
SCHEMA MATCHING AND DATA EXTRACTION OVER HTML

TABLES

by

Cui Tao

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

September 8, 2003

Copyright c© 2003 Cui Tao

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Cui Tao

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date David W. Embley, Chair

Date Stephen W. Liddle

Date Thomas W. Sederberg

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Cui Tao in its final
form and have found that (1) its format, citations, and bibliographical style are consistent
and acceptable and fulfill university and department style requirements; (2) its illustrative
materials including figures, tables, and charts are in place; and (3) the final manuscript is
satisfactory to the graduate committee and is ready for submission to the university library.

Date David W. Embley
Chair, Graduate Committee

Accepted for the Department

David W. Embley
Graduate Coordinator

Accepted for the College

G. Rex Bryce
Associate Dean
College of Physical and Mathematical Sciences

ABSTRACT

SCHEMA MATCHING AND DATA EXTRACTION OVER HTML TABLES

Cui Tao

Department of Computer Science

Master of Science

Data on the Web in HTML tables is mostly structured, but we usually do not know

the structure in advance. Thus, we cannot directly query for data of interest. We propose

a solution to this problem for the case of mostly structured data in the form of HTML ta-

bles, based on document-independent extraction ontologies. The solution entails elements

of table location and table understanding, data integration, and wrapper creation. Table

location and understanding allows us to locate the table of interest, recognize attributes and

values, pair attributes with values, and form records. Data-integration techniques allow us

to match source records with a target schema. Ontologically specified wrappers allow us to

extract data from source records into a target schema. Experimental results show that we

can successfully map data of interest from source HTML tables with unknown structure to

a given target database schema. We can thus “directly” query source data with unknown

structure through a known target schema.

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. David W. Embley. Under his

guidance, I successfully overcame many difficulties and learned a lot about how to be a

good researcher.

Secondly, I would like to thank my other committee members. I thank Dr. Stephen

W. Liddle for his unique insight into software implementation and his help in coding. I

thank Dr. Thomas W. Sederberg for his time and effort on my thesis.

I would like to thank my husband, Zonghui, for his continued love, patience, under-

standing and support during this project and my entire endeavor to become more educated.

I also want to thank my parents for teaching me how to learn and how to learn well and for

encouraging my interest in science since I was a little girl. I thank my sister, Wei and my

brother in law, Yue, for encouraging me and supporting my interest in Computer Science.

I thank the National Science Foundation for supporting this research under grant

#qS-0083127.

Last, but not least, I thank all the BYU data-extraction research group members for

their support and suggestions on my research.

Contents

Acknowledgments vi

List of Figures x

1 INTRODUCTION 1

1.1 Background and Related Work . 1

1.2 HTML Table Problems . 3

1.2.1 HTML Tables—Location Problems 4

1.2.2 HTML Tables—Extraction Problems 6

2 EXTRACTION ONTOLOGIES 11

3 TABLE LOCATION AND UNDERSTANDING 15

3.1 Overview of HTML Tables . 15

3.2 DOM Representation . 18

3.3 Table Location Heuristics . 19

3.3.1 Location – Top-Level Tables . 19

3.3.2 Location – Linked-Page Tables . 21

3.4 Table Preprocessing and Understanding 22

4 MAPPING INFERENCE 31

4.1 Generate and Adjust Attribute-Value Pairs 31

4.2 Infer Mapping . 33

4.2.1 Pattern Recognition . 33

4.2.2 Mapping Inference . 35

vii

5 EXPERIMENTAL ANALYSIS 41

5.1 Car Advertisements . 41

5.1.1 Results—Car Advertisements . 42

5.1.2 Cell-Phone Sales . 44

6 CONCLUSIONS AND FUTURE WORK 49

6.1 Conclusions . 49

6.2 Future Work and Interesting Unresolved Table Problems 49

Bibliography 56

A INTERESTING UNRESOLVED TABLES 59

viii

List of Figures

1.1 Sample Tables for Target Schema . 3

1.2 Web Page with Table from www.bobhowardhonda.com [9] 4

1.3 Linked Page with Additional Information [9] 5

1.4 Table from Autoscanada.com [5] . 5

2.1 Car-Ads Extraction Ontology (Partial) . 12

3.1 An Example of an HTML Table . 17

3.2 DOM Tree of the Table in Figure 3.1 . 18

3.3 An Example of Folded Table in a Linked Page (www.jscars.com [35]) . . . 24

3.4 The Unfolded Table for the Table in Figure 3.3 24

3.5 An Example of an Internal Factor . 25

3.6 The New Table with Years Distributed to the Value Rows for the Table in

Figure 3.5 . 26

3.7 An Example of Table Header (www.autobytel.com [3]) 27

3.8 Top Table After Preprocess for the Table in Figure 1.2 27

3.9 Extended Table of the Information in Figure 1.3 28

3.10 An Example Result Table for Single-Attribute Table 29

4.1 A Table that has Boolean Values and the Table Transformed by theβ Operator 33

4.2 Data Frame for the Make Object Set in Car-Ads Extraction Ontology (Partial) 35

4.3 Columns Added to the Table in Figure 4.4 by theδ Operator 36

4.4 An Sample Source Table . 37

4.5 Extracted Result from the Table in Figure 4.4 37

4.6 Application of theγ Operator to TableT1 Yielding TableT2 38

4.7 Inferred Mapping from Source TableT in Figure 4.1a to the Target Table

in Figure 4.8 . 39

ix

4.8 Sample Tables for Target Schema . 39

4.9 Inferred Mapping from the Source TablesT in Figure 1.2,T ′ in Figure 3.9,

andT ′′ in Figure 3.10 and from P, the page in in Figure 1.2, to the Target

Table in Figure 4.8 . 40

5.1 Web Page with Table of Cell Phones from Buy.com 45

5.2 Linked Page with Additional Cell Phone Information from Buy.com 46

A.1 Table with Complicated Structure (Multiple Schemas and Long Factors) [51] 60

A.2 Table with Complicated Structure (Each Record Takes Multiple Rows) [6] . 61

A.3 Table with Complicated Schema (Attributes Take Multiple Rows) [46] . . . 61

A.4 Table with Image Attributes [12] . 62

A.5 Tables in Table [8] . 62

A.6 Table with Irrelevant Images Inside [14] 63

A.7 Each Record in the Top-Level Table Contains an Attribute-Value Table [1] . 64

A.8 Top-Level Table with Image Colors [13] 65

A.9 View Detailed Information by Moving a Mouse [13] 66

A.10 Top-Level Table with Complicated Structure [16] 67

A.11 Top-Level Table with Only 2 Columns [4] 67

A.12 Top-Level Table with Complicated Structure [10] 68

A.13 Top-Level Table with Complicated Structure and Image [47] 68

A.14 Complicated Attribute-Value-Pair Table in a Linked Page [8] 69

A.15 Non-fixed Positions of Attribute and Value in Attribute-Value-Pair Table in

Linked Pages [44] . 70

A.16 List with Checked Marks [36] . 70

x

Chapter 1

INTRODUCTION

1.1 Background and Related Work

Currently, with the fast development of the Internet, both the amount of useful data

and the number of sites on the World Wide Web (WWW) are growing rapidly. The Web is

becoming an increasingly useful information tool for computer users. However, there are

so many Web pages that no human being can traverse all of them to obtain the information

needed. A system that can allow users to query Web pages like a database is becoming

increasingly desirable.

The data-extraction research group at Brigham Young University (BYU) has de-

veloped an ontology-based querying approach, which can extract data from unstructured

Web documents [19]. Although this approach improved the automation of unstructured

data extraction, it does not work very well with mostly-structured data. Mostly-structured

WWW pages, such as Web pages containing HTML tables, are major barriers to BYU’s

automated ontology-based data extraction. About 52% of HTML documents include tables

[40]. Although some of these tables are only for physical layout, there is still a significant

amount of online data that is stored in HTML tables.

The solution to querying data whose sources are HTML tables encompasses ele-

ments of (1) table understanding, (2) data integration, and (3) information extraction [27].

Table understanding allows us to recognize attributes and values in a given table. It is a

complicated problem [31]. Most research to date uses low-level geometric information to

recognize tables [41]. Some of the current geometric modeling techniques for identify-

ing tabular structure use syntactic heuristics such as contiguous space between lines and

1

columns, position of table lines/columns, and pattern regularities in the tables [48]. Some

of the techniques take a segmented table and use the contents of the resulting cells to detect

the logical structure of the table [34]. Others use both hierarchical clustering and lexical

criteria to classify different table elements [32]. Recent research on table understanding on

the Web takes this research area to a higher level. SGML tags provide helpful information

of table structures. But poor HTML table encoding, nontraditional use of the HTML tags,

the presence of images, etc, all challenge the full exploitation of information contained in

tables on the Web [33]. Existing approaches to determining the structure of an HTML ta-

ble use source page pre-analysis [29, 38], HTML tag parsing [40], and generic ontological

knowledge base resolution [52].

The schema-mapping problem for heterogeneous data integration is hard and is, by

itself, worthy of study [42]. The problem is to find asemantic correspondencebetween

one or moresource schemasand atarget schema[20]. In its simplest form the semantic

correspondence is a set ofmapping elements, each of which binds an attribute in a source

schema to an attribute in a target schema or binds a relationship among attributes in a source

schema to a relationship among attributes in a target schema. Such simplicity, however, is

rarely sufficient, and researchers thus use queries over source schemas to form attributes

and relationships among attributes to bind with target attributes and attribute relationships

[7, 43]. Furthermore, as we shall see in this thesis, we may also need queries beyond those

normally defined for database systems. Thus, we more generally define thesemantic corre-

spondence for a target attributeas any named or unnamed set of values that is constructed

from source elements. Sets of values for target attributes may be obtained from source

elements in any way, e.g. directly taken from already present source values, computed over

source values, constructed by concatenation or decomposition from source values, or di-

rectly taken or manufactured from source attribute names, from strings in table headers or

footers, or from free text surrounding tables.

