Automatic Location and Separation of Records:
A Case Study in the Genealogical Domain

Troy Walker and David W. Embley

Department of Computer Science
Brigham Young University, Provo, Utah 84602, U.S.A.
{troywalk,embley }@cs.byu.edu

Abstract. Locating specific chunks (records) of information within doc-
uments on the web is an interesting and nontrivial problem. If the prob-
lem of locating and separating records can be solved well, the longstand-
ing problem of grouping extracted values into appropriate relationships in
a record structure can be more easily resolved. Our solution is a hybrid of
two well established techniques: (1) ontology-based extraction [ECJ*99]
and (2) vector space modeling [SM83]. To show that the technique has
merit, we apply it to the particularly challenging task of locating and
separating records for genealogical web documents, which tend to vary
considerably in layout and format. Experiments we have conducted show
this technique yields an average of 92% recall and 93% precision for lo-
cating and separating genealogical records in web documents.

1 Introduction

When looking for information on the web, the challenge is usually not scarcity of
data; rather, it is locating the specific data we want. Searching for genealogical
information is a prime example.! In March 2003, a search for “Walker Genealogy”
on Google returned 199,000 documents; just one year later, the same search
returned 338,000 documents. Rather than requiring a human to sift through
this mountain of data, it would be helpful to have a software agent that could
locate and extract desired information automatically.

There are, however, many obstacles to the ideal situation in which software
agents return to their owners only the data they want at the time they desire
it. One large obstacle a software agent must overcome is to be able to deal with
the format of each page and translate it to its own representation.? The web
presents information in a variety of formats. Even within the HTML standard,
information is presented in many ways. We can classify HTML documents by
the way they present data. For our genealogy application we classify HTML
documents as follows.

1 Genealogy is also a popular example. We choose it, however, not so much because of
its popularity, but because of the challenge it provides for locating, separating, and
extracting records.

2 Ontologies on the semantic web promise to make this easy, but the need to automat-
ically or at least semi-automatically transform regular web documents into semantic
web documents leaves us with the same format-recognition and translation problems.

— Single-Record Document: contains a record for one person (e.g. Figure 1).

— Multiple-Record Document: contains many records in a list (e.g. Figure 2).

— Complex Multiple-Record Document: contains many records organized in
some sort of chart, usually an ancestral chart (e.g. Figure 3).

As humans view these pages, they effortlessly adapt to these and other presen-
tation formats. How can we endow software agents with this same ability?

2 Adaline Theresa Marie Adoms - Microsoft Internet Explorer |
Ele Edt Yew Fyees ok e @

OM.- 0- x| 2‘) - seerch Favortes P eds)
4] e owan o5, 1tk ocksf--hvsslbeer [gereakogy PECPLE |80, bkl v B

Adeline Theresa Marie Adams

Date of Pirth : February 9, 1075

Place of Birch : Plymouch, Devon, England
Father i Geurge Abaalom Admms
Mother : Hargarer Mary Ann Mooper
Date of Marriage
Place of Marcinge

ember 9, 1857

Spouse
Date of Death
Flace of Death

ge Alfred Dulmer-Dird
13, 1983
ingtees, Easex, England
Children : Adeline Doroehy

Cecil George

Conatance Macgaret
Generation Number i 4

Back to name selection A-Z - sumame list

Back to photo album

] pore B Ireemen

Fig. 1. Single-Record Document

Although we do not claim to be able to endow software agents with human-
like format-reading ability, we do offer as our contribution in this paper a way to
solve the problem of locating and separating the individual records so that the
related information can be extracted as a unit. We base our solution on data ex-
traction ontologies [ECJT99] and on vector space modeling [SM83]. We [EJN99)
and others [BLPO01] have previously offered partial solutions to the problem
of record separation. These solutions, however, depend on a document having
multiple records consistently separated by some HTML tag such as <hr>. For
many domains, genealogy being one good example, this assumption fails. The
assumption holds for the web page in Figure 2, but fails for the web page in Fig-
ure 3 because there is no HTML tag to separate the record groups. Surprisingly,
it also fails for the web page in Figure 1 because it assumes multiple records
and attempts to incorrectly split the information into subcomponent groups.
Recognizing the difference between a page with a large amount of genealogical
information about one person and a page with a small amount of information
for a few people is not as easy as it at first sounds.

