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Abstract. Automatically extracted data is rarely “clean” with respect
to pragmatic (real-world) constraints—which thus hinders applications
that depend on quality data. We proffer a solution to detecting pragmatic
constraint violations that works via a declarative and semantically en-
abled constraint-violation checker. In conjunction with an ensemble of
automated information extractors, the implemented prototype checks
both hard and soft constraints—respectively those that are satisfied or
not and those that are satisfied probabilistically with respect to a thresh-
old. An experimental evaluation shows that the constraint checker iden-
tifies semantic errors with high precision and recall and that pragmatic
error identification can improve results.
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1 Introduction

Automated information-extraction systems (and sometimes even humans) can
extract erroneous (even ridiculous) information. Unless extracted information
about entities, values, and relationship assertions among entities and values
is correct, applications that depend on the information being correct—such as
search, marketing, advertising, and hinting applications—quickly degrade.

Perhaps the most important aspect of data quality is whether the data satis-
fies real-world constraints—formally, pragmatic constraints. In our proposed so-
lution to assessing the quality of automatically extracted data, we begin by align-
ing internal conceptual-model constraints—formally, semantic constraints—with
pragmatic constraints. Realizing that pragmatic constraints may be probabilistic
and both hard and soft and that verification of accuracy may require support-
ing documentation, we semantically enrich conceptual models with constraint
specification based on probability distributions, and we add the possibility of



2 S.N. Woodfield, et al.

attaching supporting documentation to every object and relationship assertion
[1]. Then, contrary to standard practice in business database systems, we allow
an ensemble of automated extractors to populate the conceptual schema with
data that may violate declared integrity constraints. Checking incoming data
against declared constraints is straightforward—indeed, is fully automatic based
on the declarations alone. Deciding how to handle constraint violations, however,
is application-dependent.

Although these augmented conceptual models are generally applicable for
use with machine-learned or rule-encoded expert information-extraction systems,
our implemented prototype, Fe6,5 focuses on family-history applications.6 In Fe6
we handle constraint violations by flagging them red, yellow, or green depending
on the severity of the violation and allow adjudication users to correct errors.
Interestingly, because constraint specification is declarative in Fe6 conceptual
models, handlers that send warning messages to adjudication users for constraint
violations can all be generated automatically.

Figures 1 and 2 show an example. In the text snippet in Figure 1, observe
that Reverend Ely’s children belong to two different mothers: Elizabeth who died
in 1871 and Abbie, whom Reverend Ely married subsequently. The automated
extraction in Figure 2 has the children all belonging to Elizabeth, but Francis,
the last child in the list, was born after Elizabeth died. The automatic extraction
engines, which are blind to semantics, regularly make these kinds of (ridiculous)
mistakes. Semantic constraint checkers, however, can assess the extracted in-
formation and catch constraint violations. Handlers generate messages and flag
potentially erroneous filled-in form-fields with a “circle-?” warning icon. When
an adjudication user clicks on the icon, a message like the one in Figure 2 pops
up to warn the user of potential constraint violation. (Note that the message
refers to birth dates, which are not present in the family-composition form in
Figure 2. They are, however, extracted onto another form.)

Contributions of the paper include:

1. the addition of probabilistic constraints and of documentation for assertions
in a populated model instance;

2. the automatic generation of constraint checkers and constraint handlers; and
3. an experimental validation of constraint-checker precision and recall in the

context of an ensemble of information-extraction engines applied to OCRed
pages of family-history books.

We explain the details of these contributions as follows. Section 2 elucidates these
contributions in the context of related work. Section 3 describes the application
system, highlighting the augmented conceptual model and the means by which
constraint checkers and handlers can be generated. Section 4 gives the results

5 Fe6: Form-based ensemble with 6 pipeline phases that accepts an OCRed document
as input and generates a conceptualization of document-asserted facts as output.

6 Increased usage of on-line genealogical sites such as Ancestry.com and Family-
Search.org and increased participation in conferences such as RootsTech.org illus-
trate the growing interest in these applications.
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Fig. 1. Text Snippet from The Ely Ancestry [2], Page 421.

Fig. 2. Screenshot of Constraint Violation: Child Born After Mother’s Death.

of an experimental evaluation over a blind test set consisting of more than a
thousand automatically extracted assertions from twelve pages taken from three
different OCRed family-history books. Section 5 summarizes, draws conclusions,
and foreshadows future work.