The problem of identifying the text fragments that answer standard questions de-

fined in a document collection is called information extraction (IE) [28]. Some IE tech-

niques are based on machine learning algorithms [45]; others are based on application

2

Car Year Make Model Mileage Price PhoneNr Car Feature
0001 1999 Pontiac Firebird 32,833 405-936-8666 0001 Blue
0002 2000 Acura RL 3.5 36,657 $23,988 405-936-8666 0001 ...
0003 2002 Honda Accord EX 13.875 $21,988 405-936-8666

... ...
0003 White

0101 1992 ACURA legend $9500 0003 Air Conditioning
0102 2000 AUDI A4 $34,500 0003 Driver Side Air Bag
0103 1985 BMW 325e $2700.00 ...

0101 Auto
0101 AM/FM

...

Figure 1.1: Sample Tables for Target Schema

ontologies [22, 23, 24]. In this thesis, we intend to use ontology-based extractors as an aid

to do element-level and instance-level schema matching.

1.2 HTML Table Problems

We limit our discussion here to HTML tables found on the Web.1 We consider

Web pages containing HTML tables of interest for a given application domain to be our

sources. We also include pages linked from within these HTML tables. Our target is a

simple relational schema.

As a running example, we use car advertisements, which are plentiful on the Web

and which often present their information in tables. Suppose, for example, that we are

interested in viewing and querying Web car ads through the target database in Figure 1.1,

whose schema is

{Car, Year, Make, Model, Mileage, Price, PhoneNr}
{Car, Feature}.

Figures 1.2 [9], 1.3 [9], and 1.4 [5] show some potential source tables. The data in the

tables in Figure 1.1 is a small part of the data that can be extracted from Figures 1.2, 1.3,

and 1.4.
1The problems encountered in HTML tables are more than sufficient for this investigation. Table extrac-

tion within the broader context of images of paper tables and other types of electronic tables [41] is also
possible.

3

Figure 1.2: Web Page with Table from www.bobhowardhonda.com [9]

1.2.1 HTML Tables—Location Problems

It is easy for a human to locate the table of interest in Figure 1.2. Algorithmically

finding the table of interest on an Web page, however, is often nontrivial, even when the

system can tell that the page is of interest for the given application [26]. Figure 1.2, for

example, presents several challenges for table location.

• Multiple Panes. The page in Figure 1.2 has three panes (HTML frames), but we are

only interested in the one starting withPre-Owned Inventory.

4

Figure 1.3: Linked Page with Additional Information [9]

Figure 1.4: Table from Autoscanada.com [5]

5

• Tables for Layout. In the pane of interest in Figure 1.2, the first<TABLE> tag

encountered has two lines: the first for the text above the table, and the second for

the table and the footer text below the table.

• Table Rows Not in Table. The last two lines of the table in Figure 1.2 are not actually

part of the table. The last line contains the contact information, and the next-to-last

line contains the buttons and the claim of nonresponsibility.

• Tables Displayed Piecemeal. The table in Figure 1.2 displays 25 rows per page. To

obtain the rest of the table rows, we need to have the system simulate a click onShow

25 more.

• Tables Spanning Multiple Pages. We obtain the page in Figure 1.3 by clicking on

Honda Accord EXin the table in Figure 1.2. Clicking on all makes and models gives

us similar pages. Each page has a column of attribute-value pairs that starts with

Priceand ends withVIN. The collection of these columns from each page constitutes

a large table whose attributes are all the same,Price ... VIN, and whose values are

the value columns from each linked page.

• No <TABLE> Tag. Each linked page similar to the one in Figure 1.3 also has a

single-column table headed byFeatures. The source, however, does not tag this table

with a<TABLE> tag, but rather with a tag, making it an HTML list.

In general there are even more challenges for locating tables. We have listed here only the

challenges that appear in Figures 1.2 and 1.3. We list other challenges in the discussion of

future work in Chapter 6.

1.2.2 HTML Tables—Extraction Problems

Not only is it easy for a human to find the tables of interest in Figures 1.2 and 1.3,

it is also easy for a human to parse the table and determine its meaning. Even with the

constraint imposed of needing to match a source table with respect to a fixed target view,

such as the one in Figure 1.1, semantic matching is mostly straightforward for a human. It

is easy to see thatYearin the source table in Figure 1.2 as well asYearin the source table in

6

Figure 1.4 map toYearin the target table in Figure 1.1. It is also easy to see that although

Make andModel in Figure 1.4 match directly withMake andModel in Figure 1.1, we

need to splitMake and Modelin Figure 1.2 to matchMake andModel in Figure 1.1. It is

not as easy, however, to see that bothExterior in Figure 1.2 andColour in Figure 1.4 map

to Featurein Figure 1.1, and it is a little harder to see that we should map the attributes

Auto, Air Cond., AM/FM, andCD in Figure 1.4 as values forFeaturein Figure 1.1, but

only for “Yes” values.

Algorithmically sorting out these semantic matches is significantly harder. We en-

counter the following list of challenges when trying to match source HTML tables in Fig-

ures 1.2, 1.3, and 1.4 with the target schema in Figure 4.8. We list other challenges in the

discussion of our future work in Chapter 6.

• Merged Attributes/Values. MakeandModelare separate attributes in Figure 1.1 but

are merged as one attribute in Figure 1.2.

• Subsets. Exterior in Figure 1.2 andColour in Figure 1.4 contain colors. Colors in

the target are a special kind ofFeatureand thus the sets of colors in Figures 1.2 and

1.4 are subsets of the feature values we want for Figure 1.1. Indeed, these are proper

subsets since there are also many other feature values in Figures 1.2, 1.3, and 1.4.

• Synonyms. Mileage in Figure 1.1 andMiles in Figure 1.2 have the same meaning,

but the attribute names are not the same.

• Extra Information. The tables in Figure 1.1 make no request for photographs, which

are present in Figure 1.2.

• Linked Information. The values for the attributeMake and Modelare linked to further

information. Clicking onHonda Accord EXin Figure 1.2 yields the information in

Figure 1.3.

• List Table. A one-dimensional table and a list are similar in appearance.Featuresin

Figure 1.3 is a list, but could just as easily have been formatted as a table. Although

it is a list, we nevertheless wish to matchFeaturesin Figure 1.3 withFeature in

Figure 1.1.

7

• Position of Attributes. The linked subtable in Figure 1.3 has its attributes in the left

column, rather than in the top row.

• Missing Information. The schema in Figure 1.1 expects a phone number, but none of

the tables in Figures 1.2, 1.3, or 1.4 contains a phone number.

• Externally Factored Data. Although no phone number appears in the tables in Fig-

ures 1.2 or 1.3, phone numbers do appear in the footer text of the table in Figure 1.2

and in the text above the tables in Figure 1.3. A value, such as a dealer phone num-

ber, that applies to all records in a table is often factored out, external to the table,

and displayed only once.

• Duplicate Data. The price for theHonda Accord EXin Figures 1.2 and 1.3 appears

three times, once underPrice in Figure 1.2, once as the value for thePrice attribute

in the (vertical) table row in Figure 1.3, and once at the top of the layout table in

Figure 1.3. (Luckily, the values are all the same.) Other values also appear more than

once. The number of miles, in fact, appears with two different attributes, once with

Milesand once withMileage.

• Unexpected Multiple Values. The schema in Figure 1.1 expects at most one contact

phone number for each vehicle, but there may be several as Figures 1.2 and 1.3 show.

• Attribute as Value. In Figure 1.4, the featuresAuto, Air Cond., AM/FM, andCD are

all attributes rather than values. Here, we must understand thatYesandNo are not

the values; rather they indicate whether the valuesAuto, Air Cond., AM/FM, andCD

should be included asFeaturevalues in the tables in Figure 1.1.

In this thesis, we develop a system that can automatically locate the table of interest

in a Web page using a set of heuristics and our ontology technology, infer mappings from

source table attributes to the target schema, and extract information from source table(s) to

the target database.

The rest of this thesis in organized as follows: Chapter 2 introduces our ontology

based extraction technology. Chapter 3 discusses our approach to table location. Chapter 4

8

describes how the system infers mappings from source to target. Chapter 5 introduces and

analyzes experimental results. Chapter 6 discusses our conclusions and future work.

9

10

Chapter 2

EXTRACTION ONTOLOGIES

An extraction ontology is a conceptual-model instance that serves as a wrapper for a

narrow domain of interest such as car ads [22]. The conceptual-model instance includes ob-

jects, relationships, constraints over these objects and relationships, descriptions of strings

for lexical objects, and keywords denoting the presence of objects and relationships among

objects. When we apply an extraction ontology to a Web page, the ontology identifies the

objects and relationships and associates them with named object sets and relationship sets

in the ontology’s conceptual-model instance and thus wraps the recognized strings on a

page and makes them “understandable” in terms of the schema implicitly specified in the

conceptual-model instance. The hard part of writing a wrapper for extraction is to make it

robust so that it works for all sites, including sites not in existence at the time the wrapper is

written and sites that change their layout and content after the wrapper is written. Wrappers

based on extraction ontologies are robust.1 Robust wrappers are critical to our approach:

without them, we may have to create (by hand or at best semiautomatically) a wrapper for

every new table encountered; with them, the approach can be fully automatic.

1Page-specific, handwritten wrappers (e.g. the early wrappers produced for TSIMMIS [15]) are not ro-
bust. Machine-learning-based wrappers (e.g. [37, 50]) are not robust since new and changed pages must
be annotated and learned. Wrappers that automatically infer regular expressions for Web pages (e.g. [18])
are robust in the sense that the regular-expression generator only needs to be rerun for new and changed
pages; however, high page layout regularity is required, an assumption that often fails, but which we intend
to consider in our future work with tables. Extraction ontologies (e.g. [22]) are robust because they are
based on conceptual-model specifications of a domain of interest, not on page layout. Although they are
hand-crafted, as ontologies typically are, our experience shows that an expert can create a reasonably good
extraction ontology for a narrow domain of interest such as car ads in a few-dozen hours.

