated by an ontology. An ontology enables domain experts

to declare standardized, sharable, machine-processable knowledge.

To generate an ontology, however, is non-trivial. It not only requires domain

expertise, but also requires the knowledge of conceptual modeling and an ontology

language. In addition, to cover the vast amount of information available online, we

might need thousands of domain ontologies. A system that can generate ontologies

automatically is becoming increasingly desirable.
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One possible solution for automatic ontology generation is to generate based on

online tables. Online tables provide valuable information about what people think is

a reasonable way to represent a domain. We can leverage tables to generate ontologies

that describe the domain. In our previous research, we have implemented a system

that can automatically interpret online tables found in sibling pages on the hidden

web [52]. We call the system TISP (Table Interpretation for Sibling Pages). With

the ability to automatically interpret hidden-web tables, we have extended TISP and

implemented TISP++. TISP++ can automatically generate OWL ontologies based

on hidden-web tables. Labels in nested table structures yield ontological concepts

and interrelationships among these concepts.

Further, after we have a domain ontology, we can take the next step and

automatically annotate hidden-web tables. Since TISP can automatically interpret

these tables, the annotation becomes straightforward. TISP++ annotates each data

value in a table using its corresponding label (concept). The semantically annotated

data leads immediately to queryable data. Since TISP++ records information about

annotated data in RDF, we can use SPARQL to query it.

With our implementation of TISP++, we are able to automatically generate

ontologies based on tables and annotate information from sibling pages in hidden-web

sites with respect to the generated ontologies. The contributions of TISP++ are: (1)

it provides a tool to generate ontologies automatically based on interpreted tables;

(2) it provides a tool to annotate information from sibling pages automatically; (3) it

makes hidden-web information publicly accessible through standard query languages.

We discuss the details of these contributions as follows. Since TISP++ de-

pends on TISP, we first explain how TISP works. Section 3.3 discusses how TISP++

generates ontologies based on interpreted tables. Section 3.4 explains how TISP++

automatically annotates information in sibling tables with respect to generated ont-

logies. Section 3.5 shows how users can query the annotated information using the
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user interface we have developed. Section 3.6 discusses related work. In Section 3.7,

we draw conclusions and mention some possibilities for future work.

3.2 TISP

Hidden-web pages are usually generated dynamically from a pre-defined templates

in response to submitted queries and are typically presented as tables. Therefore,

these tables usually share the same or similar structures. We call pages from the

same hidden-web site that have the same or similar structure sibling pages and the

corresponding tables sibling tables. For example, the two pages in Figures 3.1 and 3.2

are sibling pages. All the pages from this web site have the same basic structure—the

same top banners, the same table title (Gene Summary for some particular gene),

and a table that contains information about the gene. If we compare the two large

tables in the main part of the sibling pages, we can see that the first columns of each

table are exactly the same. If we look at the cells under the Identification label in

the two tables, both contain another tables with two columns. In both cases, the first

column contains identical labels IDs, NCBI KOGs, ..., Putative ortholog(s). Further,

the tables under Identification.IDs also have identical header rows. The data rows,

however, vary considerably.

To interpret a table is to properly associate table category labels with table

data values. To interpret hidden-web tables automatically, TISP compares a pair of

sibling tables and looks for commonalities for labels and variations for data values.

The first column of the large table, for example, is identified as a column of labels,

as is the nested table that starts with label IDs. Within this nested table are two

additional nested tables—one with columns headed by CGC name, Sequence Name,

..., and one with columns headed by the labels Gene Model, Status, ... TISP tries

to match a table with one of the three pre-defined patterns in Figure 3.3 to find the

association of labels and data values. The table that starts with label CGC name
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Figure 3.1: A Sample Table from WormBase [62].

and the table starts with label Gene Model, for example, fallow Pattern 1. They have

n labels (denoted by {L}) in the first row followed by any number of rows each with

n data values (denoted by {V}). The table that starts with Identification and the

label that starts with IDs follow Pattern 2—on each row they have a label followed

by n values (often, as the case here, n=1). Pattern 3 is for tables with labels both

across the top row and also down the left column. Combinations of these patterns

are also possible. Table with two columns of label-value pairs, for example, are quite

common.

With an interpreted pattern, TISP can automatically interpret the sibling

tables in the remaining sibling pages on a hidden-web site. TISP can also dynamically

36



Figure 3.2: A Second Sample Table from WormBase.

adjust an interpreted table pattern if the system encounters a sibling table with slight

variation from the pattern, such as an extra column or a missing column.

3.3 Semantic Ontology Generation

TISP++ conceptualizes the information present in the tables by generating an on-

tology according to the structure pattern given by TISP. TISP++ uses the structure

pattern in a tables as discovered by TISP to generate OWL classes, properties, and

constraints according to the structure pattern. It then uses Jena [33], a semantic web

framework for Java, to output the OWL ontology.
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Pattern 1:
< table > (< tbody >)? < tr > (< (td|th) > {L})n (< tr > (< (td|th) > {V })n)+

Pattern 2:
< table > (< tbody >)?(< tr >< (td|th) > {L}(< (td|th) > {V })n)+

Pattern 3:
< table > (< tbody >)? < tr > (< (td|th) > {L})n

(< tr >< (td|th) > {L}(< (td|th) > {V })(n−1))+

Figure 3.3: Some Basic Pre-defined Pattern Templates.

Figure 3.4 shows part of the ontology for the sibling pages interpreted by

TISP from the WormBase gene repository [62] (the repository containing the pages

in Figure 3.1 and 3.2). As a default, TISP++ selects the site name, “WormBase”,

for the ontology. This name, albeit in lower-case letters to conform to conventions

becomes the name space for the ontology as Line 4 in Figure 3.4. TISP++ also uses

this name to describe the generated ontology as Lines 7 and 8 in Figure 3.4 show. In

addition, and most important, this name provides an anchor class to which we attach

ontological concepts. Line 10 in Figure 3.4 shows the OWL class “WormBase”.

For each table label, TISP++ generates an OWL class. The label name be-

comes the class name. To satisfy the OWL syntax, however, TISP++ elides illegal

characters such as spaces and parentheses. Thus “Gene model(s):” becomes “Gen-

emodels” as Line 13 in Figure 3.4 shows. The generated ontology also represents

the relationships among the labels. TISP++ generates relationships according to the

structure patterns in Figure 3.3. For Pattern 1 and Pattern 2, each value has only

one associated label, and each label has only one parent label. Thus, these patterns

require only binary relationships and relationship generation is straightforward. For

a binary relationship between two classes A and B, TISP++ generates an OWL ob-

ject property: A-B and its inverse B-A. For the property A-B, TISP++ defines A

as the domain and B as the range. For example, Lines 17–23 in Figure 3.4 show the

OWL object property for WormBase-Identification. If a label is paired with an actual

value such as are the labels Gene Model and Amino Acids in Figures 3.1 and 3.2,
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1. <rdf:RDF...
2. xmlns:owl=“http://www.w3.org/2002/07/owl#”
3. xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”
4. xmlns:base =“http://dithers.cs.byu.edu/owl/ontologies/wormbase#”... >
5. ...
6. <owl:Ontology rdf:about=“”>
7. <rdfs:comment>OWL Ontology for WormBase</rdfs:comment>
8. <rdfs:label>WormBase Ontology</rdfs:label>
9. </owl:Ontology>
10. <owl:Class rdf:ID=“WormBase”/>
11. <owl:Class rdf:ID=“Identification”/>
12. ...
13. <owl:Class rdf:ID=“Genemodels”/>
14. ...
15. <owl:Class rdf:ID=“AminoAcids”/>
16. ...
17. <owl:ObjectProperty rdf:ID=“WormBase-Identification”>
18. <owl:inverseOf>
19. <owl:ObjectProperty rdf:ID=“Identification-WormBase”>
20. </owl:inverseOf>
21. <rdfs:domain rdf:resource=“#WormBase”/>
22. <rdfs:range rdf:resource=“#Identification”/>
23. </owl:ObjectProperty>
24. ...
25. <owl:ObjectProperty rdf:ID=“Identification-IDs”>
26. ...
27. <owl:ObjectProperty rdf:ID=“Identification-Genemodels”>
28. ...
29. <owl:ObjectProperty rdf:ID=“Genemodels-AminoAcids”>
30. ...
31. <owl:DatatypeProperty rdf:ID=“AminoAcidsValue”>
32. <rdfs:range rdf:resource=“xsd;string”/>
33. <rdfs:domain rdf:resource=“#AminoAcids”/>
34. </owl:DatatypeProperty>
35. ...
36. </rdf:RDF>

Figure 3.4: Partial OWL Ontology for WormBase.
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Figure 3.5: An Example Table with Pattern 3.

TISP++ generates an OWL data type property for the OWL class associated with

this label. For example, data type property AminoAcidsValue describes the actual

value for AminoAcids. As Lines 31–34 in Figure 3.4 show, its domain is AminoAcids

and its range is string, by default.

For Pattern 3, each value has two associated labels. Figure 3.5 shows an

example: the value 41.24 has the labels Normalized Expression (%) and uterus. Thus,

the pattern requires a ternary relationship. Since OWL ontologies only allow binary

relationships, we transform Pattern 3 as follows. In Figure 3.3, we consider the label

L in the pattern “(< tr >< (td|th) > {L}(< (td|th) > {V }(n−1))+” as a value V. The

pattern then becomes “(< tr >< (td|th) >{V}(< (td|th) > {V }(n−1))+” and can be

further simplified to “(< tr > (< (td|th) > {V })n)+”, which is the same as Pattern

1. In Figure 3.5, for example, the contents in the first row and the first column are all

labels. When TISP++ generates the ontology for this table, it considers the contents

in the first row as labels, but considers the contents in the first column as values

(except for the first one “Tissue” since it is in the first row). Therefore TISP++ can

transform ternary relationships to binary relationships and then translate them as

binary relationships to OWL.