2 Related Work

Related work is found in the intersection of three disciplines: error detection in
information extraction, data cleaning in database systems, and data quality in
conceptual modeling.

Information extraction (IE) systems process input text and typically store the
results in some kind of database format. Often this extracted content undergoes
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a further stage called data cleaning, where inconsistencies and errors are detected
and repaired. While data formats and checking methods vary, rules often serve to
discover these anomalies. Sample data cleaning approaches include the following:

– A hybrid rule-based/statistical algorithm called LEIBNITZ achieves state-
of-the-art performance for building and checking typed functional relations
like ’was born in’, ’died in’, and ’lived in’ after information extraction has
taken place [3].

– A hybrid Ontology-Based IE system consists of two extensions: (i) an ensem-
ble of IE systems that each treat the input text, and (ii) an ontology-based
error/contradiction detection system that identifies assertions where the var-
ious components’ outputs are in disagreement or domain-inconsistent [4].

– The SemantiClean system uses ontology-based reasoning to perform data
cleaning on IE output [5]. The Pellet reasoner is run against the IE system’s
RDF data to perform consistency checking, including collecting provenance
information for the assertions.

– A system developed under the PHEME project performs IE and then uses
an OWL ontology for biographical knowledge to interpret, encode, and check
temporal events and relations like marriedTo and dateOfBirth [6]. Rule
schemas written in the Protegé ontology editor allow for detecting contra-
dictory assertions.

In harmony with these initiatives, Fe6 constraint checkers also apply standard
reasoners to detect domain-specific pragmatic errors using ontology-based tech-
niques. Fe6, however, deals with a wider array of input text types and focuses
more specifically on the family-history domain.

More generally, database content, even if not derived from IE, often must
undergo this type of scrutiny. Various approaches and tools have been developed
to perform data cleaning in large-scale database systems, as illustrated in surveys
of the field [7–9]. Fe6 constraint-checking techniques differ from the traditional
approach that works in a relational database context. Fe6 allows contradictory
facts to be captured, and then the system reasons probabilistically over such
facts.

Data quality is a primary concern in information systems and conceptual
modeling. Indeed, a significant aspect of the activity of conceptual modeling is
to identify integrity constraints such as cardinality constraints [10]. However,
constraint enforcement alone is insufficient; quality also depends on the par-
ticular design and production processes that lead to the capturing of specific
data associated with an information system [11]. Researchers have also explored
questions related to the quality of conceptual model instances themselves be-
cause errors at the schema level cascade to the data level (e.g. [12]). Concep-
tual modeling researchers have proposed various frameworks for assessing model
quality (e.g. [13–16]) from which some level of data quality will presumably
follow [17, 18]. Fe6 constraint checkers directly address data quality in ontolog-
ical conceptualizations by aligning conceptually declared semantic constraints
with pragmatic real-world constraints and then checking asserted fact-instances
proposed for inclusion in a populated model instance.
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3 Application System

To serve their customers, family-history web sites such as FamilySearch.org and
Ancestry.com provide search and hinting facilities over a large7 collection of
data about individuals and families. They populate their searchable data stores
mostly by crowd-sourcing. Hundreds of thousands of volunteers painstakingly
fill-in forms with data copied from images displayed on a computer screen. Most
of the images are of handwritten data, often in pre-created forms (e.g. census
records, birth certificates, death certificates, and military records). Some of the
images, however, are typeset or typewritten such as are newspaper obituaries and
family-history books.8 To extract genealogical data from these printed sources,
providers are turning to OCR and automated information-extraction techniques
to make this data available for search and hinting.

Fe6 consists of an ensemble of extractors designed to span the space from fully
unstructured text to highly semi-structured text. Extracted data from a page of
a document (e.g. Page 421 of The Ely Ancestry in Figure 2) is distributed to a
form (e.g. the “Family” form in Figure 2). An adjudicator checks the filled-in
form for correctness and makes corrections as necessary. As an aid to checking,
hovering over a record in the form highlights fields as Figure 2 shows and also
displays warning icons on fields for which the system has detected a semantic
constraint violation. Clicking on an icon pops open a display window explaining
the violation.

3.1 Conceptualization

An evidence-based conceptual model [1] serves as the formal foundation for Fe6
applications. Figure 3 shows an example—a conceptualization with its predi-
cates, constraints, and documenting evidence.