11

1. Car [-> object];
2. Car [0:1] has Year [1:*];
3. Car [0:1] has Make [1:*];
4. Car [0:1] has Model [1:*];
5. Car [0:1] has Mileage [1:*];
6. Car [0:*] has Feature [1:*];
7. Car [0:1] has Price [1:*];
8. PhoneNr [1:*] is for Car [0:1];
9. Year matches [4]

10. constant {extract " \d{2}";
11. context " \b’[4-9] \d\b";
12. substitute " ˆ" -> "19"; },
13. ...
14. Mileage matches [8]
15. ...
16. keyword " \bmiles \b", " \bmi \.", " \bmi \b",
17. " \bmileage \b", " \bodometer \b";
18. ...

Figure 2.1: Car-Ads Extraction Ontology (Partial)

An extraction ontology consists of two components: (1) anobject/relationship-

model instancethat describes sets of objects, sets of relationships among objects, and con-

straints over object and relationship sets, and (2) for each object set, adata framethat

defines the potential contents of the object set. A data frame for an object set defines the

lexical appearance of constant objects for the object set and establishes appropriate key-

words that are likely to appear in a document when objects in the object set are mentioned.

Figure 2 shows part of our car-ads application ontology, including object and relationship

sets and cardinality constraints (Lines 1-8) and a few lines of the data frames (Lines 9-18).

An object set in an application ontology represents a set of objects which may either

be lexical or nonlexical. Data frames with declarations for constants that can potentially

populate the object set represent lexical object sets, and data frames without constant dec-

larations represent nonlexical object sets.Year (line 9) andMileage (line 14) are lexical

object sets whose character representations have a maximum length of 4 characters and

8 characters respectively.Make, Model, Price, Feature, andPhoneNrare the remaining

lexical object sets in our car-ads application;Car is the only nonlexical object set.

12

We describe the constant lexical objects and the keywords for an object set by reg-

ular expressions using Perl-like syntax.2 When applied to a textual document, theextract

clause (e.g. line 10) in a data frame causes a string matching a regular expression to be

extracted, but only if thecontext clause (e.g. line 11) also matches the string and its

surrounding characters. Asubstitute clause (e.g. line 12) lets us alter the extracted

string before we store it in an intermediate file. (For example, theYeardata frame treats

a year written “’95 ” as the constant “1995 ”.) We also store the string’s position in the

document and its associated object-set name in the intermediate file. One of the nonlexical

object sets must be designated as theobject set of interest—Car for the car-ads ontology,

as indicated by the notation “[-> object] ” in line 1.

We denote a relationship set by a name that includes its object-set names (e.g.Car

has Yearin line 2 andPhoneNr is for Carin line 8). Themin:maxpairs in the relationship-

set name areparticipation constraints. Min designates the minimum number of times an

object in the object set can participate in the relationship set andmaxdesignates the maxi-

mum number of times an object can participate, with * designating an unknown maximum

number of times. The participation constraint onCar for Car has Featurein line 6, for

example, specifies that a car need not have any listed features and that there is no specified

maximum for the number of features listed for a car.

In the initial work with semistructured and unstructured Web pages [22], a data-

extraction ontology allowed us to recognize data values and context keywords for a partic-

ular application, organize data into records of interest, and fill object and relationship sets

with data according to ontologically specified constraints. In our current work with tables,

nested subtables in linked pages, and surrounding semistructured and unstructured text, we

use extraction ontologies in much the same way. Recognized context keywords tend to be

attributes; sometimes recognized values are also attributes. For tables, geometric layout

gives us the clues we need to decide which recognized strings are attributes and which are

values. This knowledge, plus the ontological domain knowledge about which attributes and

values belong to which object sets, establishes the basis for determining record groupings

and semantic correspondences for target attributes and relationships. Our system’s ability

2Thus, for example, “\b” indicates a word boundary, “\d” indicates a numeric digit, and so forth.

13

to extract attributes and values and to pair them together constitutes the fundamental ba-

sis for enabling it to recognize tables containing data of interest and to discover mapping

rules that can transform the contents of source tables to a target schema. We discuss our

approach in detail in the next two chapters.

14

Chapter 3

TABLE LOCATION AND UNDERSTANDING

Many Web sites, especially commercial sites, provide their users with much more

than just basic information during browsing. As a result, one HTML page may contain

many advertisements, a navigation panel, and other irrelevant sections. These make Web

pages difficult to parse. Automatically finding the data-rich sections of the domain of

interest from complex Web pages is not an easy task [11]. In this research, we detect a

table of interest based on an application-dependent data-extraction ontology and several

heuristics that we introduce and discuss in this chapter.

After detecting a table of interest, we then need to understand the structure of this

table. In order to understand a table, we first locate the structural components such as

table header(s), table factor(s), attributes, and values. We then associate values with their

corresponding attributes.

The rest of this chapter is organized as follows: Section 3.1 overviews the basic ele-

ments of HTML tables. Section 3.2 describes how to parse an HTML table as a DOM tree.

Section 3.3 discusses the method and heuristics we use to locate HTML tables. Section 3.4

introduces our approach to table preprocessing and understanding.

3.1 Overview of HTML Tables

HTML includes element types that represent paragraphs, hypertext links, lists, ta-

bles, forms, images, etc [30]. An HTML document usually consists of several HTML

elements. Each element starts with a start-tag<TAGNAME> and ends with an end-tag

</TAGNAME>. A table in an HTML document is delimited by the tags<TABLE> and

</TABLE>. In each table element, there may be tags that specify the structure of the table.

15

For example,<TH> declares a heading,<TR> declares a row, and<TD> declares a data

entry. We cannot, however, count on users to consistently apply these tags as they were

originally intended. For example, as Figure 3.1 shows, the attributesYear, Make, Model,

Trim and etc. are not tagged by<TH>, but by<TD>. Another important issue is that

the presence of<TABLE>/</TABLE> tags does not necessarily indicate the presence of

a data table1. For example, in Figure 1.2,<TABLE>/</TABLE> encloses all the in-

formation underPre-Owned Inventory. <TABLE>/</TABLE> also encloses the address

and contact information at the end of this page. But these two “table” elements are not part

of thereal table, but instead make use of tags for layout. Furthermore, not allreal tablesin

a Web page contain information of interest. In addition, even for an HTML file within the

specific domain, there may exist one or morereal tablesthat present similar information

not actually of interest. For example, a Web page for cell phone plans may also contains a

table about different cell phones which is not of interest and not suitable for the cell-phone-

plan application domain, or a Web site that introduces soccer players (which may be the

domain of interest) may also contain a table about coaches.

Given an application domain, our table-location task is to determine if there is a

table of interest for this domain and to find the fundamental table of interest in the top-level

page and the tables of interest in linked pages, if applicable. To resolve the table-location

problem, we face all the problems mentioned in the introduction, i.e.,Multiple Panes, Ta-

bles for Layout, Table Rows Not in Table, Tables Displayed Piecemeal, Tables Spanning

Multiple Pages,andNo Table Tag. We also face other problems we have encountered, in-

cluding some that our system handles, such as folded tables and factored rows, and some

that we report as future challenges in Chapter 6.

In order to identify the fundamental table of interest from a given Web document,

we first parsed the Web page and represented all the elements in that document with the

document object model(DOM) [21]. We then isolated all the potential table elements (all

elements between<TABLE> begin and</TABLE> end tags) in order to facilitate further

1A data tablehere means a table that is for information storage which contains highly structured and
database-like information such as table in Figure 1.2.

16

Figure 3.1: An Example of an HTML Table

17

processing. Here we give a short introduction to DOM and how we used DOM to represent

an HTML document in order to achieve our goal.

3.2 DOM Representation

A DOM tree is an ordered tree, where each node is either an element node or a text

node [17]. An element node has a node name which indicates the HTML tag of this node

(such as<TABLE>, <TH> and) and an ordered list of child nodes (this list can

be empty). A text node has no child node and contains only a text string which is the text

content of its parent node.

In our use of a DOM tree, we ioslate all the table subtrees. For example, Figure 3.2

is the DOM tree for the table in Figure 3.1. Observe that the leaves of the tree are all

text nodes which contain the text values we see through the Web browser in each cell

of the table, and the parents of these text nodes are element nodes that give us valuable

information about the structure of the table. We can thus analyze the structure and the text

contents of this table and decide if this table is a fundamental table of interest by using

several heuristics, which we discuss in the next section.

Figure 3.2: DOM Tree of the Table in Figure 3.1

18

3.3 Table Location Heuristics

Our table-location task is to find both the fundamental table of interest in the top-

level page (top-level Table) and the table(s) of interest in the linked pages. Since tables

of interest that appear in these two kinds of sources usually have different structures and

features (although they do, of course, share some common features), we treated them dif-

ferently by using two sets of heuristics.

3.3.1 Location – Top-Level Tables

In order to create a set of proper heuristics that covers as many cases as possible and

maintain high accuracy, we first gathered information about top-level tables by considering

several Web pages, which we call a “training set”2. Based on the training pages, we found

the following features of interest about top-level tables:

1. A table of interest must look like a table to a human observer.

2. A table of interest must have a schema-like3 row (or column) within the first few

rows (or columns).

3. A table of interest must contain enough information of interest (i.e. information that

our ontology recognizes).

Based on these features, we developed a set of heuristics for the main table-location

task. Our system resolves the problems of finding the main table of interest as follows.

• Table Size. The main table must have at least three rows and at least three columns.

As an example, by this heuristic, the system successfully discarded the table about

contact information and address in Figure 1.2.

• Grid Layout. We can count the number of data cells in each row in a table. Letting

N be the number of rows in the table that has the most common number of data cells
2We used this set of pages to help us identify needed heuristics. (This is not a training set in the machine-

learning sense.)
3Here, “schema-like” means a set of descriptive names that are like attributes in a relational table.