3.4 Semantic Annotation

After TISP++ generates an ontology according to the structure pattern of a web

repository, it automatically annotates the pages from this repository with respect
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1. <rdf:RDF
2. xmlns:wormbase=“http://www.deg.byu.edu/owl/ontologies/wormbase#”
3. xmlns:ann=“http://www.deg.byu.edu/owl/ontologies/annotation#”
4. xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
5. ...
6. <wormbase:WormBase rdf:ID=“WormBase 1”>
7. <wormbase:WormBase-Identification rdf:resource=”#Identification 1”/>
8. <wormbase:WormBase-Location rdf:resource=”#Location 1”/>
9. ...
10. </wormbase:WormBase>
11. <wormbase:Identification rdf:ID=“Identification 1”>
12. <wormbase:Identification-IDs rdf:resource=“#IDs 1”/>
13. ...
14. <wormbase:Identification-Genemodels rdf:resource=“#Genemodels 1”/>
15. <wormbase:Identification-Genemodels rdf:resource=“#Genemodels 2”/>
16. ...
17. </wormbase:Identification>
18. <wormbase:IDs rdf:ID=“IDs 1”>
19. <wormbase:IDs-CGCname rdf:resource=“#CGCname 1”/>
20. <wormbase:IDs-Sequencename rdf:resource=“#Sequencename 1”/>
21. ...
22. </wormbase:IDs>
23. ...
24. <wormbase:Genemodels rdf:ID=“Genemodels 1”>
25. ...
26. <wormbase:Genemodels-Protein rdf:resource=“#Protein 1”/>
27. <wormbase:Genemodels-AminoAcids rdf:resource=“#AminoAcids 1”/>
28. </wormbase:Genemodels>
29. <wormbase:Genemodels rdf:ID=“Genemodels 2”>
30. ...
31. <wormbase:Genemodels-Protein rdf:resource=“#Protein 2”/>
32. <wormbase:Genemodels-AminoAcids rdf:resource=“#AminoAcids 2”/>
33. </wormbase:Genemodels>
34. ...
35. <wormbase:CGCname rdf:ID=“CGCname 1”>
36. <ann:OffsetOnHTMLPage/>5951< /ann:OffsetOnHTMLPage/>
37. <ann:HTMLText/>cdk-4 ... < /ann:HTMLText/>
38. <wormbase:CGCnameValue>cdk-4 ... < /wormbase:ProteinValue>
39. <wormbase:CGCname-IDs rdf:resource=”#IDs 1”/>
40. </wormbase:CGCname>
41. ...
42. <wormbase:Protein rdf:ID=“Protein 1”>
43. <ann:OffsetOnHTMLPage/>10015< /ann:OffsetOnHTMLPage/>
44. <ann:HTMLText/>WP:CE18608< /ann:HTMLText/>
45. <wormbase:ProteinValue>WP:CE18608< /wormbase:ProteinValue>
46. <wormbase:Protein-Genemodels rdf:resource=”#Genemodels 1”/>
47. </wormbase:Protein>
48. <wormbase:AminoAcids rdf:ID=“AminoAcids 1”>
49. <ann:OffsetOnHTMLPage/>10152< /ann:OffsetOnHTMLPage/>
50. <ann:HTMLText/>342 aa< /ann:HTMLText/>
51. <wormbase:AminoAcidsValue>342 aa</wormbase:ProteinValue>
52. <wormbase:AminoAcids-Genemodels rdf:resource=”#Genemodels 1”/>
53. </wormbase:AminoAcids>
54. ...
55. <wormbase:Protein rdf:ID=“Protein 2”>
56. <ann:OffsetOnHTMLPage/>10689< /ann:OffsetOnHTMLPage/>
57. <ann:HTMLText/>WP:CE28918</ann:HTMLText/>
58. <wormbase:ProteinValue>WP:CE28918</wormbase:ProteinValue>
59. <wormbase:Protein-Genemodels rdf:resource=”#Genemodels 2”/>
60. </wormbase:Protein>
61. <wormbase:AminoAcids rdf:ID=“AminoAcids 2”>
62. <ann:OffsetOnHTMLPage/>10826< /ann:OffsetOnHTMLPage/>
63. <ann:HTMLText/>406 aa< /ann:HTMLText/>
64. <wormbase:AminoAcidsValue>406 aa</wormbase:ProteinValue>
65. <wormbase:AminoAcids-Genemodels rdf:resource=”#Genemodels 2”/>
66. </wormbase:AminoAcids>
67. ...
68. </rdf:RDF>

Figure 3.6: Annotation for Figure 2.1 for the Ontology in Figure 3.4.
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to the generated ontology. Figure 3.6 shows a portion of the RDF file generated

from the page in Figure 2.1. In an RDF annotation file, we first declare the name

spaces of referenced ontologies. Line 2 in Figure 3.6 refers to the wormbase ontology

in Figure 3.4, and Lines 3 and 4 declare additional name spaces. The annotation

name space gives the meaning of the annotation declarations in the RDF file, and

22-rdf-syntax-ns name space gives the meaning of the rdf declarations.

In Line 6, the URI instance WormBase 1, which refers to the whole table,

is a URI instance for the WormBase class in the wormbase ontology in Figure 3.4.

In Line 11, the URI instance Identification 1, which refers to the value of the la-

bel Identification in Figure 3.1, is a URI instance of the class Identification in the

wormbase ontology. Since the table with labels Gene Model, Status, Nucleotides (cod-

ing/trancript), Protein, and Amino Acids in Figure 3.1 has two data rows, TISP++

declares URI instances: Genemodels 1 and Genemodels 2, one for each row (Lines

14 and 15). TISP++ also declares the relationship between two URI instances. For

example, TISP++ declares the relationship WormBase 1-Identification 1 in Lines 6

and 7. TISP++ also declares the relationships between instances and annotated val-

ues. Annotated values appear as themselves, tagged with both HTMLText and with

their appropriate <label>Value (For string types the HTML text and the value are

often the same. But for data types like xsd:boolean, the HTML text could be “True”

or “False”, but its value in the value space should be “T” or “F”). For example, Line

44 gives the HTMLText for the protein value “WP:CE18608”, and Line 45 tells its

ProteinValue, also “WP:CE18608”. To identify the annotated string in the original

page, TISP++ keeps track of the position where the values are located by recording

the offset of the string from the beginning of the cached page, a local copy of the orig-

inal page containing the values. Line 43 in Figure 3.6, for example, shows that we can

locate the value “WP:CE18608” at character 10015 in the cached HTML document.
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3.5 Semantic Querying

With the annotated data properly stored in an RDF file (e.g. Figure 3.6), we are now

ready to query the annotated data using SPARQL [48]. A simple query illustrates

how this works. If we want to find the protein and the animo-acids information for

gene “cdk-4”, we can write the SPARQL query in Figure 3.7. Figure 3.7 shows the

query and the result of this query.

Figure 3.7: Sample SPARQL Query and Results for the Annotation in Figure 3.6

The FILTER statement in the SPARQL query allows the variable ?GeneName

to bind only to values containing string “cdk-4”. The CGCnameValue in Line 38 of

Figure 3.6 satisfies this constraint. Through the property wormbase:CGCnameValue

(Line 35), the SPARQL query associates ?GeneName values with ?CGCname in-

stance values. Thus, in our example, the instance value CGCname 1 (Line 35) binds

to the variable ?CGCname. Then, through the property wormbase:IDs-CGCname,

the query finds the corresponding instances of IDs (in our example, IDs 1 in Line

18). Next, through the wormbase:Identification-IDs property, the query finds the in-

stances of Identification that associate with IDs 1 (in our example, Identification 1 in

Line 11). Thereafter, through the wormbase:Identification-Genemodels property, the

query finds the instances Genemodels 1 and Genemodels 2 (Lines 14 and 15). The
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query then locates the result instances, finding Protein 1, Protein 2, AminoAcids 1,

and AminoAcids 2 through the properties wormbase:Genemodels-Protein and worm-

base:Genemodels-AminoAcids (Lines 26, 31, 27, and 32). Finally, the query returns

the result values for these instances through the properties wormbase:ProteinValue

and wormbase:AminoAcidsValue (Lines 45, 58, 51, and 64).

A user can select one or more returned records by checking the corresponding

check boxes. TISP++ then shows the user the original source page with the values

of interest highlighted. Figure 3.7 shows that we have selected the check box of the

second record in the results. Thus, in the displayed page the values WP:CE18608

and 342 aa are highlighted. In addition to allowing a user to select a record of

values, TISP++ also makes all values individually clickable. When a user clicks on

an individual value, TISP++ displays the source page with the corresponding value

highlighted.

As a result of TIPS++ processing, which includes table understanding, ontol-

ogy generation, and semantic annotation, we make hidden web data present in HTML

tables completely accessible by a standard query system. In addition, TISP++ also

semantically annotates the data with respect to the generated OWL ontology, so

that the data becomes machine-understandable and automatically manipulable by

computer agents.