We present our contribution as follows. In Section 2 we explain what an
extraction ontology is and argue that the approach is likely to be best among all

3 sl Wright ANDLRSTH ¢ TIHSMLYER - Microsoft Isternet Coplorer

Qs - D (5] (3] 8 s Lrreen @ wn &)

e B - b 3

a Tuylor Apache AZ
-

s Tubor Apache AZ
s Durangs.La Plaea 0O

a Tavlor Apache AL
-

at Taylor Apache AZ
at Spoleans, Spokane WA

at Taylor, Apache AZ
at

Hame per Moah WALKER

o Taylor Apache AZ
st Albuquerque Bem M

2) @ bt

Fig. 2. Multiple-Record Document

extraction techniques for domains like genealogy where there are a huge number
of continually changing web pages with a wide variety of structural formats. In
Section 3 we show how to use information from extraction ontologies together
with the cosine measure of vector space modeling to locate and separate records.
In Section 4 we present and discuss experimental results, and in Section 5 we
make concluding remarks.

2 Extraction Ontologies

Currently, the most prevalent approach to data extraction from the web is by
using page-specific wrappers. (See [LRNdSTO02] for a survey.) Since page-specific
wrappers extract data based on page layout clues, they are sensitive to changes
in formatting. Because wrappers are tedious to write and must be written for
each new page as well as every time a page changes, researchers have focused on
semi-automatic generation of wrappers.® Even with semi-automatically gener-
ated wrappers, the use of page-specific wrappers requires a substantial amount
of work to produce and maintain, especially for an application like genealogy
where pages change often, and a substantial number of new pages continually
appear. Extraction tools based on natural language processing avoid the prob-
lems of page-specific wrappers. They need clues from parsed sentences, however,
to identify data of interest, which does not help for applications like genealogy
where most web pages use a terse assortment of terms and fragments instead of
complete sentences.

3 There are at least 39 commercial and non-commercial wrapper generators in exis-
tence [KT02].

3 Wolker Family of the Iste of Wight - Microsoll Infernet Explorer

e E# Yeow Fgardes Jook Help ”
Qe - O -« A &) snawen Frotes @ Mens &) L0- 05 B - 3R

dress | 8] kg " vl hem “a“ Lrés
dammall & Makes AdceBan Hens g

E e Soe) =l =R 3 5 #3

WalKer Family Descendants e f

Sy e TN, o TN, s TN S N R .

e el TER, ARBRESGR BOVRER
B
SR e i
Hanty (W asy) Wl | m-liw Bea

s of Pk, SLamordining Farmar & Tailes of Lt Whiteriahd Fame,
Hasbandman & Taeman Wotarton Commes, Brad Bridge (Bambrdgel, 10,
AR, 1OW, Tanant, Mare of Wohnatin allar Mytes

o Buading o Brading
. (1) 4505 oW Sumge Paddar
Margared Wikinsa: - L]
- (@) Hoo Ageas ol Buading
Jana Words Starara I

| [
@ hitan L) 1aes 4 hitann

] Deone

Fig. 3. Complex Multiple-Record Document

Unlike page-specific wrappers, ontology-based extraction tools are resilient
to page changes and need no training or adaptation to work with new pages.
Rather than using a generated page-specific wrapper for each site related to an
application domain, they use an extraction ontology that wraps all pages related
to a domain. For applications like genealogy, this is ideal because the effort* to
create the ontology can be amortized over thousands (even millions) of sites.

An extraction ontology is an augmented conceptual model of the informa-
tion pertaining to a narrow domain of interest (e.g. genealogy). We represent
the conceptual model of our ontologies in OSM (Object-oriented System Model)
as described in [EKW92]. In particular, we use a sub-model of OSM, the Ob-
ject Relationship Model, which models objects, relationships among objects, and
constraints. We augment this model with data frames [Emb80]|, which are de-
scriptions of the data types to which objects adhere. Figure 4 shows the OSM
diagram of our genealogy ontology.

OSM diagrams contain object sets, which are drawn as boxes, and relation-
ship sets, which are drawn as lines connecting the boxes. Each object set may
be either lexical (represented by a solid border) or non-lexical (represented by
a dashed border) depending on their contained objects. A lexical object is an
object that is indistinguishable from its representation. The object set Name in
Figure 4 is lexical because a name is indistinguishable from its representation as
a string of characters. Object sets containing numbers, dates, and even images

4 Although the amount of effort required to create an extraction ontology is sometimes
criticized, it is usually no more than the effort required to create training data for
machine-learned wrapper generators. It does, however, require more expertise.

Fig. 4. Conceptual Model Diagram of Genealogy Ontology

are also lexical. Non-lexical objects are those that must be represented by a sur-
rogate within a computer. The object set Person is non-lexical because there
is no way to store a person in a computer. Instead, the system generates some
identifier to represent the person.