The diagram in Figure 3 graphically represents a logic database schema [19].
Object sets, depicted as named rectangular boxes, are one-place predicates (e.g.
Person(x)). Relationship sets, depicted by lines connecting object sets, are n-
place predicates (e.g. Person(x) has BirthDate(y)). Observe that predicates are
in infix form and that predicate names come directly from the text and reading
direction arrows in the diagram.

Constraints can be hard (returning only either satisfied or not satisfied when
checked) or soft (returning a probability of being satisfied when checked). The
conceptual-model diagram in Figure 3 has 28 hard participation constraints spec-
ifying a minimum and maximum number of times an object may participate in
a relationship set. Each object-set/relationship-set connection has one partici-
pation constraint as denoted by the decorations on the ends of the connecting
lines. The 2’s in Figure 3 explicitly specify participation constraints that over-
ride decoration-specified participation constraints—each specifies that children

7 FamilySearch International, for example, has information about more than a billion
deceased individuals.

8 FamilySearch International has in its collection many millions of newspaper obitu-
aries and has scanned and placed online more than 200,000 family-history books.
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Fig. 3. Depiction of Conceptual Model Features

have two parents. The diagram also shows 4 hard subset constraints (denoted by
triangles on connecting lines) specifying that the objects in an object set must
be a subset of the objects in another object set—children and spouses are also
persons. In addition, Figure 3 shows one of many possible soft constraints as a
probability distribution (Child being born Years after marriage date of parent
Person has Probability). Figure 3 indicates, as well, that evidence can be associ-
ated with (and in Fe6 is associated with) every predicate assertion instance (e.g.
Child is child of Person statements found in a document).

3.2 Hard Constraints

The conceptual-model diagram itself declaratively specifies hard cardinality con-
straints [10]. For example, it specifies that a person has at most one death date.
The Person side of the Person has DeathDate relationship set has an “o” (“o”
for “optional”) on its connection and thus allows for no death date. The Death-
Date side of the relationship set has an arrowhead, which specifies that the
relationship from Person to DeathDate is functional (at most one death date).

Figure 4 shows the adjudicator user interface with extracted data, warning
icons, messages, and original text for the case of more than one death date having
been extracted for Jesse Harwood. The generated message explains that in ad-
dition to the date displayed in the form, the extraction ensemble also extracted
another death date for Jesse. On examination of the document, the user would
discover that the second death date is for Jesse’s wife and thus that the date
extracted (which happens to be the right choice) should be kept as the death
date but that the erroneous death place should be removed.

The declaration of a participation constraint is sufficient to generate code
that both checks for participation constraint violations and handles them. In
a populated model instance, counting the number of times an object partici-
pates in a relationship set is straightforward, as is checking whether the count
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Fig. 4. Screenshot of Constraint Violation (taken from A Genealogical History
of the Harwood Families[20], Page 57): Two Death Dates.

is within a min–max range. Similarly, generating a handler that names the ob-
ject sets involved and lists the violating objects in a statement template is also
straightforward. In family-history applications, the appearance of a name cre-
ates a person object, and thus the name can be retrieved and substituted in the
template in place of Person in the Person has DeathDate relationship set in the
example in Figure 4.

3.3 Soft Constraints

Soft constraints are based on probability distributions. Since the conceptual
model is foundationally predicate calculus, constraint rules can all be Datalog-
like implications [21]. The antecedents of an implication are predicates in the
model or derived from these predicates or from given probability distributions,
and the single consequent gives the probability of a condition being satisfied. For
example, we can write a rule about the length of time after a parent’s marriage
date a child is born:

Child(x1) is child of Person(x2),
Person(x1) has BirthDate(x3),
Person(x2) and Spouse(x4) married on MarriageDate(x5) in MarriagePlace(x6),
Years(x7) = Years(YearOf (x3) − YearOf (x5)),
child being born Years(x7) after marriage date of parent has Probability(x8)
⇒
Child(x1) being born Years(x7) after marriage date of parent Person(x2) has
Probability(x8).

Any probability that fails to meet a user-specified threshold is a constraint
violation. Violations tell us that one or more of the antecedents must be incor-
rect. Figure 5 shows an example in which an incorrect marriage date9 has been

9 The date is actually a “p.” date, the date a proclamation of the marriage was posted,
which serves as a reasonably accurate approximation of a marriage date.
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assigned to a couple. As a result, the birth of their son, James, happened 58
years before their marriage—a highly unlikely occurrence.10 (In another form, a
“Family” form like the one in Figure 2, James has been correctly extracted as a
child of Jackson, Robert and Isobel King.)