19

andM be the number of rows in the table, the ratioN/M must exceed2/3. This

ensures that the vast majority of the rows extend across the width of the table and

thus that the table, at least roughly, has the expected geometry of a table.

For example, suppose the table of interest in Figure 1.2 (the one in the middle with

attribute namesYear, Make and Model, Price, etc.) only has 9 columns. For the large

table which starts withPre-Owned Inventoryand ends with the email addressE-

mail:sales@bobhowardauto.dealerspace.com, there are 9 rows that contain 1 value,

9 rows that contain 6 values and 4 rows that contain 4 values. Therefore, the Grid

Layout Measure is 9/(9+9+4) = 0.41< 2/3. Thus, the system discards this large

table.

• Attributes. Based on the keywords and the object-set names for the various object

sets in our extraction ontology, we have a reasonable idea about what some of the

attribute names for a table should be. For example, we include possible synonyms

for each attribute such asMiles, Mi, andOdometerfor Mileage, andManufacture

andBrand for Make. We also include some popular attributes that commonly appear

in source tables but are not an attribute in our target schema because of a different

granularity. For example, we includeVehiclewhich could possibly represents several

target attributes such asMake, Model, andFeature; Trim which could be part of the

target attributeModel; andColor which could be one of the subsets for target attribute

Feature. We look for a row near the top which contains the most common number

of data cells and from which we have been able to extract 60% of the data entries as

attributes—these attributes, of course, must be distinct. (Note that we do not depend

on the table creator to mark the attributes with a<TH> tag.) If we cannot find an

attribute row in the table, we try columns, preferably leftmost columns. If we find

an attribute column, we can transpose the table so that the attributes are in rows.

By using this heuristic, the system can also discard the large table which starts with

Pre-Owned Inventoryand ends withE-mail:sales@bobhowardauto.dealerspace.com

in Figure 1.2 (no matter how many columns the middle table contains) because it

cannot find an attribute row within the top few rows or columns.

20

• Value Density. Based on the values expected for the various lexical object sets, we

find all ontology-recognized strings. If the ratio of the number of characters in rec-

ognized strings to the total number of characters in strings within the table exceeds

10%, we have some reasonable evidence that the table is of interest for the applica-

tion. (Although 10% may seem low, previous experiments with density [25] show

that the density test should fail only for extremely low percentages, usually below

1%.) By using this heuristic, we ensure that the table contains some information of

interest.

3.3.2 Location – Linked-Page Tables

For tables in linked pages, table detection is different. Tables that appear in a linked

page usually are either anattribute-value-pair Tablesuch as the table under the car picture

starting withPrice$21,988in Figure 1.3, or asingle-attribute Tablestarting withFeatures

and on the left side of the car picture in Figure 1.3. We use the following heuristics for

these tables.

Attribute-Value-Pair Table

• Table Size. We do not expect sub-tables to be as large as top-level tables. Thus we

only require at least two rows or two columns.

• Attributes. This is the same as for top-level tables.

• Attribute-Value-PairTo locate table components that contain attribute-value pairs, we

look for a pair of columns where the strings in the first column have been extracted

mostly as attributes and the strings in the second column have been extracted mostly

as values. The table component in Figure 1.3 is an example—the left column starting

with Pricecontains many strings our extraction ontology recognizes as attributes, and

the right column starting with$21,988contains many strings our extraction ontology

recognizes as values. Sometimes these types of tables are folded, so we must consider

several pairs of columns side by side. As for other attribute tests, we use 60% as our

21

threshold. We also check for row pairs in the same way to locate table components

formatted with the attributes above the values, rather than to the left.

• Page-Spanning Tables. We follow a selected number of links from the top-level table

to obtain several linked table rows. We then check the variability—attributes tend

to remain the same from page to page (although sometimes table rows have more

or fewer attributes), while values tend to vary (although some, such as colors, body

styles, and transmission types are often identical).

Single-Attribute Table

To find lists like theFeatureslist in Figure 1.3, we look for a or an

tag or for a<TABLE> tag followed by a single-column table structure. We confirm that

the single-attribute table is of interest by checking whether the ontology recognizes at least

60% of the strings as values of interest.

3.4 Table Preprocessing and Understanding

After detecting tables of interest (both on the top page and on linked pages, if appli-

cable), the next step is to analyze the structure of these tables in order to fully “understand”

them (by “understanding”, we mean to associate values with their corresponding attributes

in the tables).

A top-level table sometimes contains multiple rows (or columns) of attributes, table

headers, table factors, or irrelevant information that needs to be ignored during extraction.

In order to extract this kind of information correctly, the system must understand the given

table properly and preprocess the table according the table structure. In this research, we

first try to find the attribute row(s) (or column(s)). According to the attribute position and

some other structural information, we can then locate table headers and factors and finally

associate attributes and values.

As discussed in the previous section, the system has already detected all the attribute

row(s) or column(s) for a table. We can make use of linked components of the top-level

table to help determine with certainty which strings are attributes and which are values by

22

observing that the attributes remain the same across pages while the values change. For

the page in Figure 1.2, for example, all subsequent pages linked byShow 25 morehave

identical attributes on the top row of the table, namelyYear, Make and Model, Price, Miles,

Exterior, Photo. Indeed, in this way, we are likely to be able to identify attributes, such as

Photo, even when they are not in our application ontology.

After determining the position of attributes, the system then determines the structure

of the table. In this research we only consider tables with attributes on the top or attributes

on the left. Since we can always convert an attributes-on-the-left table to an attributes-

on-the-top table or vice versa, in this section we just discuss tables with attributes on the

top.

We first list several pre-processing issues the system resolves.

• Folded Tables. Figure 3.3 shows an example of a folded table in a linked page (folded

tables usually appear more frequently in linked pages than in top-level pages). Some-

times for layout reason or sometimes because a table has so many columns, table

designers fold them for viewing on a single page or in a single window either by

placing the second half of the columns below the first half of the columns or by mak-

ing two (or more) rows of attributes at the top that associate with pairs (triples, ...)

of values in the columns below. If more than one attribute row appears, we compare

the attribute rows. If they are not the same, we treat the table as a folded table; other-

wise we remove the duplicate attribute rows. For a folded table, we unfolded it and

appended the the second (and third, ...) folded part(s) to the first one. Thus, after

unfolding, the table in Figure 3.3 becomes the table in Figure 3.4.

• Factored Value Rows. We consider as possible factored values those values in each

table row where the row has less than half the cells filled and the cells that are filled

are adjacent left-most fields. Figure 3.5 shows an example of a table that has factors.

We add factored values that are below the attribute row to all subsequent rows until

the next row of factored values. For values that are above the attribute row, we check

if the row right below the attribute row is a factor row. If it is, then we consider all

the values above the attribute row as table headers, which we will discuss in the next

23

Figure 3.3: An Example of Folded Table in a Linked Page (www.jscars.com [35])

Figure 3.4: The Unfolded Table for the Table in Figure 3.3

24

paragraph. If it is not, then the row right above the attribute row is considered as a

factored value. Thus we also add these factored values to the all subsequent rows

(except the attribute row) until the next row of factored values. Figure 3.6 shows the

altered table for the table in Figure 3.5. We eliminate rows that do not satisfy these

factoring criteria—presumable these are not value table rows—for example, the row

of buttons at the bottom of the table in Figure 1.2.

Figure 3.5: An Example of an Internal Factor

• Table Header. A table header usually appears in a row above the attribute row. It

only appears once and is normally short. For example,Honda Civicis a table header

that factors all the cars in the table in Figure 3.7. Our system considers as table

headers those rows that are above the attribute row, marked by only one<TD> or

<TH>, and have not already been recognized as table factors. After detecting a table

header, the system adds a new column with an empty attribute and places the header

25

Figure 3.6: The New Table with Years Distributed to the Value Rows for the Table in Figure
3.5

in value rows of the table. The system repeats this process until all the table headers

are processed.

• Irrelevant Information. Our heuristics may consider some irrelevant information as

table headers or factors. Our heuristics, for example, consider the row20 vehicles

found within 100 miles of 84606in Figure 3.7, as a table header. It is actually in-

formation that is not of interest. Because our system depends on value recognizors

within an extraction ontology, our system ignores most of the irrelevant information;

therefore, incorrectly distributing irrelevant phrases to value rows rarely affects the

final mappings.

After being preprocessed (removing duplicate attribute rows, unfolding, distribut-

ing factored values and headers), a table in a top-level page has a format similar to a relation

in a relational database. (Figure 3.8 shows an example.) For each record (row) in the orig-

inal table, we keep track of the tuple ID (the first column in the new table) in order to

facilitate the later extraction.

26

Figure 3.7: An Example of Table Header (www.autobytel.com [3])

TupleID Year Make and Model Price Miles Exterior Photo
t1 1999 Pontiac Firebird Contact Us 32,883 Blue
t2 2000 Acura RL 3.5 $23,988 36,657 Silver
t3 2002 Honda Accord EX $21,988 13,875 White
t4 2002 Honda Passport $20,988 10,410 Black
: : : : : : :

Figure 3.8: Top Table After Preprocess for the Table in Figure 1.2

27

TupleID Body Type Body Style Transmission Engine Fuel Type Stock Number VIN
t1
t2
t3 Car Coupe Automatic 3.0L 6 cyl Fuel Injection Gas 350291A 1H...644
t4
: : : : : : : :

Figure 3.9: Extended Table of the Information in Figure 1.3

Sometimes, each record (row) in the top-level table may have one or more links

that link to other pages. If tables have linked pages, they usually describe detailed infor-

mation for the corresponding top-level records, and each table describes information for

one record, as in Figure 1.3. As described in Section 3.3.2, tables that appear in a linked

page usually are either an attribute-value-pair table or a single-attribute table. We consider

these two kinds of tables as tables extending over several linked pages. Each table con-

tains values for one record over a set of attributes. Therefore we can collect values for the

“extended” table crossing linked pages.