3.6 Related Work

3.6.1 Ontology Generation

In recent years, many researchers have tried to facilitate ontology generation. Manual

editing tools such as Protégé [41] and OntoWeb [49] have been developed to help

users create and edit ontologies. It is not trivial, however, to learn ontology modeling
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languages and complex tools in order to manually create ontological description for

information repositories.

Because of the difficulties involved in manual creation, researchers have de-

veloped semi-automatic ontology generation tools. Most efforts so far have been de-

voted to automatic generation of ontologies from text files. Tools such as OntoLT [7],

Text2Onto [11], OntoLearn [40], and KASO [61] use machine learning methods to

generate an ontology from arbitrary text files. These tools usually require a large

training corpus and use various natural language processing algorithms to derive fea-

tures to learn ontologies. The results, however, are not very satisfactory [42].

Tools such as SIH [53], TANGO [56], and the one developed by Pivk [42] use

structured information (HTML tables) as a source for learning ontologies. Structured

information makes it easier to interpret new items and relations. The approach in [42]

tries to discover semantic labels for table regions and generate an ontology based on

a table’s structure. But how this process is done and what format the generated on-

tologies have is not discussed in the paper. SIH [53] and TANGO [56] are two ongoing

projects we are currently working on. SIH tries to generate user-specified ontologies

depending on user-generated forms. TANGO generates ontologies by analyzing re-

lated tables in a specific domain, generating an ontology according to each table, and

then merging these ontologies to a general ontology for the domain. TISP++ can

generate OWL ontologies fully automatically. It, however, only generates an ontology

for a single set of sibling pages. It does not merge ontologies generated from differ-

ent web sites, nor does it provide for user-specified ontologies. In addition, TISP++

generates ontologies in only one simple way, while TANGO aims at generating more

sophisticated ontologies.
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3.6.2 Semantic Annotation

Existing semantic annotation systems can be classified into pattern-based systems

and machine learning-based systems. Pattern-based systems such PANKOW [10] and

Armadillo [17] find entities by discovering patterns. The pattern are either discovered

manually or induced semi-automatically with a set of initial manually tagged seed

patterns. Systems such as SemTag [14], AeroDAML [36], and KIM [44] use a set

of pre-defined rules to locate the information of interest. OWL-AA [15, 16] uses a

domain-specified extraction ontology to locate semantic entities. Systems such as

S-CREAM [30] and MnM [57] use machine learning algorithms and natural language

processing methods to locate semantic entities. All of these approaches require some

pre-defined information. Pattern-based approaches need a set of initial seed patterns.

Rule-based approaches need a set of pre-defined rules. Extraction-ontology-based

approaches need domain ontologies. And machine learning-based approaches need a

training corpus. TISP++, however, does not require a training corpus or pre-defined

domain knowledge and relies only on the definition of a few typical table-pattern

templates, which are all domain-independent.

3.7 Concluding Remarks

TISP++ uses TISP to semantically annotate web pages, turning their embedded facts

into externally accessible facts. Given an interpreted table, TISP++ automatically

generates an OWL ontology depending on the table’s structure and then semantically

annotates the data in the table with respect to this generated ontology. By doing so,

all the data present in the sibling tables becomes accessible through a standard query

interface.

Several directions remain to be pursued. For TISP++ and semantic ontology

generation and semantic annotation, we would like to do the following. (1) It would
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be helpful if we could generate more sophisticated ontologies that cover more complex

semantics such as n-ary relationship sets, generalization/specialization, and aggrega-

tion. This will likely require us to combine TISP with TAT [34], which abstracts

tables into a rich encoding of table features based on Wang notation, and to com-

bine TISP and TAT with MOGO [39], which uses rich table encodings and available

semantic encodings to discover n-ary relationship sets, generalization/specialization,

and aggregation. (2) TISP++ harvests information only with respect to the onto-

logical view of the hidden-web site on which it is applied. We plan to allow users to

harvest information from multiple hidden-web sites according to a personalized view.

Our users would have the option to choose what data in a table they want to include

and how this data should be organized. This involves matching user-specific views

with TISP-generated table patterns. (3) Average web users need a more user-friendly

query system, so that they can find data of interest without knowing SPARQL. We

plan to provide our users with a natural-language-based query interface (e.g. like [3])

and a form-based query interface (e.g. like [20]).
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Chapter 4

Form-based Ontology Creation and Information Harvesting

4.1 Introduction

Web designers use their own views to present online information. A web site can

provide a large amount of information about a topic in great detail. But sometimes a

user only needs a relatively small and specific part of the information. Web resources

typically do not allow users to query with their own view or even do not allow for user

queries at all. Users have to browse the pages, filter out the unneeded information,

and find the information of interest. In another related scenario, the information a

user wants may be spread across several different sources. No source, by itself, is

capable of providing the information. In this case, users often need to search several

online repositories and gather information of interest manually. Both of these tasks

are tedious and time-consuming.

More and more researchers have realized the importance of information gath-

ering for the purpose of personalization [8, 35]. In [35], Kapetanios proposed personal

contents and collective intelligence, which coincides with our personalized ontology

creation and information harvesting idea. We take into consideration both a user’s

contributions to knowledge creation and sharing, and the computer’s role in facilitat-

ing the knowledge sharing and learning process in collaborative environments. We

call our system FOCIH (Form-based Ontology Creation and Information Harvester,

pronounced foh·s̄i). FOCIH is a system that can harvest information for users from
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different hidden web sites with respect to user-specific views, specified by ordinary

forms.

Our first step toward personalized information harvesting is to provide users

with a tool with which they can give their view of a domain without knowledge of

conceptual modeling or ontology languages. We observe that forms are a natural way

for humans to collect information. As an everyday activity, people create forms and

ask others to fill in the form. In this way, specified information can be gathered.

Inspired by this observation, we designed and implemented FOCIH, which allows a

user to generate a form that describes the information a user wishes to harvest.

The next step is to generate ontologies according to user-created forms. The

form labels become concepts in an ontology. Then based on the structure of dif-

ferent form components, FOCIH generates different kinds of relationship sets and

constraints. Also as an interesting and convenient way to initiate forms, we reversed

ontology generation from forms so that FOCIH can generate forms from ontologies

(limited currently to the case of TISP-generated ontologies [51]). Users can then alter

the form, if desired, to obtain a personalized view via the form.

The final step is to annotate and harvest information with respect to the view

represented by the form. We harvest from pages, all from the same hidden-web site.

After creating a form, a user finds a sample page from a web-site of interest and

highlights and fills in the information of interest from the sample page into the form.

The user filled-in values provide FOCIH with valuable information about how to

locate source information in the sample document. Using location patterns, FOCIH

is able to harvest information from other sibling pages from the same hidden-web site

automatically. It thus annotates all the information on these pages with respect to

the ontology. Once the pages are annotated, users can query the information. In our

implementation, users can query generated RDF tuples with SPARQL queries [48] or

with free-form queries [58].
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With our implementation of FOCIH, users are able to create forms, generate

ontologies based on forms, and harvest information from sibling pages in hidden-web

sites. The contributions of FOCIH are: (1) it provides users with a way to create an

ontology without knowing conceptual modeling or ontology languages; (2) it provides

a tool to generate ontologies automatically based on forms; (3) for some cases, it

initializes forms for users; and (4) it facilities automatic user-specific information

harvesting and annotation from tables in sibling pages in hidden-web sites.

We present the details of these contributions as follows. Section 4.2 discusses

related work for ontology generation as well as personalized ontologies and information

gathering. Section 4.3 introduces OSM which we use as the target ontology language

into which FOCIH forms are cast. Section 4.4 describes how to use the FOCIH GUI to

create a form that describes a user’s view of a domain and how to annotate a sample

page in that domain with respect to the user’s view by filling out the created form.

Section 4.5 explains how FOCIH generates ontologies based on user-created forms.

Section 4.6 discusses how FOCIH determines path and instance recognition which

allows it to harvest information with respect to the created form. Section 4.7 describes

how FOCIH harvests information from multiple sites and semantically annotates the

harvested information with respect to personalized views. Section 4.8 shows how

FOCIH can create initial form views for users based on TISP interpreted hidden-web

site. It also illustrates a scenario in which a user initializes a form from a hidden-

web site, customizes it for personal use, and then uses it to harvest information from

other sites as well as the site from which the form originated. In Section 4.9, we make

concluding remarks.

4.2 Related Work

We know of no system that allows both for ease of personal ontology creation and

for search and retrieval of facts in documents with respect to a personalized ontology.
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Researchers, however, have shown much interest in easying the burden of ontology

creation and in personalized information gathering with respect to an ontology.

4.2.1 Ontology Creation

In recent years, many researchers have tried to facilitate ontology generation. Manual

editing tools such as Protege [41] and OntoWeb [49] have been developed to help users

create and edit ontologies. It is far from trivial, however, to learn ontology modeling

languages and complex tools in order to manually create ontological descriptions for

information repositories.

Because of the difficulties involved in manual creation, researchers have de-

veloped semi-automatic ontology generation tools. Most efforts so far have been de-

voted to automatic generation of ontologies from text files. Tools such as OntoLT [7],

Text2Onto [11], OntoLearn [40], and KASO [61] use machine learning methods to

generate an ontology from arbitrary text files. These tools usually require a large

training corpus and use various natural language processing algorithms to derive fea-

tures to learn ontologies. The results, however, are not very satisfactory [42]. Tools

such as OntoBuilder [26], TANGO [56], the one developed by Pivk [42], and the one

introduced in [5], use structured information (HTML tables and forms) as a source

for learning ontologies semi-automatically from forms. Structured information makes

it easier to interpret new items and relations. These approaches, however, derive con-

cepts and relationships among concepts from source data, not from users. FOCIH, on

the other hand, allows users to provide their own views and generate user-specified

ontologies.