Fig. 5. Screenshot of Constraint Violation (taken from Index to The Register of
Marriages and Baptisms in the Parish of Kilbarchan[22], Page 55): Birth (-58)
Years After Marriage.

Each possible constraint violation has an application-dependent handler. In-
terestingly, given only the Datalog rule, both the code to check for a violation
and the code to handle a violation can be generated automatically. The checker
code need only run its usual interpreter on the given Datalog statement, which
in essence creates a relational table in which each tuple is the join of all predicate
instances that satisfy the Datalog statement. These tuples are then fed one at
a time to the handler. Given a user-chosen threshold for constraint violation,
the handler fills in a message template with extracted instance data found to be
in violation. The handler generator substitutes textual instance values for vari-
ables in unary predicate-statement phrases (such as BirthDate(x)) and formats
them for ease of reading. Since non-textual objects (such as Person instances
and Child instances) come into existence by the principle of ontological commit-
ment, the handler generator replaces unary person predicates with the person’s
name—the trigger for committing the extraction ontology [23] to recognize the
existence of a person.

4 Experimental Evaluation

We designed an experiment to test three hypotheses:

H1 The constraint checker identifies all errors with semantic inconsistencies.
H2 Errors the constraint checker finds correspond to adjudicators’ corrections.

10 The probability distribution for this example comes from a snapshot of the public
ancestral tree available on FamilySearch.org consisting of information on over 900
million deceased individuals and their families.
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H3 Removing assertions flagged by the constraint checker as possible extraction
errors improves precision.

For the experiment we selected three books: The Ely Ancestry [2] (sample
page snippet in Figure 2), The Register of Marriages and Baptisms in the Parish
of Kilbarchan [22] (sample page snippet in Figure 5), and A Genealogical History
of the Harwood Families [20] (sample page snippet in Figure 4). As a develop-
ment test set, we chose three pages from each book. On these nine pages, we
identified extraction errors with semantic inconsistencies made by the ensemble
of extractors. For soft errors, we wrote Datalog rules over probability distribu-
tions, that would find each of these errors. These soft constraints plus the hard
max-participation constraints in the conceptual model in Figure 3 became the
fixed set of constraints for the blind test set. The blind test set consisted of the
four pages in each book located 1/5, 2/5, 3/5, and 4/5 of the way through the
book (although we took a subsequent page if the page turned out to be a picture
page as happened in three cases and also if the page contained essentially no
genealogical information as happened in one case). Tables 1, 2, and 3 show the
statistical data we gathered from the blind test set for testing the hypotheses.

To test Hypothesis H1, we ran the data extracted by the ensemble through
the constraint checker and produced the pre-adjudication list of semantic con-
straint violations. To obtain the ground truth about any actual violations in the
data, we used the adjudicator interface to correct the extraction from the twelve
blind test pages and then ran the constraint checker on the ground truth to
produce the post-adjudication list of constraint violations. We also identified all
errors in the blind test set that a constraint checker should catch regardless of
whether a rule for the constraint had been identified in the development test set.
Table 1 shows the precision, recall, and F-score. True positives are violations in
the pre-list that did not appear in the post-list, and false positives are those that
appeared in both lists. The total number of positives is the list of all violations
identified in the blind test set—both those caught from the rules discovered for
the development test set plus those that would have been caught by new rules
needed to catch additional semantic violations in the blind test set.

The 54 dev-set rules were all either date-based such as mother’s age relative
to child’s birth and age at death (including negative ages, meaning the impossible

Table 1. Constraint Violations Correctly Discovered and Reported.

Dev-Set Rule New Rule %
Book Violations Violations Precision Recall F-score
Ely 41 8 100 84 91
Kilbarchan 12 3 100 80 89
Harwood 1 2 100 33 50
Overall 54 13 100 81 90
Total number of dev-set rules: 10
Total number of new rules needed for blind test set: 5
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Table 2. Semantic Errors Marked by the Constraint Checker.