For attribute-value-pair tables, consider the table under the car picture that starts

with Price $21,988in Figure 1.3 as an example. Figure 3.9 shows the extended table for

this example. The information in Figure 1.3 is for the third car in the table in Figure 1.2.

Observe that in Figure 3.9, we do not include all the attribute-value pairs that appear in the

attribute-value-pair table in Figure 1.3. AttributesPrice, MileageandExterior are already

in the top-level table, therefore the system does not duplicate them in the extended table.

Although attributeMile in the top-level table and attributeMileage in the linked-page are

not exactly the same, the system can detect these as synonyms with the help of keywords in

the ontology. In addition, at the value level, our ontology recognized the same value13,875

under these two attributes. Therefore, we know that these two attributes describe the same

information.

When we encounter an attribute-value-pair table in another linked page, we can

add values under their corresponding attribute in the specific position (according to their

tupleID). For example, if theBody Typefor the first car isSedan, we addSedanin the

second row (TupleID t1) under attributeBody Type. It is possible that the attribute-value

28

TupleID Features
t3 Air Conditioning
t3 Driver Side Air Bag
t3 Passenger Side Air Bag
t3 Anti-Lock Brakes
: :

Figure 3.10: An Example Result Table for Single-Attribute Table

pairs differ (usually only slightly) on different linked pages. If there is a new attribute

that is not included in the extended table, we add this new attribute in the extended table

and add the corresponding value in its proper position under this new attribute. We repeat

this process until all the information in attribute-value-pair tables in all linked pages are

considered.

The table underFeaturesin Figure 1.3 is a single-attribute table. It, by itself, can

be converted into a column in a relation in which each row has the same tuple identifier

(because every value pertains to the same object.). For the example in Figure 1.3, our

system transforms it into the table in Figure 3.10.

Hence, our table recognizing system transforms the structured information (top-

level table, attribute-value-pair table and single-attribute table) in both the top-level pages

and linked pages into a format similar to relations in a relational database. In the next chap-

ter, we discuss how to map source attributes to target attributes based on the information

we have.

29

30

Chapter 4

MAPPING INFERENCE

After preprocessing and understanding the table, the system has converted the struc-

tured information into one or more table structures that are similar to relations in a relational

database. We then can infer mappings from these source “relations” to the target object sets

in our extraction ontology (i.e. infer a mapping from source attributes to target attributes).

We infer mappings in two steps: (1) generate and adjust attribute-value pairs in preparation

for mapping recognition and (2) use patterns of recognized attributes and values to infer

mappings.

4.1 Generate and Adjust Attribute-Value Pairs

In one column in a source table, the attribute names the type of values under it.

Although we can sometimes determine the type of a value without an attribute, the attribute

often provides valuable context information for ontology extraction. Therefore, pairing a

value with its corresponding attribute may help our ontology recognize more information

from the table. For example, the attribute-value pairs we form for the attribute-value-pair

table in Figure 3.4 is:

{Year: 2002, Body: 4DR, A/C: Yes, Make: ISUZU, Motor: 6; Model: AXIOM 4WD,

Transmission: A, Miles: 26245}.

Observe that in this example, we may not be able to determine the type of some

values without their attributes such as values inMotor: 6 andTransmission: A. The digit6

and letterAmay not provide enough information by themselves without their corresponding

31

attributes. With the help of attributes, however, we can determine the type and meaning of

those values.

Another interesting issue our example shows isA/C: Yes— an attribute with a

Boolean value. We process Boolean values by replacing them with attribute-name val-

ues. For our running example, the adjusted attribute-value pairs become{Year: 2002,

Body: 4DR, A/C, Make: ISUZU, Motor: 6; Model: AXIOM 4WD, Transmission: A, Miles:

26245}. Here, the Boolean-valued attribute-value pair〈A/C: Yes〉 has becomeA/C, mean-

ing the car has A/C (air conditioning). If there is an attribute-value pair with valueno, we

simply replace it with an empty string, meaning the car does not have the feature indicated

by the attribute. For example, the first value row of the table in Figure 4.1a would be trans-

formed to{Make: ACURA, Model: legend, Yr: 1992, Colour: Grey, Price:$9500, Auto,

AM/FM }. Note that the attributesAir Cond.andCD disappeared because this car does not

have these features.

When attribute names are the values and the values are Boolean indicators (e.g.

Yes/No, True/False, 1/0, cell checked or empty,
√

or x), we need to decide what the

Boolean indicators mean. We have a dictionary of Boolean indicators that defines po-

tential meanings for each indicator. For an indicator likeYesor No, we can know for sure

what they mean. Some other indicators, however, could have different meanings in differ-

ent situations. For example, anx could meanyeswhen an empty cell meansno; it also

could mean “no” when a
√

meansyes. If a Boolean value is in the dictionary, we check

the potential meaning of the indicator. If the indicator has only one meaning, we assign the

opposite meaning to the other Boolean value (if any) in the same column. If it has more

than one meaning, we then need to check the other Boolean value that appears in the same

column. For example, if we encounter anx, and it has two meanings:yesandno, in the

dictionary, we then check other operators in the same column. For example, we found a
√

,

which has only one meaning,yes, in the dictionary. We then can decide thex here does not

meanyes, but meansno. Based on this heuristic, we can understand what a pair of Boolean

indicators mean as long as we can find them in our dictionary.

32

Make Model Yr Colour Price Auto Air Cond. AM/FM CD
ACURA legend 1992 grey $9500 Yes No Yes No
AUDI A4 2000 Blue $34,500 Yes Yes Yes Yes
BMW 325e 1985 black $2700.00 No No Yes No
CHEVROLET Cavalier Z24 1997 Black $11,995.00 No Yes Yes No

(a)
Make Model Yr Colour Price Auto Air Cond. AM/FM CD
ACURA legend 1992 grey $9500 Auto AM/FM
AUDI A4 2000 Blue $34,500 Auto Air Cond. AM/FM CD
BMW 325e 1985 black $2700.00 AM/FM
CHEVROLET Cavalier Z24 1997 Black $11,995.00 Air Cond. AM/FM

(b)

Figure 4.1: A Table that has Boolean Values and the Table Transformed by theβ Operator

After understanding the meanings of the Boolean indicators, we can transform them

into attribute-name values with the help of aβ operator which we introduce here. Syntacti-

cally we writeβA
T,F r whereA is an attribute of relationr andT andF are respectively

the Boolean indicators for theTrue value and theFalse value given asA values inr.

The result of theβ operator isr with the True values of theA column replaced by the

string A and theFalsevalues ofA replaced by the null string. As an example, consider

βAuto
Y es,Noβ

Air Cond.
Y es,No β

AM/FM
Y es,No βCD

Y es,NoT which transforms the tableT in Figure 4.1a to the ta-

ble in Figure 4.1b.

4.2 Infer Mapping

In this section, we discuss how to infer mappings from the source-table attributes

to our target schema. We first describe the patterns and regularity in the source table that

we need to recognize and define the threshold we used to recognize those patterns. We

then discuss how to infer mappings according to those patterns with the help of standard

relational algebra operators and some extended relational algebra operators.

4.2.1 Pattern Recognition

Our system represents a source table (top-level table as well as tables in linked

pages) as one or more relational structures that are similar to relations in a relational

33

database. The values in each relational structure are formatted as attribute-value pairs and

each Boolean value is transformed into a proper value. Based on this source representa-

tion, we infer mappings by using our ontology-extraction technology. As we mentioned in

Chapter 2, our extraction ontology is source independent, which means we do not have to

generate a new ontology when a new source document is encountered. It is hard, however,

to guarantee that our ontology covers everything. We do not expect our system to recog-

nize all the source values. Instead, our purpose is to find data regularity and infer mappings

depending on the recognized results.

Because of the special layout structured tables have, we know all the values un-

der a single attribute in a source table should be extracted to a same attribute or set of

attributes in the target schema. Given the recognized extraction and its regularity in the

source document, our system can measure how many values under a source attribute are

actually extracted to a particular set of target attributes. If the number is greater than a

threshold, the system can infer mappings between source and target attributes according to

the regularity observed. Given a set of mappings, the system can then extract data into the

target database, including not only the recognized values, but also all other values that fit

the pattern. By doing so, we are likely to be able to increase both the precision and recall

of the extraction. We talk about the experimental results in detail in Chapter 5.

In order to infer as many correct mappings as possible and, at the same time, avoid

unnecessary incorrect mappings, an appropriate threshold is important. A high threshold

would result in the low mapping rates (low recall) while a low threshold would result in

many error mappings (low precision). In this thesis, we define the threshold to be the

Golden Mean, also called the “divine proportion”[2]. This constant can be calculated by

(
√

5 -1)/2 ≈ 0.618. The term ”Golden Mean” is derived from Horace’s Latin transla-

tion of “aurea mediocratas,” which means a sensible way of doing things or the avoidance

of extremes. In mathematics and real life, the Golden Mean often represents a balanced

threshold [2]. Therefore, in our research, we also use this ratio as our threshold.

34

1. Make matches [10]
2. constant
3. { extract " \bacura \b"; },
4. { extract " \balfa((\s*|-)romeo)? \b"; },
5. { extract " \bamc\b"; },
6. { extract " \bam(\s*|-)general \b"; },
7. { extract " \baudi \b"; },
8. { extract " \bbentley \b"; },
9. { extract " \bbertone \b"; },
10. { extract " \bbmw\b"; },
11. { extract " \bbuick \b"; },
12. { extract " \bcad(illac)? \b"; },
13. { extract " \bchev(y|rolet)? \b"; },
14. { extract " \bchrysler \b"; },
15. ...