4.2.2 Personalized Ontologies and Personalized Information Gathering

Much research has been conducted on personalized information gathering and search

based on ontologies. Most of the these approaches focus on information retrieval.
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They try to retrieve documents that satisfy users’ needs based on ontology models

that describe user interests. Approaches such as [46, 54, 65] use personalized ontolo-

gies as training sets for information-retrieval techniques that retrieve documents of

interest. In [45], the authors propose an approach for personalized search by match-

ing personalized ontologies with page ontologies. Their system generates personalized

ontologies based on user browsing patterns. By matching a user ontology with a page

ontology, the system can retrieve more semantically relevant documents. WEBCLUS-

TERS [47] classifies search results into a meaningful hierarchy of topics based on a

taxonomic ontology that represents the perspective of the user performing the search.

The personalized ontologies are usually created manually by experts or interactively

with users via a knowledge base. These systems, however, only return documents and

cannot return actual facts. Users still have to traverse the returned the documents

to get the information of interest.

4.3 OSM Ontologies

We use OSM [21] as the semantic data model for an extraction ontology. The advan-

tage of OSM is that it has a high-level graphical representation that directly translates

to predicate calculus. Thus, when appropriately limited, it translates in a straight-

forward way to OWL [2] and to various description logics [48]. Even more important

than these advantages, however, an OSM ontology can support data extraction from

source documents [21, 24].

Figure 4.1 shows a graphical view of a sample ontology. The components of

OSM include object sets, relationship sets, and constraints over these object and

relationship sets. An object set in an OSM ontology represents a set of objects which

may either be lexical or non-lexical. A dashed box represents a lexical object set

and a solid box represents a non-lexical object set. A lexical object set contains

concrete values. For example, “Moscow” is a possible value of the Capital object set
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in Figure 4.1. A non-lexical object set describes an abstract concept, such as Country

in Figure 4.1. Object identifiers represent non-lexical objects.

Lines among object sets represent the relationship sets among them. An arrow

indicates functional from domain to range. For example, if we wish to assert that a

Country can have at most one Name, we make the relationship set functional from

Country to Name. A small circle at one end of a line indicates optional, meaning

that objects in the connecting object set may or may not participate in relationship

for the relationship set. For example, a Country may or may not have Geographic

Coordinators given for it. OSM also supports n-ary relationships with multiple lines

connecting the object sets involved. For example, Country, Population, and Year

constitute a ternary relationship set.

In addition to constraints on relationship sets, OSM also supports is-a rela-

tionships, also called generalization/specilization. Graphically displayed, a triangle

represents generalization/specialization with the generalization connected to an apex

of the triangle and the specializations connected to the opposite base. In Figure 4.1,

Male Life Expectancy and Female Life Expectancy are two kinds of specializations

of Life Expectancy. Constraints on generalization/specialization are also possible. A

plus symbol in the triangle would mean that the specializations are mutually exclu-

sive; a union symbol would mean that the generalization is a union of the specializa-

tions; together a plus symbol and union symbol would mean that the specializations

partition the generalization.

4.4 Form Creation and Annotation

We have a proof-of-concept GUI for FOCIH that runs online.1 This GUI has two

modes of operation: form creation and form annotation. The form-creation mode

allows users to create forms with different structures based on the way they want

1http://www.deg.byu.edu/wok/formBuilder.php
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Figure 4.1: The Graphical View of a Sample Ontology

to organize their information. The form-annotation mode allows users to annotate

pages with respect to created forms.

4.4.1 Form Creation

The form-creation mode provides users with an intuitive method for defining dif-

ferent kinds of form features. FOCIH has five basic form elements from which

users can choose: single-label/single-value element, single-label/multiple-value ele-

ment, multiple-label/multiple-value element, mutually-exclusive choice element, and

non-exclusive choice element. Figure 4.2 shows the legend of buttons for the FOCIH

GUI. Initially, a user starts with a blank form with an empty title. The set of insert

icon buttons appears inside the blank form and the edit-label icon

®

­

©

ªappears in

the empty title. By clicking on the edit-label icon, a user can add or edit the title.

By clicking on one of the icons in the blank form, the user can add new form elements

to the form. When a user clicks on

®

­

©

ª, for example, a single-label/multiple-value
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Figure 4.2: The Legend for FOCIH GUI Form Creation Mode

element appears. The insert icon set then appears below the single-label/multiple-

value element so that a user can add additional form elements. The icon set also

appears inside the single-label/multiple-value element, so that a user can add other

form elements nested inside the single-label/multiple-value element. By clicking on®

­

©

ª, a user can add additional columns to a multiple-column element and additional

choices to a choice element.

Figure 4.3 shows an example of form creation. Suppose we are interested

in basic information about countries (their names, locations, populations, etc.). In

our example, we choose Country as the base-form title. In our view, we want each

country to have one name, capital, and geographic coordinate, so we add three single-

label/single-value elements to the form and label them Name, Capital, and Geographic

Coordinate. Since we know there might be one or more religions in a country, we

choose to use a single-label/mulitple-value form element and label it Religion. We

want to keep track of population of a Country for each of several years. Therefore, we

create a multiple-label/multiple-entry field as Figure 4.3 shows. We are also interested

in the life expectancy for people in each country depending on the gender. Since the

same life-expectancy values can be for either gender, we use a non-exclusive choice

form element under Life Expectancy and make the choices to be Male Life Expectancy

and Female Life Expectancy. Land, Water, and Total Area are also of interest. Each

Country has an Area, and the Area has the three properties Land, Water, and Total.
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Figure 4.3: A Sample Form

We thus nest each of these properties as single-label/single-value elements within the

single-label/single-value element for Area as Figure 4.3 shows.

4.4.2 Form Annotation

We annotate a page from a web site with respect to a created form by filling in the

form. FOCIH provides users with a GUI in which they can open a page in the web site

from which they want to collect information, highlight the value or values of interest

for each form field, then fill the values into created forms.

Figure 4.4 shows an example of annotating values using a form. The left hand

side shows the filled-in form in the annotation mode. The right hand side shows a

sample web page in the domain. For example, to annotate the string “Prague” under

“Capital” in the source as a capital, we highlight the string “Prague” by dragging the
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Figure 4.4: An Filled in Form with a Source Data Page

mouse over it and clicking on the

®

­

©

ªicon in the single-entry Capital field—FOCIH

automatically adds ‘Prague” to the form field under Capital.

We can also add more values in one form entry. For example, there are several

religions in the Czech Republic. We highlight each of the values “atheist”, “Roman

Catholic”, “Protestant”, “Orthodox”, and “other” in the source page individually

and click on the

®

­

©

ªicon one by one. Then the these five values appear in the

corresponding form field as five data instances.

We can also concatenate two or more highlighted values when filling a form

by clicking the click the

®

­

©

ªicon. For example, suppose there is a web site that

provides us with Geographic Coordinate information by listing longitude and latitude

separately. We first highlight the longitude value and then click on the

®

­

©

ªicon.

To concatenate the latitude values, we highlight it and click on the

®

­

©

ªicon. Then

the longitude and latitude value will appear as one concatenated data instance in the

Geographic Coordinate form field.
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4.5 Ontology Generation

For a created form, FOCIH can generate an ontology inferred from the form. Fig-

ure 4.1 shows a generated ontology for the form in Figure 4.3. Based on the from

title, FOCIH generates a new ontology and a non-lexical concept with this title as

the name. Thus, for the form in Figure 4.3, FOCIH generates the concept Country

as Figure 4.1 shows. Every label in the form also represents a concept in the corre-

sponding ontology; the label is the name for the concept. Form concepts with nested

components become non-lexical object sets. Thus, Area is a non-lexical object set.

Form concepts without nested components become lexical object sets. Thus, Name,

Capital, Geographical Coordinate, Religion, Population, Year, Water, Land, and Total

are all lexical. As a consistency requirement, generalization/specializtion concepts

must all be lexical or must all be non-lexical. To meet this requirement, FOCIH

declares all the object sets involved in a generalization/specialization to be lexical if

there are no nested component other than the nesting of generalization/specialization

components themselves; otherwise all concepts are non-lexical. Since there are no non-

generalization/specialization form components nested under, Life Expectancy, Male

Life Expectancy, and Female Life Expectancy are all lexical.

FOCIH generates relationship sets among the concepts as follows.

• Single-label/single-value form elements. Between the form-title concept T and

each top-level single-label/single-value form element S, FOCIH generates a func-

tional binary relationship set from T to S. Thus, FOCIH generates functional

relationship sets from Country to Name, from Country to Capital, from Country

to Geographical Coordinate, and from Country to Area as Figure 4.1. Similarly,

between each form element E and a single-label/single-value form element S

nested in side of E, FOCIH also generates a functional binary relationship set
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from E to S. Thus, FOCIH generates functional relationships form Area to

Water, from Area to Land, and from Area to Total.

• Single-label/multiple-value form elements. Between each form-title concept

T and each single-label/multiple-value concept M, FOCIH generates a non-

functional binary relationship set between T and M. Thus FOCIH accommo-

dates the possibly many Religions for each Country as Figure 4.1 shows. Al-

though our running example has no single-value/multiple-value form elements

nested inside other form elements, FOCIH also creates non-functional binary

relationship sets between a parent form element and each nested child single-

label/multiple-value form element.