Book Form Fields Fields with Icons on
Form Filled Warning Icons Erroneous Data

Ely 388 81 53
Person 207 29 8
Couple 63 5 1
Family 118 47 44

Kilbarchan 680 19 10
Person 266 5 0
Couple 169 6 6
Family 245 8 4

Harwood 81 0 0
Person 55 0 0
Couple 22 0 0
Family 4 0 0

Overall 1149 100 63

death before birth) or relation-based such as person is parent of self. The 13 new
rules encountered in the blind test set extended relation-based violations with,
for example, person married self, female married female,11 and person’s parents
are parents-in-law of person’s child, and also added a new type of violation,
given name or surname consisting of all digits. The 100% precision in Table 1
indicates that given a rule, the constraint checker identifies violations with high
accuracy. The relatively high 81% recall indicates that violations that actually
occur can be caught with a small number of rules (12 in the experiment). With
the current version of the constraint checker, Hypothesis H1 (stated with all)
does not hold, but the results provide assurance that most violations can be
caught with relatively few rules.

To test Hypothesis H2, we assigned each of 28 students in a sophomore-
level linguistics class four adjudication tasks. An adjudication task consisted of
correcting the information filled-in automatically by the ensemble of extraction
engines in one of three forms: (1) Person with birth and death information
(see Figure 4); (2) Couple with person, spouse(s), and marriage date and place
information (see Figure 5); and (3) Family with parents and a list of children (see
Figure 2). We created batches of four tasks for each student adjudicator to evenly
cover the tasks of the blind test set. Due to a glitch in the save software, we lost
18 of the 112 tasks, and we lost another 11 tasks by students not completing their
assignment, leaving us with 83 tasks to evaluate. Of these 83 tasks, Table 2 shows
statistics about the tasks. Then, using a random sampling of completed tasks
covering as many of the 36 book-form-page combinations as possible (only 27

11 Observe that gender is not in the conceptual model in Figure 3. Gender is inferred
based on first given name from a list of 2.2 million name/gender-frequency pairs
obtained from FamilySearch data.
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Table 3. Accuracy (%): Precision, Recall, and F-score.

Ensemble Extraction Extraction with Suspect Student Adjudicator
Assertions Retracted Results

Book Prec. Rec. F-s. Prec. Rec. F-s. Prec. Rec. F-s.
Ely 58.8 48.5 53.1 55.7 40.2 46.7 54.0 47.2 50.4

Person 67.4 72.5 69.8 61.7 55.0 58.1 54.3 52.8 53.5
Couple 55.2 25.4 34.8 55.2 25.4 34.8 62.5 53.6 57.7
Family 36.4 30.0 32.9 40.0 30.0 34.3 0.0 0.0 N/A

Kilbarchan 84.8 80.1 82.4 85.8 80.1 82.8 95.7 93.5 94.6
Person 100 95.0 97.4 100 95.0 97.4 100 97.2 98.6
Couple 64.8 63.0 63.9 69.0 67.1 68.5 87.0 85.5 86.2
Family 75.8 68.5 71.9 75.8 68.5 71.9 96.2 94.4 95.3

Harwood 29.0 20.0 23.7 24.4 20.0 22.0 69.8 67.3 68.5
Person 33.3 30.0 31.6 33.3 30.0 31.6 80.0 80.0 80.0
Couple 22.2 15.4 18.2 20.0 15.4 17.4 58.3 53.9 56.0
Family 0.0 0.0 N/A 0.0 0.0 N/A 54.6 50.0 52.2

Overall 71.4 62.4 66.6 70.4 59.4 64.4 83.5 79.6 81.5

due to losses, but enough to cover every book-form combination), we computed
the accuracy of student-adjudicated work with respect to the ground truth as
the third column in Table 3 shows. We obtained these performance measures
for each page by randomly selecting one student-completed task for each of the
three forms for the page, merging the results, and computing accuracy scores
with respect to the ground truth.12

The 1149 in Table 2 is a count of the extracted unary assertions—the filled
form fields. The constraint checker marked 100 of these filled form fields with
warning icons. A record, which is one grouping of filled-in form fields (e.g. the
record with highlighted fields in Figure 1), may or may not have some of its
fields marked with warning icons. The ensemble extracted 468 records. Of these,
63 contained one or more fields with warning icons and contained data in the
record that was indeed erroneous. Many records which were not erroneous also
contained fields marked with warning icons. These, of course, should not have
been altered, but the 63 should have all been corrected. In an attempt to verify
H2, we checked to see how many of these 63 records were corrected by student
adjudicators. We expected all of them to be corrected, but due to lost tasks and
incomplete work, we were unable to gather enough evidence to directly verify
H2. We were able, however, to see that student adjudicators accurately corrected
erroneous records and added missing records in ensemble-extractor-filled forms.