Figure 4.2: Data Frame for the Make Object Set in Car-Ads Extraction Ontology (Partial)

4.2.2 Mapping Inference

Our purpose is to match source table attributes with target attributes (object sets

in the ontology). As discussed in Chapter 2, an extraction ontology contains information

about object sets, relationships, and data frames. Each object set has a data frame that

defines the potential contents of the object set. A data frame for an object set defines the

lexical appearance of constant objects for the object set and establishes appropriate key-

words that are likely to appear in a document when objects in the object set are mentioned.

In order to find mappings from source attributes to the object sets, we apply each data

frame to each column in the source table to see if we recognize enough values, so that the

percentage of recognized values is greater than the threshold.

Figure 4.2 shows a partial data frame for object setMakein our car ontology. Now

let us see if there is any attribute in Figure 4.1 from which we can map this object set. We

attempt to recognize values in each column in Figure 4.1 with regular expressions in the

Makedata frame, and we keep track of the number recognized. In our example, for the

first column we recognized 100% (e.g.ACURAmatches using Line 3 in Figure 4.1,AUDI

matches using Line 7,BMW matches using Line 10 andCHEVROLETmatches using Line

13). For the rest of columns, however, we recognized nothing. Therefore, we can infer

35

Make Model
Honda Civic
Nissan Sentra

Figure 4.3: Columns Added to the Table in Figure 4.4 by theδ Operator

a mapping fromMake in the source table toMake in the target ontology. This is a direct

mapping. Similarly, we can obtain mappings fromModel to Model, Yr to Year, andPrice

to Price. The mapping fromYr to Year, however, is not a direct mapping, because we need

a renaming operatorρ.

Except for simple renaming, indirect mappings are more complicated, and the sys-

tem needs the help of more operators. As we can see, values in the 6th-9th columns in

Figure 4.1 should all go under a single target attributeFeature. In this case, the system

needs to gather them together and consider each of them as a separate value under one

target attribute. We gather values together with the union operator∪.

Another case is recognizing a value that should be split. For example, we detect

that all the values under attributemake/model in Figure 4.4 are merged and need to be

mapped separately toMakeandModel in the target schema as Figure 4.5 shows. We can

divide values into smaller components with aδ operator which we introduce here. We de-

fine δA
B1,...,Bn

r to mean that each valuev for attributeA of relationr is split intov1, ..., vn,

one for each new attributeB1, ..., Bn respectively. Associated with eachBi is a procedure

pi that defines which part ofv becomesvi. In this thesis we specify each procedurepi

by regular expressions similar to those defined for extraction ontologies in Figures 2 and

4.2. The result of theδ operator isr with n new attributes,B1, ...,Bn, where theBi value

on row k is the string that results from applyingpi to the stringv on row k for attribute

A. As an example, considerδMake/Model
Make,Model T , whereT is the table in Figure 4.4, the expres-

sion associated withMakeis extract " \S+" context " \S+\s" which extracts the

characters of the string value up to the first space, and the expression associated withModel

is extract " \S.*" context " \s.+" which extracts all the remanning characters

in the string after the first space. This operation adds the two columns in Figure 4.3 to the

table in Figure 4.4.

36

year make/model color bodytype
1999 Honda Civic Green 4 dr sedan
1998 Nissan Sentra grey 2 door coupe

Figure 4.4: An Sample Source Table

Car Year Make Model Mileage Price PhoneNr
0001 1999 Honda Civic
0002 1998 Nissan Sentra

Car Feature
0001 Green
0001 4 dr
0001 sedan
0001 grey
0002 2 door
0002 coupe

Figure 4.5: Extracted Result from the Table in Figure 4.4

If we consider the right-most table in Figure 4.5 as the source table and the schema

in table in Figure 4.4 as the target schema, we encounter another issue. Values under the a

same attribute need to be associated with different target attributes. In our example,Green

andgrey under the source attributeFeatureassociate with the target attributecolor, and

other values underFeatureassociate withfeaturesin target. In this case, we need to apply

a selection operatorσ. Here theσ operator is not standard because it may have a regular

expression as an argument. The selection operatorσA∼er selects those rows in a relation r

whose values under attribute A contain a string recognized by regular expression e.

Sometimes, the values of interest are scattered in unstructured or semistructured

documents. For this kind of direct extraction we introduce theε operator, which is based

on a given extraction ontology. We defineεSt as an operator that extracts a value, or values,

from unstructured or semistructured textt for object setS in the given extraction ontology

O according to the extraction expression forS in O. Theε operator extracts a single value

if S functionally depends on the object of interestx in O, and it extracts multiple values if

S does not functionally depend onx. As an example,εPhoneNrP extracts1-877-944-2842

from the unstructured text in pageP in Figure 1.3 and returns it as the single-attribute,

single-tuple, constant relation{PhoneNr: 1-877-944-2842}. We can use theε operator in

conjunction with a natural join to add a column of constant values to a table. For example,

37

T1 Make Model Trim T2 Make Model Trim Model with Trim
Ford Contour GL Ford Contour GL Contour GL
Ford Taurus LX Ford Taurus LX Taurus LX
Honda Civic EX Honda Civic EX Civic EX

Figure 4.6: Application of theγ Operator to TableT1 Yielding TableT2

assuming the phone number1-877-944-2842appears in pageP with the table in Figure 1.2,

which indeed it does, we could applyεPhoneNrP 1 T to add a column forPhoneNrto

tableT in Figure 1.2.

Figure 4.6 shows another case we need to handle. Values underModel andTrim

in the source table (T1 in Figure 4.6) should go together as a single value underModel in

the target.1 If we can recognize which values we need to merge, we can merge them with

a γ operator which we introduce here. Syntactically, we writeγB ← A1+...+Anr whereB is

a new attribute of the relationr and eachAi is either an attribute ofr or is a string. The

result of theγ operator isr with an additional attributeB, where theB value on rowk is a

sequential concatenation of the row-k values for the attributes along with any given strings.

As an example, considerγModel with Trim ← Model+" " +TrimT1 which converts TableT1 in

Figure 4.6 to TableT2.

Sometimes, one mapping may involve more than one operator. We can, for ex-

ample, take a union ofcolor and body typein Figure 4.4 to form part of the set for

Feature in Figure 4.5. After adding needed projection , split, and renaming opera-

tions, this union isρcolor ← FeatureπcolorT ∪ ρbodytype1 ← Featureπbodytype1δ
bodytype
bodytype1,bodytype2

T

∪ ρbodytype2 ← Featureπbodytype2δ
bodytype
bodytype1,bodytype2

T, whereT is the table in Figure 4.4.

Now that we have the operators we need, we can give examples. Figure 4.7 gives the

mapping from the source table in Figure 4.1a to the target schema in Figure 4.8. Observe

that we have transformed all the Boolean values into attribute-name values and that we

have gathered together all the features asFeaturevalues. Figure 4.9 gives the mapping for

the car ads from the site for Figures 1.2 and 1.3. Observe that we have split the makes and

1Currently, our system does not handle this case. To implement value merging, we should apply data-
frame value recognizers to all possible concatenations of values in unrecognized columns.

38

Target Attribute Source Derivation Expression for Value Sets
Year ρY r ← Y earπY rT
Make πMakeT
Model πModelT
Price πPriceT
Feature ρColour ← FeatureπColourT

∪ ρAuto ← FeatureπAutoβ
Auto
Y es, NoT

∪ ρAir Cond. ← FeatureπAir Cond.β
Air Cond.
Y es, No T

∪ ρAM/FM ← FeatureπAM/FMβ
AM/FM
Y es, No T

∪ ρCD ← FeatureπCDβCD
Y es, NoT

Figure 4.7: Inferred Mapping from Source TableT in Figure 4.1a to the Target Table in
Figure 4.8

Car Year Make Model Mileage Price PhoneNr Car Feature
0001 1992 ACURA legend $9500 0001 grey
0002 2000 AUDI A4 $34,500 0001 Auto
0003 1985 BMW 325e $2700.00 0001 AM/FM

... ...
0005 1999 Pontiac Firebird 32,883 Contact Us 1-877-944-2842 0005 Blue
0006 2000 Acura RL 3.5 36,657 $23,988 1-877-944-2842 0005 Power Steering

... ...
0006 Silver
0006 Power Brakes

...

Figure 4.8: Sample Tables for Target Schema

models as required, matched the synonymsMilesandMileage, extracted thePhoneNrfrom

the free text, and gathered together all the various features asFeaturevalues.

39

Target Attribute Source Derivation Expression for Value Sets
Year πY earT
Make πMakeδ

Make and Model
Make, Model T

Model πModelδ
Make and Model
Make, Model T

Mileage ρMiles ← MileageπModelT
Price πPriceT
PhoneNr εPhoneNrP 1 T
Feature ρExterior ← FeatureπExteriorT

∪ ρBody Type ← FeatureT’
∪ ρBody Style ← FeatureT’
∪ ρTransmission ← FeatureT’
∪ ρEngine ← FeatureT’
∪ ρFuel Type ← FeatureT’
∪ ρFeatures ← FeatureT”

Figure 4.9: Inferred Mapping from the Source TablesT in Figure 1.2,T ′ in Figure 3.9, and
T ′′ in Figure 3.10 and from P, the page in in Figure 1.2, to the Target Table in Figure 4.8

40

Chapter 5

EXPERIMENTAL ANALYSIS

We now present the results of two experiments in the domains of car advertisements

and cell phones.

5.1 Car Advertisements

We gathered tables of car advertisements from more than a hundred different English-

language Web sites. Because of human resource limitations, however, we analyzed only

60.

Of the 60 car-ads tables we analyzed, 28 included links to other pages containing

additional information about an advertised car (Figures 1.2 and 1.3 show a typical exam-

ple). For all 60 tables, we first applied our system to identify and list attribute-value pairs

for tuples of top-level tables, and then for the 28 tables with links, we appropriately asso-

ciated linked information with each tuple. We then applied our extraction step and looked

for mapping patterns.