• Multiple-label/multiple-value form elements. Between the form-title concept

and each multiple-label form element as well as between each form element

and a multiple-label concept nested inside of it, FOCIH generates either an

n-ary relationship set or a set of binary relationship sets. If the multiple-label

element is not the only form element in the form, FOCIH generates an n-ary

relationship set, otherwise it generates a set of binary relationship sets between

the form-title concept and each of the concepts in the multiple-label element.

Thus, FOCIH generates an n-ary relationship set among Country, Population,

and Year. Our running example does not illustrate the case of a multiple-label

form element by itself with no other form elements. As an example consider a

multiple-label form element by itself nested inside a form whose title is Country.

The labels might be Name, Capital, Population (2005 est.), and Size (sq. km.),

and the rows in the multiple-label field would be various country names along

with their capitals, populations, and sizes. In this case, FOCIH would generate

four functional binary relationship sets: from Country to Name, from Country

to Capital, from Country to Population (2005 est.), and from Country to Size

(sq. Km.).
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• Choice form elements.

FOCIH generates a non-functional binary relationship set between the form-

title concept and a top-level choice form element. Thus FOCIH generates a

non-functional binary relationship set between Country and Life Expectancy as

Figure 4.1 shows. Similar to other nested form elements, nested choice form

elements have the same relationships to their parent form elements as do top-

level choice form elements to the form title concept.

For both mutually-exclusive and non-exclusive choice elements, FOCIH gener-

ates a generalization/specialization relationship with the header label as the

generalization concept and each of the labels on the selection list as specializa-

tion concepts. From the example in Figure 4.4, FOCIH therefore generates a

non-exclusive choice element for the generalization/specialization with Life Ex-

pectancy as the generalization and Male Life Expectancy and Female Life Ex-

pectancy as specializations. Nesting choice form elements inside of choice spec-

ification elements extends the generalization/specialization hierarchy. Header

labels of of nested generalizations must match upper-level specialization labels.

We could, for example, extend the hierarchy by nesting Male Life Expectancy

40-60 and Male Life Expectancy 60+ under the upper-level specialization Male

Life Expectancy. In this case, FOCIH would generate concepts for these spe-

cializations which would appear as specialization concepts for the generalization

Male Life Expectancy in Figure 4.3.

FOCIH imposes no constraints on generalization/specialization for non-

exclusive form elements. For mutually-exclusive form elements, FOCIH adds a

plus symbol to the triangle to designate the mutual exclusion. This, however,

would be inappropriate for our example because we know that as life-expectancy

values are harvested, some male and female life-expectancy values may be the

same—thus, the male and female values are not mutually exclusive.
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As for determining the lexicality of generalization/specialization hierarchies,

the OSM rule requires concepts in the entire hierarchy to be all lexical or all

non-lexical. FOCIH generates the hierarchy with all lexical concepts if all leaf

form elements in the hierarchy expect a single value as is the case in Figure 4.3.

Otherwise, FOCIH generates all concepts in the entire hierarchy as non-lexical.

Although FOCIH is able to generate all concepts, all relationship sets, and all

generalization/specialization hierarchies, it can generate only some of the constraints

that might be desirable. FOCIH knows that relationship-set constraints from parent

content to child concept should be functional when the child concept is a single-

label/single-value form element. From a form specification alone, however, FOCIH is

not able to determine whether the inverse direction of a binary relationship set is func-

tional. Names of countries, for example, might be unique and therefore functionally

determine countries. In these cases, FOCIH initially imposes no constraints. Thus,

in Figure 4.1, the Name-Country relationship set is not bijective. FOCIH, however,

can later modify constraints based on observation as FOCIH harvests information

from source documents. The optional (i.e., non-mandatory) constraints on the three

relationship set in Figure 4.1 appears initially because FOCIH observes that the first

page from which it harvests information (i.e., the page in Figure 4.4 has no Geo-

graphic Coordinate, no Water area, and no Land area). FOCIH is reticent, however,

to establish constraints where it observes non-violations such as after harvesting from

several pages and seeing that capital-city names are unique. Instead, after gathering

sufficiently many examples, FOCIH may ask its human users to confirm its educated

guess.
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4.6 Path and Instance Recognition

To fill in the form, users manually transfer values of interest from the source document

to the target entry blanks in the form. Each target form entry blank can contain one

or more data instances. To enter an instance, a user highlights the instance with a

mouse and then clicks on the

®

­

©

ªicon in the field in which the value should appear.

For example, in Figure 4.4, the form element with label Religion is a multiple-value

form element, which we fill in with five data instances. Additionally, each instance

itself can contain one or more highlighted values. For example, the instance for the

Geographic Coordinate label could contain two highlighted values one for longitude

and one for latitude perhaps from two different data cells in a table from a source

page. To indicate that multiple component values should be concatenated together

to form a single value, after clicking on the

®

­

©

ªicon to add the first component, a

user clicks on the

®

­

©

ªicon to concatenate subsequent components. When filling in

multiple-label/multiple-value form elements like the Population-Year form element,

users must be careful to put related values in the same row. For example, value

“10,264,212” in the form in Figure 4.4 should go to the same row as “2001”.

Although users fill in the form manually, they only need to do this manual

transformation once for a single page from a hidden-web site. To harvest information

from the remaining pages in the same hidden-web site, FOCIH determines the layout

pattern for target instance values in the first page and uses these patterns to extract

target instance values from remaining pages. FOCIH accomplishes this task by using

path recognition and instance recognition. Neither path recognition nor instance

recognition is trivial. Path recognition requires FOCIH to be able to identify the

path in the HTML DOM-tree leading to the node that contains each highlighted

string. Instance recognition requires FOCIH to be able to identify the substrings in

one or more DOM-tree nodes that constitute the instance values.
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4.6.1 Path Recognition

Path recognition is about locating the DOM-tree node of a user-highlighted value from

a source hidden-web page by using the structural layout pattern of the hidden-web

site. Knowing the path, FOCIH can then automatically locate corresponding DOM-

tree nodes (sibling nodes) that contain values of interest from the remaining pages

in the same hidden-web site. For example, if a user highlights “Czech Republic” in

the sample page in Figure 4.4, FOCIH needs to collect all the values under “Country

(long form)” from the remaining pages of the same web site.

Since hidden-web pages are usually sibling pages with regular structure, we can

usually locate the corresponding DOM-tree node in another sibling page by following

the same XPath from the root to the current node. As discussed in Chapter 2,

however, XPath does not always locate sibling nodes even though sibling pages usually

have the same base structure because some variations might exist. Some sibling pages

might have additional or missing tables, and some sibling tables might have additional

or missing labels. Thus, sometimes following the XPath does not locate the sibling

node for which we are looking.

TISP [52], however, can deal with these variations in sibling pages. Given a ta-

ble in a sample page, TISP can automatically locate sibling tables of given table in all

other sibling pages. In addition, since TISP can interpret sibling tables automatically,

FOCIH can obtain the sibling nodes from each of the sibling tables by first locating

the corresponding labels and then locating the value nodes for the labels. For exam-

ple, to obtain all the sibling nodes for Name of Country in the sibling pages of the

page in Figure 4.4, TISP first automatically interprets the table. FOCIH now knows

that the first column of this table is a column of labels and that the label “Country

(long form)” is the label for the values to be collected. Then for the remaining sibling

pages, TISP can locate the corresponding sibling tables. In each table, FOCIH looks

for the label ““Country (long form)” and then locates the corresponding value nodes.
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4.6.2 Instance Recognition

A user-highlighted value can be the entire DOM-tree node (e.g, “Prague” in Fig-

ure 4.4) or a proper subpart of the string that constitutes the DOM-tree node (e.g.,

just the populated value in Figure 4.4).2 In the latter case, FOCIH needs to know

how to find the right subpart within the DOM-tree node. Moreover, since a value can

be composed of one or more highlighted values from one or more DOM-tree nodes

(e.g., when longitude and latitude are in separate DOM-tree nodes), FOCIH needs

to know how to compose values from different substrings of different nodes from the

source page.

Considering these possibilities, we observe that there are two kinds of patterns:

(1) individual patterns for entire strings, proper substrings, and string components

and (2) list patterns. Particularly, for list patterns, but also as context for individ-

ual pattern, FOCIH has a default list of delimiters: “,”, “;”, “|”, “ /”, “\”, “(”,

“)”, “[”, “]”, “{”, “}”, sos (start of string) and eos (end of string). FOCIH also

has a library of regular-expression recognizers for values in common formats, such as

numbers, numbers with commas, decimal numbers, positive/negative integers, per-

centages, dates, times, and currencies [19, 23]. An individual pattern has left and

right context, a regular-expression instance recognizer, and an optional appearance

number of the substring. For example, for the highlighted area value “78,866.00”, the

left context can be “\b” (word boundary) and the right context can be “\ssq”, the

regular-expression recognizer can be decimal number, and the appearance number

is 2 (the second decimal number in the string). A list pattern has a left context, a

right context, a regular-expression recognizer, and a delimiter. The list of agriculture

products in Figure 4.4 would have as its left context sos, as its right context eos, as

2If an identified DOM-tree node is not already a string with no internal formatting tags, FOCIH
removes the tags and converts the DOM-tree node to a simple string
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its regular-expression recognizer “.*” (any string), and as its delimiter “(,\s*)|(;\s*)”

(either a comma space or a semicolon space).