Observe in Table 3 that the student-adjudicator F-score for Kilbarchan is
94.6% (a typical good score for language extraction tasks) and that it is con-
siderably better than the ensemble-extraction F-score of 82.4%. The student-

12 Because of lost tasks, it was not possible to compute performance measures for two
Ely pages and one Kilbarchan page.
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adjudicator F-score for Harwood, 68.5%, is also much better than the ensemble-
extraction F-score, 23.7%. Compared to Kilbarchan, Harwood tasks are much
more difficult because both humans and machines must “read and understand”
the text in order to draw conclusions. The results for Ely were puzzling until we
looked closer. We discovered that the exacting requirement for record match—
every filled field in the record having exactly the same text located at exactly
the same place in the page with all OCR errors fixed and being exactly in ac-
cord with some punctilious instructions—made it hard for human adjudicators
to “get it right.” The exacting requirements were further exacerbated by the
Ely author’s style—an unconventional mixture of structured and unstructured
English, unlike Kilbarchan which is nearly fully structured and Harwood which
is near-ordinary narrative English.

To better see how the student adjudicators corrected extraction errors in Ely,
we assessed the results by hand giving credit for edits that were understandable
and essentially correct despite not correcting OCR errors or not including titles
and punctuation such as parentheses around nicknames and maiden surnames
or internal punctuation in dates and place names. In this case Ely precision
increased from the 54.0% reported in Table 3 to 90.5%, recall from 47.2% to
79.2%, and F-score from 50.4% to 84.5%.

To test Hypothesis H3, we retracted every ensemble-extracted assertion that
appeared as an antecedent predicate assertion in a Datalog rule that detected a
constraint violation. Thus, for example, we retracted assertions like the erroneous
assertion in Figure 5 that Robert and Isobel were married about 13 Aug 1763,
and along with it (unfortunately) any accompanying assertions, like the two
correct assertions that James is a child of Robert and that James is a child
of Isobel. Because at least one assertion must be incorrect for any constraint
violation, the number of false positives should decrease.13 The middle column of
Table 3 shows the results.

The results show that H3 is unfounded. Rather than increase, overall preci-
sion decreased from 71.4% to 70.4%. Although the number of false positives did
decrease, so also did the number of true positives, leading to an overall decrease
in precision. A positive lesson learned from testing H2 is that the simple fix
of discarding all suspect assertions is not helpful. Instead, we must investigate
and solve the harder problem of deciding which suspect assertions should be
discarded.

5 Summary and Concluding Remarks

Conceptual-model-based pragmatic quality assessment of automatically extracted
data has several desirable properties. Being based on a formal conceptual model
whose underlying semantics is predicate calculus makes the specification of con-
straints and constraint processing declarative. Hence:

13 In Fe6 applications precision is far more important than recall. An overwhelming
number of misleading hints and search results can confuse and discourage customers.
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– Code that checks for and handles any and all model-specified participation-
constraint violations need only be written once (or can even be generated).

– Adding a probability-distribution constraint requires only the writing of an
appropriate Datalog rule.

• Code to check and handle any rule need only be written once (or can be
generated).

• Rules can be added, modified, and retracted dynamically.

– To the extent user-specified Datalog rules reflect real-world pragmatics, con-
straint checkers can identify semantically inconsistent extraction errors. The
checker does not, however, know which of the extracted fact assertions in
antecedent predicates is in error.

– With access to large genealogical data repositories such as those owned
by FamilySearch International, probability distributions for rule consequent
statements are readily obtainable.

These properties reduce the effort required of a system administrator who has
the responsibility to create both constraint checkers and constraint-violation
handlers. By pointing out possible errors adjudicators can receive “just-in-time”
messages for their task of correcting erroneously extracted fact assertions.

We have identified three areas for future work: (1) Discover how to intel-
ligently retract antecedent assertions of extracted assertions that violate prag-
matic rules. (2) Resolve ensemble tool conflicts by choosing the highest proba-
bilistic interpretation of the asserted facts. (3) Use discovered constraint viola-
tions as feedback to improve the extractors. The ensemble extraction results in
Table 3 are not yet satisfactory for Fe6 applications. They are, however, ideal
for testing the constraint checker.
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