Since our objective was to obtain mappings (rather than data), it was not necessary

for us to process every tuple in every table. Hence, from every table, we processed only the

first 10 car ads. As a threshold, we required six or more occurrences of a pattern to declare

a mapping. A human expert judged the correctness of each mapping.1 We considered a

mapping declaration for a target attribute to be completely correct if the pattern recognized

led to exactly the same mapping as the human expert declared, partially correct if the pattern

led to a unioned (or intersected) component of the mapping, and incorrect otherwise. For

1Although expert judgement for tables can sometimes be hard [31], establishing correctness results for
car-ads for our target table was not difficult.

41

data outside of tables, the system mapped an individual value to either the right place or

the wrong place or did not map a value it should have mapped.

5.1.1 Results—Car Advertisements

We divided the 60 car-ads tables into two groups: 7 “training” tables and 53 “test”

tables. We used the 7 “training” tables to generate the heuristics we used in table locating

and table understanding. For the 7 training tables, we were able to locate 100% of the top-

level tables as well as all the applicable tables in the linked pages. For the 53 test pages,

we were able to locate 46 top-level tables successfully (86.8%). Among these 46 tables,

28 had links to additional pages with more detail about each car ad. Of the 28 additional

pages, 13 had structured car-ad information, while 15 included unstructured information

(which is fine for data extraction, but does not apply for generating table mappings). The

system correctly analyzed 12 out of the 13 linked pages of structured information; it also

incorrectly declared that it found structured information in 2 linked pages.

We also analyzed our mapping approach for successfully located tables from the

test set. For the 46 recognized tables, there were 319 mappings, of which we correctly or

partially correctly discovered 296 (92.8%), missing 23 (7.2%); we (incorrectly) declared

13 false mappings (4.2% of 309 declared mappings). Of the correct mappings, 228 of

296 (77%) came from top-level tables, while 58 (19.6%) came from linked tables, and 10

(3.4%) came from both top-level and linked tables. Of the 296 mappings we correctly

discovered, 121 (40.9%) were direct matches, in the sense that the attributes in the source

and target schemas were identical, and 175 (59.1%) were indirect matches. Of the 175

indirect matches, 28 used synonyms and thus required only renaming with aρ operator,

1 had Boolean values and thus required aβ operator, 93 included features scattered un-

der various attributes and in raw text and thus required∪ andε operators, 2 provided only

factored telephone numbers and thus requiredε and1 operators, 53 needed to be split

and thus required aδ operator, and some required combinations of these operators (e.g.

synonyms and union). The values we needed to split came in a variety of different combi-

nations and under a variety of different names. We found, for example,Descriptionas an

42

attribute for the combinationYear+Make+Model+Feature, Model Coloras an attribute for

Make+Model+Color, andModelas an attribute forYear+Make+Model.

Discussion—Car Advertisements

Locating the correct table and understanding it properly is not a trivial problem. As

we discussed in Chapter 3, we consider attributes, values, and table layout when seeking

a table. Our system failed to locate 7 out of 53 test tables. All but one of the 7 missed

tables contained uncommon attributes in the source page. For example, some Web sites

use abbreviations likePW, PL, CC, andAC; others include attributes that are irrelevant to

the extraction ontology, such asImage, Click on Thumbnail, andLocation. This caused

our system to fail to detect an attribute row (or column) in a table, leading to a failure to

identify the correct table. The other table-location failure occurred because the top table

only had 2 columns, but we required a minimum size of 3 columns by 3 rows.

For linked pages, the system was not able to find the correct table (single attribute-

value pairs) for one site (out of 13). This is because all cars shared a single linked page

containing information for all the cars (a case we had not considered). Our system in-

correctly identified two linked pages as containing tables of interest because it interpreted

some values as attributes or vice versa.

As mentioned in our earlier discussion, discovering correct mappings can lead to

an increase in values extracted compared to what would have been found by the extraction

ontology alone and can also therefore lead to the acquisition of additional knowledge for the

extraction ontology. In our experiments, we required 60% of the values to match to declare

a mapping. Overall, we actually achieved roughly 90–95%, a much higher percentage.

This, however, leaves about 5–10% of the approximately 3,000 values encountered in tables

as being unrecognized by the extraction ontology (and potentially many hundreds more

since we processed only 10 car ads per site). Examples include non-U.S. models such as the

Toyota Starletor Nissan Presea; elaborately described features such astelescoping steering

wheel; abbreviations not encountered previously such asleath int for leather interior; and

features simply not encountered before, such astrip computer.

43

We missed 23 mappings and only declared 13 false mappings. Our system missed

10 mappings of car model because the extraction ontology was targeted to U.S. car ads,

and so non-U.S. ads introduced car models that our system did not recognize. The sys-

tem missed 2 price mappings, 1 mileage mapping, and 2 feature mappings because the

extraction ontology was overly restrictive. All of these problems can be corrected by minor

adjustments to the extraction ontology. The system missed another 5 mappings because of

bugs in the original documents (ill-formed HTML) or due to the use of special codes to in-

dicate particular values like colors. Sometimes Web sites use generic “filler” values such as

contact us, please call, or unknowninstead of listing actual prices, mileages, and so on; we

missed 3 mappings for this reason. For the 13 incorrect mappings, 8 came from incorrectly

understood linked pages. One of these 8, for example, mapsLocationto Model, because

the location isAurora (a city in Colorado) which is also a model name for Oldsmobile. The

other primary confusion for our tool was distinguishing between numbers such as price and

mileage.

5.1.2 Cell-Phone Sales

The car-advertisements example uses our most mature extraction ontology, and so

we expected to achieve good results using it. To see how our table understanding ap-

proach works with less developed extraction ontologies, we tested our system in the U.S.

cell-phone sales domain. Figure 5.1 shows part of a top page of a typical cellular-phone ap-

plication, and Figure 5.2 shows part of a page obtained by clicking onMlife Local $29.99.

We used the following target schema:

{Plan, Carrier, MonthlyFee, AnyTimeMin, OffPeakMin, ContractLength,

ActivationFee CancellationFee}
{Plan, Feature}.

Similar to our car-ads experiment, we started with a training set of 5 cell-phone

Web pages, and we tuned our extraction ontology to handle these 5 cases. We then gathered

pages from 12 cell-phone Web sites for our test set, and found that our tool correctly located

top-level tables in 11 of them (91.7%). The table that was missed was excluded because it

44

Figure 5.1: Web Page with Table of Cell Phones from Buy.com

45

Figure 5.2: Linked Page with Additional Cell Phone Information from Buy.com

46

only had two columns, thus failing our minimum size threshold of 3 rows and 3 columns.

There were also 4 linked pages, all of which contained relevant tables that our tool properly

located. A human expert judged that there were 97 mappings relevant to our extraction

ontology in the 11 sites for which we correctly identified the top-level table. Our system

declared 103 mappings, of which 15 were false mappings (14.6%), and 88 were correct or

partially correct mappings (85.4%). In this experiment, 48 mappings came from top-level

tables (46.6%), while 52 came from linked pages (50.5%), and 3 came from both top-level

and linked pages. Our system missed 9 mappings (9.3% of 97).

Of the 15 false mappings, 6 came from linked tables, and in all cases these were for

the target attributeOffPeakMin. The other 9 false mappings came from top-level tables: 5

for AnyTimeMin, 2 for ActivationFee, and 1 each forCancellationFeeandOffPeakMin. In

all cases, the false mappings were related to numeric attributes. With more context infor-

mation in the extraction ontology, our tool could do a better job distinguishing the meaning

of different numbers. As expected, the false-positive rate for the cell-phone domain is sev-

eral times higher than for car ads (14.6% versus 4.2%), which can be attributed partially

to the relative amount of effort spent in developing the corresponding extraction ontolo-

gies, and partially to the high degree of similarity between the domains of attributes in the

cell-phone application.

An interesting aspect of the cell-phone domain is that of the 88 mappings we cor-

rectly discovered, none were direct (as compared to 40.9% for car ads). That is, we had

to apply some transformation operator to every mapping in the cell-phone application: 38

mappings used synonyms and thus required aρ operator for renaming; 34 mappings in-

cluded features scattered under various attributes, and thus required∪ operators; and 24

mappings needed to be split and thus required aδ operator. Some mappings required com-

binations of operators.

The overall performance of our tool in the cell-phone sales domain is reasonably

good and generally in line with our expectations. We could improve the outcome by tuning

the extraction ontology more carefully.

47

48

Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we designed and implemented a system which can automatically

locate HTML tables for a specified application domain and then extract information of

interest from the located tables by inferring mappings from source tables to a target schema.

We suggested a different approach to the problem of schema matching, one which may

work better for the heterogeneous HTML tables encountered on the Web. In essence, we

transformed the table location problem and the schema matching problem into an extraction

problem that provides information to distinguish tables from surrounding text and layout,

and to infer the semantic correspondence between a source table and a target schema. We

gave experimental evidence to show that our approach can be successful. In particular,

we tested two applications: car advertisements and cell-phone sales. We correctly located

90% of the tables (top-level and linked) in pages for these two applications. Then, from

the located tables we inferred 93% of the appropriate mappings with a precision of 96%

for our car-ads application and inferred 91% of the appropriate mappings with a precision

of 85% for our cell-phone application.

6.2 Future Work and Interesting Unresolved Table Problems

As a next step of the table location and understanding problem, we would like to

improve our approach and make it handle more cases such as some of the problems listed in

Appendix A. We also do not want to just focus on HTML tables. To locate and understand

tables in other formats is also an interesting problem.

49

Tables also provide useful information for data frames. After we infer a mapping,

we know that all the data under one source attribute should map to one target object. There-

fore, we could update our ontology with values found in the source table.

Beyond table location and understanding, we recognize that many tables are behind

forms, in the so-called “hidden Web” [39, 49]. Thus, in order to arrive at much of the

data we can process with the system we have proposed in this paper, we need to access the

hidden Web. Once extracted, if the result is a table, we can use the techniques presented

here to extract the data into a target view. If the result is not a table, we can use techniques

developed previously [22] to extract the data. Further, we also plan to add our work to the

data-extraction work done previously [19].