We now explain how FOCIH detects patterns. FOCIH first determines whether

a pattern is an individual pattern or a list pattern. Given a DOM-tree node and all

the highlighted values in that node, FOCHI groups the highlighted values that go

to the same form entry together. If there is only one highlighted value that goes to

a form entry, FOCIH recognizes it as an individual pattern; and if there are many

highlighted values that go to a form entry, FOCIH recognizes it as a list pattern.

For both individual and list patterns, FOCIH next determines the context

information, and the regular expression pattern of the substrings of interest. To

determine the left or the right context of a highlighted value in a DOM-tree node,

FOCIH initially takes the substring that is on the left or on the right of the high-

lighted substring until it reaches other highlighted values or the beginning or the end

of the whole node string. FOCIH can further generalize the context. First, if some

of the context is recognizable as instance of one of the regular-expression recognizers,

FOCIH substitutes the recognized substring in the context by the recognizer. Second,

FOCIH can generalize the context information when it sees more sibling-node con-

tents during its harvesting phase of operation. Sometimes FOCIH cannot locate the

context information in a newly encountered sibling content. This usually means that

the initial context is too specific in the original sample page. FOCIH then tries to

generalize the the context by comparing context strings with the pattern and allowing

non-delimiter characters to be replaced by an expression that permits any characters.

If a highlighted substring can be recognized by a regular-expression recognizer

in our library, FOCIH uses it as the regular-expression recognizer for the pattern.

If not, then the instance recognizer is an expression that recognizes any string. In

this case, proper recognition depends on the left and right context, and for individual

values, perhaps also the appearance number, and for lists also the delimiter.
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Sometimes, with the same context and regular-expression recognizer, FOCIH

locates more than one substring from a DOM-tree node, but an individual pattern

should only recognize one substring. In this case, an appearance number can help. An

appearance number n tells FOCIH which substring of the several substrings recog-

nized by the context and regular-expression recognizer is the one the user wants.

We assume that the sibling pages are highly regular and all the values should ap-

pear in the same order over sibling pages. So if the highlighted value appears as the

nth recognized value, FOCIH assumes that it should extract the nth value in the

remaining sibling pages.

For delimiters in list patterns, FOCIH compares the substrings between high-

lighted values. Looking particularly for delimiters in our list of delimiters, FOCIH

attempts to identify a simple delimiter-separated list. It then constructs a regular

expression for the delimiter. The agriculture list in Figure 4.4 is an example. For this

list FOCIH creates the delimiter expression “, |;”. For more complex cases such as

the religions list in Figure 4.4, the list separator is not merely a simple delimiter. In

the religions list a percentage plus a comma separate the names of the religions, and

the delimiter expression should be “\s*\d[1-2](.\d∗)?%,\s*”. FOCIH generates this

delimiter expression by (1) discovering that the percentage recognizer in the library

recognizes part of every substring between highlighted values, (2) observing that a

comma follows every percentage, and (3) noticing that the combination of the per-

centage and the comma covers the substrings. In general, FOCIH checks substrings

for library instance recognizers and standard delimiters as illustrated in the religions

example; when this is insufficient to cover all of the substrings, FOCIH adds general

character recognizers, as necessary, to cover the substrings.
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4.7 Semantic Annotation

With path recognition and instance recognition, FOCIH can locate the information of

interest from all the sibling pages for a hidden-web site and represent it with respect

to the generated ontology. Since FOCIH has already “understood” each page, we can

immediately and automatically semantically annotate values for each page in the site

using the ontology as the annotation ontology. This means that we can transform a

source page to a semantic web page, which is machine-understandable [6]. FOCIH

annotates each page and saves the annotated information in an RDF file.

Figures 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11 show the annotated information

for the page in Figure 4.4 with respect to the ontology in Figure 4.1. Lines 2–4 in

Figure 4.5 gives the name spaces in the RDF file. The ann name space (Line 2)

describes the annotation tags, which we explain as we continue our discussion. The

country name space (Line 4) describes our Country ontology (Figure 4.1). Both ann

and country are OWL ontologies—ann created by us for the purpose of annotation

as discussed here and country generated from the OSM description in Figure 4.1.

Lines 5–19 define an instance Country 1, for the Country class. Line 5 in-

troduces the instance identifier for the annotated web page in Figure 4.4. An InRe-

source tag tells us that the source file is #resource1. Lines 7–18 tell us the properties

of Country 1 and list the instances as RDF triples. Since Country-Name, Country-

Capital, and Country-Area are all functional binary relationship sets, there is only

one instance of Name, Capital, and Area, each related to Country 1. Since Country-

Religion is a non-functional binary relationship set, there can be more than one

instance of Religion for each instance of Country. Through the property Country-

Religion, Country 1 connects to #Religion 1 through #Religion 5, which are the

five instances of Religion that appear in Figure 4.4. There is an n-ary relationship set

between Country, Population, and Year. Since OWL only supports binary relation-

ship sets, FOCIH generates a new class, CountryPopulationYear, to represent this
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1: <rdf:RDF
2: xmlns:ann=“http://dithers.cs.byu.edu/owl/ontologies/annotation#”
3: xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
4: xmlns:country=“http://dithers.cs.byu.edu/owl/ontologies/country#”>

Figure 4.5: Sample RDF Annotation for Name Spaces

5: <country:Country rdf:ID=“Country 1”>
6: <ann:inResource rdf:resource=“#resource1”/>
7: <country:Country-Name rdf:resource=“#Name 1”/>
8: <country:Country-Capital rdf:resource=“#Capital 1”/>
9: <country:Country-Religion rdf:resource=“#Religion 1”/>
10: <country:Country-Religion rdf:resource=“#Religion 2”/>
11: <country:Country-Religion rdf:resource=“#Religion 3”/>
12: <country:Country-Religion rdf:resource=“#Religion 4”/>
13: <country:Country-Religion rdf:resource=“#Religion 5”/>
14: <country:Country-CountryPopulationYear rdf:resource=“#CountryPopulationYear 1”/>
15: <country:Country-CountryPopulationYear rdf:resource=“#CountryPopulationYear 2”/>
16: <country:Country-LifeExpectancy rdf:resource=“#MaleLifeExpectancy 1”/>
17: <country:Country-LifeExpectancy rdf:resource=“#FemaleLifeExpectancy 1”/>
18: <country:Country-Area rdf:resource=“#Area 1”/>
19: </country:Country>
20:

Figure 4.6: Sample RDF Annotation for Country

relationship set. Through the property Country-CountryPopulationYear, Country 1

connects to #CountryPopulationY ear 1 and #CountryPopulationY ear 2, which

are the two instances of the CountryPopulationYear relationship set in Fig-

ure 4.4. Through the property Country-LifeExpectancy, Country 1 also connects

to #MaleLifeExpectancy 1, which is an instance of MaleLifeExpectancy, and

#FemaleLifeExpectancy 1, which is an instance of FemaleLifeExpectancy. Since

MaleLifeExpectancy and FemaleLifeExpectancy are subclasses of LifeExpectancy, they

inherit the property Country-LifeExpectancy from their parent class.

Figures 4.7, 4.8, and 4.10 show annotation declaration for value instances of

Name, Capital, Religion, MaleLifeExpectancy, and FemaleLifeExpectancy. In each an-

notation declaration, the inResource tag tells which source document the information

comes from. The OffsetOnHTMLPage tag tells where to locate the specific substring

in the source document, and the HTMLText tag records the component’s text. The

<label>Value tag tells us the value of the instance, which for string is usually the
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21: <country:Name rdf:ID=“Name 1”>
22: <ann:inResource rdf:resource=“#resource1”/>
23: <ann:OffsetOnHTMLPage>8765</ann:OffsetOnHTMLPage>
24: <ann:HTMLText>Czech Republic</ann:HTMLText>
25: <country:NameValue>Czech Republic</country:NameValue>
26: <country:Name-Country rdf:resource=“#Country 1”/>
27: </country:Name>
28:
29: <country:Capital rdf:ID=“Capital 1”>
30: <ann:inResource rdf:resource=“#resource1”/>
31: <ann:OffsetOnHTMLPage>8896</ann:OffsetOnHTMLPage>
32: <ann:HTMLText>Prague</ann:HTMLText>
33: <country:CapitalValue>Prague</country:CapitalValue>
34: <country:Capital-Country rdf:resource=“#Country 1”/>
35: </country:Capital>
36:

Figure 4.7: Sample RDF Annotation for Single-Label/Single-Value Elements

37: <country:Religion rdf:ID=“Religion 1”>
38: <ann:inResource rdf:resource=“#resource1”/>
39: <ann:OffsetOnHTMLPage>9806</ann:OffsetOnHTMLPage>
40: <ann:HTMLText>atheist</ann:HTMLText>
41: <country:ReligionValue>atheist</country:ReligionValue>
42: <country:Religion-Country rdf:resource=“#Country 1”/>
43: </country:Religion>
44:
45: <country:Religion rdf:ID=“Religion 2”>
46: <ann:inResource rdf:resource=“#resource1”/>
47: <ann:OffsetOnHTMLPage>9821</ann:OffsetOnHTMLPage>
48: <ann:HTMLText>Roman Catholic</ann:HTMLText>
49: <country:ReligionValue>Roman Catholic</country:ReligionValue>
50: <country:Religion-Country rdf:resource=“#Country 1”/>
51: </country:Religion>
52:
53: <country:Religion rdf:ID=“Religion 3”>
54: <ann:inResource rdf:resource=“#resource1”/>
55: <ann:OffsetOnHTMLPage>9843</ann:OffsetOnHTMLPage>
56: <ann:HTMLText>Protestant</ann:HTMLText>
57: <country:ReligionValue>Protestant</country:ReligionValue>
58: <country:Religion-Country rdf:resource=“#Country 1”/>
59: </country:Religion>
60:
61: <country:Religion rdf:ID=“Religion 4”>
62: <ann:inResource rdf:resource=“#resource1”/>
63: <ann:OffsetOnHTMLPage>9860</ann:OffsetOnHTMLPage>
64: <ann:HTMLText>Orthodox</ann:HTMLText>
65: <country:ReligionValue>Orthodox</country:ReligionValue>
66: <country:Religion-Country rdf:resource=“#Country 1”/>
67: </country:Religion>
68:
69: <country:Religion rdf:ID=“Religion 5”>
70: <ann:inResource rdf:resource=“#resource1”/>
71: <ann:OffsetOnHTMLPage>9873</ann:OffsetOnHTMLPage>
72: <ann:HTMLText>other</ann:HTMLText>
73: <country:ReligionValue>other</country:ReligionValue>
74: <country:Religion-Country rdf:resource=“#Country 1”/>
75: </country:Religion>
76:

Figure 4.8: Sample RDF Annotation for Multiple-Label/Mutiple-Value Elements
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77: <country:CountryPopulationYear rdf:ID=“CountryPopulationYear 1”>
78: <ann:inResource rdf:resource=“#resource1”/>
79: <country:CountryPopulationYear-Year rdf:resource=“Year 1”/>
80: <country:CountryPopulationYear-Population rdf:resource=“Population 1”/>
81: <country:CountryPopulationYear-Country rdf:resource=“#Country 1”/>
82: </country:CountryPopulationYear>
83:
84: <country:CountryPopulationYear rdf:ID=“CountryPopulationYear 2”>
85: <ann:inResource rdf:resource=“#resource1”/>
86: <country:CountryPopulationYear-Year rdf:resource=“Year 2”/>
87: <country:CountryPopulationYear-Population rdf:resource=“Population 2”/>
88: <country:CountryPopulationYear-Country rdf:resource=“#Country 1”/>
89: </country:CountryPopulationYear>
90:
91: <country:Population rdf:ID=“Population 1”>
92: <ann:inResource rdf:resource=“#resource1”/>
93: <ann:OffsetOnHTMLPage>9224</ann:OffsetOnHTMLPage>
94: <ann:HTMLText>10,264,212</ann:HTMLText>
95: <country:PopulationValue>10264212</country:PopulationValue>
96: <country:Population-CountryPopulationYear rdf:resource=“#CountryPopulationYear 1”/>
97: </country:Population>
98:
99: <country:Year rdf:ID=“Year 1”>
100: <ann:inResource rdf:resource=“#resource1”/>
101: <ann:OffsetOnHTMLPage>9241</ann:OffsetOnHTMLPage>
102: <ann:HTMLText>2001</ann:HTMLText>
103: <country:YearValue>2001</country:YearValue>
104: <country:Year-CountryPopulationYear rdf:resource=“#CountryPopulationYear 1”/>
105: </country:Year>
106:
107: <country:Population rdf:ID=“Population 2”>
108: <ann:inResource rdf:resource=“#resource1”/>
109: <ann:OffsetOnHTMLPage>9389</ann:OffsetOnHTMLPage>
110: <ann:HTMLText>8,015,315</ann:HTMLText>
111: <country:PopulationValue>8015315</country:PopulationValue>
112: <country:Population-CountryPopulationYear rdf:resource=“#CountryPopulationYear 2”/>
113: </country:Population>
114:
115: <country:Year rdf:ID=“Year 2”>
116: <ann:inResource rdf:resource=“#resource1”/>
117: <ann:OffsetOnHTMLPage>9348</ann:OffsetOnHTMLPage>
118: <ann:HTMLText>2050</ann:HTMLText>
119: <country:YearValue>2050</country:YearValue>
120: <country:Year-CountryPopulationYear rdf:resource=“#CountryPopulationYear 2”/>
121: </country:Year>
122:

Figure 4.9: Sample RDF Annotation for n-ary Relationship Sets
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123: <country:MaleLifeExpectancy rdf:ID=“MaleLifeExpectancy 1”>
124: <ann:inResource rdf:resource=“#resource1”/>
125: <ann:OffsetOnHTMLPage>10009</ann:OffsetOnHTMLPage>
126: <ann:HTMLText>71.23</ann:HTMLText>
127: <country:MaleLifeExpectancyValue>71.23</country:MaleLifeExpectancyValue>
128: <country:LifeExpectancy-Country rdf:resource=“#Country 1”/>
129: </country:MaleLifeExpectancy>
130:
131: <country:FemaleLifeExpectancy rdf:ID=“FemaleLifeExpectancy 1”>
132: <ann:inResource rdf:resource=“#resource1”/>
133: <ann:OffsetOnHTMLPage>10021</ann:OffsetOnHTMLPage>
134: <ann:HTMLText>78.43</ann:HTMLText>
135: <country:FemaleLifeExpectancyValue>78.43</country:FemaleLifeExpectancyValue>
136: <country:LifeExpectancy-Country rdf:resource=“#Country 1”/>
137: </country:FemaleLifeExpectancy>
138:

Figure 4.10: Sample RDF Annotation for Generalization/Specialization

139: <country:Area rdf:ID=“Area 1”>
140: <ann:inResource rdf:resource=“#resource1”/>
141: <country:Area-Total rdf:resource=“Total 1”/>
142: <country:Area-Country rdf:resource=“#Country 1”/>
143: </country:Area>
144:
145: <country:Total rdf:ID=“Total 1”>
146: <ann:inResource rdf:resource=“#resource1”/>
147: <ann:OffsetOnHTMLPage>9044</ann:OffsetOnHTMLPage>
148: <ann:HTMLText>78,866.00</ann:HTMLText>
149: <country:TotalValue>78866.00</country:TotalValue>
150: <country:Total-Area rdf:resource=“#Area 1”/>
151: </country:Total>
152:
153: </rdf:RDF>

Figure 4.11: Sample RDF Annotation for Nested Form Elements
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same as the HTMLText value, but for RDF types such as integer, and date-time, the

value is reformatted for the type.

Figure 4.9 shows declarations for instances #CountryPopulationY ear 1 and

#CountryPopulationY ear 2. Each of these two instances also connects to an in-

stance of Year, an instance of Population, and an instance of Country as Lines 79–81

and 86–88 show. Lines 91–121 show the annotation declarations of these instances.

Observe that the PopulationValue instances (Lines 95 and 111) are reformatted as

integers. FOCIH makes this adjustment base on its having recognized these values

with library recognizers, which have built in converters for RDF types.

Lines 139-143 in Figure 4.11 show the declarations of #Area 1. #Area 1

connects to #Total 1 through the property Area-Total. Lines 145-151 show the an-

notation declaration for Total 1.

Annotating a value whose component parts appear in different places in a

source document requires a more complex annotation specification. As an exam-

ple, Figure 4.12 shows how FOCIH keeps track of values concatenated from com-

ponent parts in an annotated RDF file. All concatenated values are stored simi-

larly. Suppose in an original file, the information about GeographicCoordinate ap-

pears as “49 45 N”, and “15 30 E” and comes from different places in the web page

or even from different web pages.3 In the ontology view, we want to show them

as one single value “49 45 N 15 30 E”. As Figure 4.12 shows, FOCIH stores the

concatenated value as GeographicalCoordinate 1 and then generates two objects

GeographicCoordinateComponent 1 and GeographicCoordinateComponent 2, one

for each component part of the value and makes them as hasComponent-properties

of GeographicalCoordinate 1 declaration.

After storing the information in an RDF file, we query it. Figure 4.13 shows

a sample SPARQL query in the Twinkle interface [1]. Our sample query finds the

3Although unlikely for FOCIH applications, component parts of values may appear in different
web pages.
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<country:GeographicCoordinate rdf:ID=“GeographicCoordinate 1”> ...
<country:GeographicCoordinate-Country rdf:resource=“#Country 1”/ >
<country:GeographicCoordinateValue>49 45 N 15 30 E</country:GeographicCoordinateValue>
<ann:hasComponent rdf:resource=“#GeographicCoordinateComponent 1”/ >
<ann:hasComponent rdf:resource=“#GeographicCoordinateComponent 2”/ >

</country:GeographicCoordinate>
...
<ann:AnnotatedHTMLText rdf:ID=“GeographicCoordinateComponent 1”> ...

<ann:inResource rdf:resource=“#resource3”/ >
<ann:OffsetOnHTMLPage>487</ann:OffsetOnHTMLPage>
<ann:HTMLText>49 45 N</ann:HTMLText>

</ann:AnnotatedHTMLText>
...
<ann:AnnotatedHTMLText rdf:ID=“GeographicCoordinateComponent 2”> ...

<ann:inResource rdf:resource=“#resource3”/ >
<ann:OffsetOnHTMLPage>530</ann:OffsetOnHTMLPage>
<ann:HTMLText>15 30 E</ann:HTMLText>

</ann:AnnotatedHTMLText>

Figure 4.12: Sample RDF Annotation for Instance Concatenation

Czech female life expectancy. Using the filter statement, SPARQL can find all the

instances of NameValue that contain string “Czech”. Then through the property

NameValue, SPARQL can locate all the Name instances we are looking for, in our

example, #Name 1. Further though the property Country-Name, SPARQL locates

#Country 1. Finally through the property Country-LifeExpectancy, SPARQL can

find the instances #FemaleLifeExpectancy 1 and #MaleLifeExpectancy 1. Then

follow the property FemaleLifeExpectancyValue, SPARQL can find the value we are

looking for.