50

Bibliography

[1] www.ads4autos.com, July 2003.

[2] P. G. Anderson. Multidimensional golden means. InApplications of Fibonacci num-

bers, Vol. 5 (St. Andrews, 1992), pages 1–9. Kluwer Academic Publishers Group,

Dordrecht, 1993.

[3] Autobytel.com, Spring 2001.

[4] www.autoexecutives.com, July 2003.

[5] autoscanada.com, Summer 2001.

[6] www.autoweb.com, July 2003.

[7] J. Biskup and D.W. Embley. Extracting information from heterogeneous information

sources using ontologically specified target views.Information Systems, 28(3):169–

212(44), May 2003.

[8] www.bobandersonford.com, July 2003.

[9] www.bobhowardhonda.com, May 2003.

[10] www.bostoncellular.com, July 2003.

[11] D. Buttler, L. Liu, and Calton Pu. A fully automated object extraction system for the

world wide web. InProceedings of the 21st International Conference on Distributed

Computing Systems (ICDC’01), Phoenix (Mesa), Arizona, April 2001.

[12] www.carbuyer.com, July 2003.

[13] www.carcast.com, July 2003.

51

[14] www.cardirect.com, July 2003.

[15] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ull-

man, and J Widom. The TSIMMIS project: Integration of heterogeneous information

sources. InInformation Processing Society of Japan Conference (IPSJ), pages 7–18,

Tokyo, Japan, October 1994.

[16] www.classyauto.com, July 2003.

[17] W.W. Cohen, M. Hurst, and L.S. Jensen. A flexible learning system for wrapping

tables and lists in html documents. InProceedings of International World Wide Web

Conferences (WWW02), pages 232–241, Honolulu, Hawaii, May 2002.

[18] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards automatic data ex-

traction from large web sites. InProceedings of the 27th International Conference on

Very Large Data Bases (VLDB’01), pages 109–118, Rome, Italy, September 2001.

[19] Homepage for BYU data extraction research group. URL: http://www.deg.byu.edu.

[20] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data sources:

A machine-learning approach. InProceedings of the 2001 ACM SIGMOD Interna-

tional Conference on Management of Data (SIGMOD 2001), pages 509–520, Santa

Barbara, California, May 2001.

[21] The w3c architecture domain. http://www.w3.org/dom/.

[22] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,

and R.D. Smith. Conceptual-model-based data extraction from multiple-record Web

pages.Data & Knowledge Engineering, 31(3):227–251, November 1999.

[23] D.W. Embley, D.M. Campbell, Y.S. Jiang, Y.-K. Ng, R.D. Smith, S.W. Liddle, and

D.W. Quass. A conceptual-modeling approach to extracting data from the Web. In

Proceedings of the 17th International Conference on Conceptual Modeling (ER’98),

pages 78–91, Singapore, November 1998.

52

[24] D.W. Embley, D.M. Campbell, S.W. Liddle, and R.D. Smith. Ontology-based ex-

traction and structuring of information from data-rich unstructured documents. In

Proceedings of the 7th International Conference on Information and Knowledge Man-

agement (CIKM’98), pages 52–59, Washington D.C., November 1998.

[25] D.W. Embley, Y.S. Jiang, and Y.-K. Ng. Record-boundary discovery in Web doc-

uments. InProceedings of the 1999 ACM SIGMOD International Conference on

Management of Data (SIGMOD’99), pages 467–478, Philadelphia, Pennsylvania,

May/June, 1999.

[26] D.W. Embley, Y.-K. Ng, and L. Xu. Recognizing ontology-applicable multiple-record

web documents. InProceedings of the 20th International Conference on Conceptual

Modeling (ER2001), pages 555–570, Yokohama, Japan, November 2001.

[27] D.W. Embley, C. Tao, and S.W. Liddle. Automatically extracting ontologically spec-

ified data from HTML tables with unknown structure. InProceedings of the 21th

International Conference on Conceptual Modeling (ER2002), pages 322–337, Tam-

pere, Finland, October 2002.

[28] D. Freitag. Information extraction from html: Application of a general machine learn-

ing approach. InProceedings of the 15th National Conference on Artificial Intelli-

gence and 10th Innovative Applications of Artificial Intelligence Conference, pages

517–523, Madison, Wisconsin, January, 1998.

[29] J. Hammer, H. Garcia-Molina, J. Cho, A. Crespo, and R. Aranha. Extracting

semistructured information from the Web. InProceedings of the Workshop on Man-

agement of Semistructured Data, Tucson, Arizona, May 1997.

[30] HTML 4.01 specification. http://www.w3.org/TR/html401/, December 1999.

[31] J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wilfong. Why table ground-truthing

is hard. InProceedings of the Sixth International Conference on Document Analysis

and Recognition, pages 129–133, Seattle, Washington, September 2001.

53

[32] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table structure recognition and its

evaluation. In P.B. Kantor, D.P. Lopresti, and J. Zhou, editors,Proceedings of Doc-

ument Recognition and Retrieval VIII, volume SPIE-4307, pages 44–55, San Jose,

California, January 2001.

[33] M. Hurst. Layout and language: challenges for table understanding on the web.

In Proceedings of the First International Workshop on Web Document Analysis

(WDA2001), pages 27–30, Seattle, Washington, September 2001.

[34] M. Hurst and S. Douglas. Layout and language: Preliminary investigations in rec-

ognizing the structure of tables. InProceedings of the International Conference on

Document Analysis and Recognition (ICDAR’97), pages 1043–1047, Ulm, Germany,

August 1997.

[35] www.jscars.com, May 2003.

[36] www.kernautos.com, July 2003.

[37] N. Kushmerick, D.S. Weld, and R. Doorenbos. Wrapper induction for information

extraction. InProceedings of the 1997 International Joint Conference on Artificial

Intelligence, pages 729–735, NAGOYA, Aichi, Japan, 1997.

[38] K. Lerman, C.A. Knoblock, and S. Minton. Automatic data extraction from lists

and tables in web source. InProceedings of Automatic Text Extraction and Mining

Workshop (ATEM-01), Seattle, Washington, August 2001.

[39] S.W. Liddle, S.H. Yau, and D.W. Embley. On the automatic extraction of data from the

hidden web. InProceedings of the International Workshop on Data Semantics in Web

Information Systems (DASWIS-2001), pages 106–119, Yokohama, Japan, November

2001.

[40] S. Lim and Y. Ng. An automated approach for retrieving heirarchical data from

HTML tables. InProceedings of the Eighth International Conference on Informaiton

and Knowledge management (CIKM’99), pages 466–474, Kansas City, Missouri,

November 1999.

54

[41] D. Lopresti and G. Nagy. Automated table processing: An (opinionated) survey. In

Proceedings of the Third IAPR Workshop on Graphics Recognition, pages 109–134,

Jaipur, India, September 1999.

[42] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cu-

pid. In Proceedings of the 27th International Conference on Very Large Data Bases

(VLDB’01), pages 49–58, Rome, Italy, September 2001.

[43] R. Miller, L. Haas, and M.A. Hernandez. Schema mapping as query discovery. InPro-

ceedings of the 26th International Conference on Very Large Databases (VLDB’00),

pages 77–88, Cairo, Egypt, September 2000.

[44] www.motorzones.com, July 2003.

[45] I. Muslea. Extraction patterns for information extraction tasks: survey. InProceedings

of American Association for Artificial Intelligence, pages 1–6, Orlando, Florida, July

1999.

[46] www.palmbeachclassifieds.com, July 2003.

[47] www.peakcellular.com, July 2003.

[48] P. Pyreddy and W.B. Croft. TINTIN: A system for retrieval in text tables. InProceed-

ings of the 2nd ACM International Conference on Digital Libraries, pages 193–200,

Philadelphia, Pennsylvania, July 1997.

[49] S. Raghavan and H. Garcia-Molina. Crawling the hidden web. InProceedings of the

27th International Conference on Very Large Data Bases (VLDB’01), Rome, Italy,

September 2001.

[50] S. Soderland. Learning information extraction rules for semi-structured and free text.

Machine Learning, 34(1–3):233–272, 1999.

[51] www.usedcars.com, July 2003.

55

[52] M. Yoshida, K. Torisawa, and J. Tsujii. A method to integrate tables of the world

wide web. InProceedings of the International Workshop on Web Document Analysis

(WDA 2001), pages 31–34, Washington, DC, September 2001.

56

Appendix

57

58

Appendix A

INTERESTING UNRESOLVED TABLES

59

Figure A.1: Table with Complicated Structure (Multiple Schemas and Long Factors) [51]

60

Figure A.2: Table with Complicated Structure (Each Record Takes Multiple Rows) [6]

Figure A.3: Table with Complicated Schema (Attributes Take Multiple Rows) [46]

61

Figure A.4: Table with Image Attributes [12]

Figure A.5: Tables in Table [8]

62

Figure A.6: Table with Irrelevant Images Inside [14]

63

Figure A.7: Each Record in the Top-Level Table Contains an Attribute-Value Table [1]

64

Figure A.8: Top-Level Table with Image Colors [13]

65

Figure A.9: View Detailed Information by Moving a Mouse [13]

66

Figure A.10: Top-Level Table with Complicated Structure [16]

Figure A.11: Top-Level Table with Only 2 Columns [4]

67

Figure A.12: Top-Level Table with Complicated Structure [10]

Figure A.13: Top-Level Table with Complicated Structure and Image [47]

68

Figure A.14: Complicated Attribute-Value-Pair Table in a Linked Page [8]

69

Figure A.15: Non-fixed Positions of Attribute and Value in Attribute-Value-Pair Table in
Linked Pages [44]

Figure A.16: List with Checked Marks [36]

70