4.8 Initializing Forms for FOCIH with TISP

The purpose of FOCIH is to help users who do not know conceptual modeling to

create ontologies of their own, and then to harvest information with respect to these

created ontologies. We want to make this process as convenient as we can. One way

we can help is to make the form creation process automatic or semi-automatic rather

than manual. Sometimes users of one hidden-web site S1 would like to view the data

of another hidden-web site with respect to the organization of data in S1. If we could

reverse engineer the organization of S1 into a form, we could then allow users to fill in
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Figure 4.13: A Sample SPARQL Query using Twinkle [1].

the form with values from a page of S2. We could then harvest the information from

all the pages of S2 with respect to the view of S1. As we explain in this section TISP

used in conjunction with FOCIH allows us to provide users with this possibility.

Often tables are “mirror images” of forms. When they are and when they only

use FOCIH equivalent layout structures, we can immediately generate FOCIH forms

for them. To generate forms from tables, FOCIH first applies TISP to interpret sibling

tables and determine their layout structures. When their layout structure satisfied

the constraints of FOCIH forms, FOCIH recasts them as forms. To obtain a table for

the form, FOCIH uses the name of the web site as the form title.

As a fairly complex example, Figure 4.14 shows a page with a nested table and

Figure 4.15 shows the generated form. The overall table is the one with labels Identi-

fication, Location, and Function. Since there is only one column of values associated

with the labels, FOCIH generates three single-label/single-value form elements, one

for each label as Figure 4.15 shows. Inside of the value cell for label Identification,

there is another table with eight labels starting with label IDs:. Thus, nested inside

the entry field of the form element with label Identification, FOCHI generates eight
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Figure 4.14: A Sample Table from WormBase [62].
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Figure 4.15: Generated Form for Table in Figure 4.14 (Partial)

single-label/single-value form elements, one for each label. Further, inside of the value

cell for label IDs:, there are a table with five labels starting with the label CGC name

and each label has only one value associated with it. Thus, inside the entry field of

the form element with label IDs:, FOCHI generates five single-label/single-value form

elements, one for each label. Inside of the value cell for label Gene model(s):, there

is a table with five labels starting with the label Gene Model and this table has two

rows of values. For this case, FOCHI then generates a multiple-label/multiple-value

form element. There are more tables in the figure, we only list these three to illustrate

how FOCIH forms correspond to tables.

After having a form generated for FOCIH via TISP, users may wish to alter

the form before harvesting additional information. To illustrate this idea and to show

how a user can create a form from one site and harvest from another, we give an

example.

Suppose we are interested in buying a car, and we are trying to find information

about used cars from different online dealer web sites or car inventory web sites. We

care about the make, the model, the engine information, the color, and the mileage
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Figure 4.16: A Sample Table for Form Generation

on the car. We might search around and find the web page in Figure 4.16. We might

also wish all the web sites would present their information like this web site does.

To make this happen, we apply TISP/FOCIH to generate a form automatically

for us so we can harvest information from all the car web sites with respect to this

view. The result is in Figure 4.17.

Looking at the generated form in Figure 4.17 further, we see that we do not

really need to the Stock# and that the OPTIONS are too detailed for us. So we

decide to remove them from the form. Further, we care about a specific breakdown

of the engine information—the number of cylinders, the size of the engine, and the

fuel injection type. Thus we nest three single-label/single-value form elements inside

Engine with labels Cylinder, Engine Size, and Fuel Injection as Figure 4.18 shows.

Next we select a sample page for each of the additional web sites from which

we want to harvest information and fill in the modified form for each sample page.

Figures 4.19, 4.20, and 4.21 show examples. FOCIH harvests the requested infor-

mation from all the sibling pages in these web sites and semantically annotates each

page.

78



Figure 4.17: Generated Form for Table in Figure 4.16

Figure 4.18: The User Modified Form Request According the Form in Figure 4.16

79



(a)
(b)

Figure 4.19: Form Filling Results for Second Sample Car Page

(a)

(b)

Figure 4.20: Form Filling Results for Third Sample Car Page
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(a)
(b)

Figure 4.21: Form Filling Results for Fourth Sample Car Page

4.9 Conclusion

FOCIH provides users who do not know conceptual modeling or ontology languages a

way to create ontologies that represent their own particular views for various domains.

FOCIH lets users design a form that captures their view of a domain; then, from a

designed form, FOCIH generates an ontology. FOCIH also allows users to say that

the display tables of a hidden-web site capture their view of a domain; then via

TISP, FOCIH generates a corresponding form which users may alter to more precisely

capture their view of a domain. In either case, the user has a form representing an

ontological description of a domain. Given a form, users can show FOCIH how to

fill in the form for a typical page in a hidden web site. From a filled in form from

a typical page, FOCIH infers path and instance-recognition expressions so that it

is able to locate information to fill in the form from the pages in the rest of the

hidden web site. FOCIH can thus harvest information from the hidden-web site

with respect to the generated ontologies. While harvesting, FOCIH semantically

annotates the information of interest and generates an RDF file. By doing so, the

data of interest present in the sibling pages in the hidden-web site become accessible
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through a standard query interface, and users can query the information based on

their own specified view.

Several directions remain to be pursued. (1) We can augment form specifica-

tions so that they can generate even richer ontologies. In particular, we want to add

an aggregation constraint so that users can capture subpart/superpart hierarchies.

(2) Besides generating forms from sibling pages, there are other ways to make form

creation convenient. We also want to provide users with the option to convert an

existing ontology (e.g, an OWL ontology) to a form. There are at least two benefits

of doing so. First, if a user wants to annotate information with respect to an OWL

ontology, this option provides users with a convenient way through forms to annotate

all the information of interest in a hidden-web site with respect to the selected ontol-

ogy. Second, an existing ontology can provide users with a starting point to describe

a domain. Users can make modifications as desired. (3) We would also like to facil-

itate the form-filling process. After a user manually fills in a created form based on

one page, FOCIH can harvest information automatically from all other pages in the

same hidden-web site. But for a new web site, the user has to fill in the form again

for another sample page. An extraction ontology [23] can help with the form filling.

After FOCIH harvests information from one web site, we have many sample values

for each concept in the ontology. These sample values could provide FOCIH with

enough information to generate extraction ontologies. These extraction ontologies

could then be used to automatically locate information of interest from a sample web

page without users having to manually locate them for FOCIH.
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Chapter 5

Conclusions

5.1 Summary of Contributions

In this dissertation, we introduce TISP, TISP++, and FOCIH. TISP and TISP++

contribute to automatic table interpretation, ontology generation, and semantic an-

notation. TISP provides a solution to automatic interpretation for sibling tables

as typically found on the hidden web. TISP++ offers a way to automate ontology

generation given an interpreted table and enables automatic semantic annotation for

interpreted tables. FOCIH contributes to personalized ontology creation and infor-

mation harvesting. It gives users a way, without knowing ontology languages, to

create an ontology, and it can also harvest information with respect to a user-created

ontological view.

Seen as part of a larger whole, TISP++, FOCIH, and TISP/FOCIH contribute

ways to help create a web of knowledge and superimpose it over the current web of

pages. With a web of knowledge superimposed over web pages, users can ask free-

form questions, receive answers to their questions, and check generated answers by

viewing original pages from which the answers were extracted.

• TISP++ can transform data stored in sibling tables in the hidden web to a web

of knowledge fully automatically without any user interaction. Based on the

structure of sibling tables, TISP++ can generate ontologies automatically; and

based on the association between table labels and values, TISP++ can auto-
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matically annotate these values. By doing so, TISP++ makes the information

present in hidden-web tables publicly accessible by common queries. All the

queryable information as well as the annotation information is linked together

in generated RDF files. This way, TISP++ enables a web of knowledge for a

certain segment of hidden web sites—namely those that present Their data as

HTML tables, one for each site object.

• One problem with TISP++, however, is that the generated ontology and the

annotated data are only represented in the way the original table represents it.

FOCIH provides a way for users to declare their own ontologies and annotate

web pages for the web of knowledge according to their declared ontology. FO-

CIH provides users with an interface where they can generate different form

components to represent their view of a domain. If a user likes a particular

way a table presents data, converted-from-table forms, FOCIH generates an

ontology. Then based on a user’s filled-in information, FOCIH can harvest and

annotate information for the web of knowledge with respect to that particular

view.

5.2 Future Work

With these contributions, this dissertation serves as a foundational pillar for turning

the current web of pages into a web of knowledge. Having come this far, it is clear that

several future-work items are immediately on the horizon. (1) Currently, TISP only

works with information stored in sibling tables. We would like to extend our work

to automatically harvest and semantically annotate information stored in not only in

tables, but also in sibling pages in general. (2) We want to learn more about reverse-

engineering ontologies to forms. Given ontologies in different ontology languages

such as OWL, FOCIH should be able to automatically generate forms for users to fill
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in. This would provide a way for FOCIH to harvest and annotate information with

respect to an existing ontology. (3) We see the possibility of being able to convert the

generated ontologies into extraction ontologies. Based on the information that FOCIH

harvests for each concept in an ontology, we obtain valuable information for instance

recognizers. By adding these instance recognizers to each concept in a generated

ontology, the ontology becomes an extraction ontology. How well it operates depends

on how good the instance recognizers are. As additional information is harvested, it

should be possible to automatically enhance these instance recognizers.
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