In an extraction ontology, one object set is designated as the primary object
set. This is the highest-level concept we are interested in extracting. An arrow
and a dot designate the primary object set in our diagrams. When extracting,
we only keep information that relates to an instance of this primary object set.
In our genealogy ontology in Figure 4, Person is the primary object set.

Relationship sets connect the object sets in an extraction ontology. The rela-
tionship sets have labels and reading-direction arrows that tell how to construct
the name of the relationship set. The relationship between Person and Gender
in Figure 4 reads, Person has Gender. In relationship sets connecting more than
two object sets, we replace the arrow with a diamond and the label expands to
include the names of all object sets involved. The relationship among Person,
Relationship, and RelationName has the name RelationName is Person’s Re-
lationship.

The relationships within a relationship set link one member of each object
set to which the relationship set connects. On each connection to an object set,
a relationship set has participation constraints. A participation constraint indi-
cates how many times an object in the connecting object set may participate

in this relationship set. The participation constraint consists of a minimum,
optional average, and maximum number separated by colons. In our notation,
a star (*) represents an arbitrarily large number. When the minimum and max-
imum are the same, they may be represented by one number. The participation
constraint next to Person on the relationship set between Person and Gender
in Figure 4 indicates that a person may be related to at most one gender. The
average value of 0.8 indicates that on pages that include gender information, we
expect to find a gender for 80% of the people. A person, we know, must have
exactly one gender, but we must allow no gender because we may have partial
data or mistakes in extraction.

In addition to the components seen in the OSM diagram, an extraction ontol-
ogy also has a data frame for each object set. A data frame contains recognizers
to identify data that belongs to an object set. These recognizers consist of ex-
tended regular expressions that match values, the context typically surrounding
values, and keywords usually located close to a value. Our matchers support
macro substitution and the inclusion of lexicons. This helps extraction-ontology
engineers keep their regular expressions manageable.

Macros:

CapPhrase: (([A-Z][A-Za-z]*)|of|the|on)(\s+(([A-Z][A-Za-z]*)|of|the|on)){0,3}
Value Phrases:

. {CapPhrase}\,(\s+){CapPhrase}(\.?)\,(\s+){State}

. {CapPhrase}\,(+){State}

. {CapPhrase}\,(+){CapPhrase}\,(+){CapPhrase}\,(+){Country}

. {CapPhrase},(+){CapPhrase},(+){Country}

. {State}

O x| W N —

Fig. 5. Regular Expressions for Matching Locations

Figure 5 shows the regular-expression matchers used to find locations in our
extraction ontology. The words within braces are labels of macros or lexicons
defined elsewhere. The macro named CapPhrase matches strings of capitalized
words while allowing some non-capitalized prepositions. State and Country are
lexicons. These are external text files containing all the states and countries plus
any abbreviations and variations of spelling we could anticipate. Our genealogy
ontology also uses lexicons for given names, surnames, and months.

The regular expressions in Figure 5 recognize acceptable values for locations.
Along with each of these value matchers, an extraction-ontology engineer op-
tionally specifies other regular expressions to refine the matches. Refining ex-
pressions allow the system to rule out invalid matches and to recognize right
and left context surrounding legitimate values.

3 Record Location and Separation

In order to extract the information related to each person in a genealogical doc-
ument, the computer needs to separate the document into records. Each record
should contain information on only one person. This greatly simplifies the task of
selecting values and linking them together as objects and relationships. We divide
web pages into three categories based on how they present information: single-
record documents (Figure 1), simple multiple-record documents (Figure 2), and
complex multiple-record documents (Figure 3).

Two clues aid in locating and separating records: structure and content. A
well-designed page has a format that assists readers in distinguishing records.
Human readers can also guess where record divisions occur based on the data
they contain—when they see a second name and another birth date in a ge-
nealogical document, they know they are reading about a new person. Previous
approaches [EJN99, BLP01] primarily use structural clues to locate and separate
records. Straightforward structural clues, however, may either not exist (single-
record documents) or may require extensive heuristics to recognize (complex
multiple-record documents. On the other hand, it is also likely to be difficult to
create an accurate record separator based purely on content. In a domain where
data always appears in a certain order or all data is always present, it may be
straightforward, but in genealogy, this is not the case. Missing data, imperfect
matchers, and unpredictable order combine to make this approach infeasible. We
thus adopt a hybrid approach.

Vector Space Modeling (VSM) comes from the field of information retrieval
[SM83]. A set of features from a document makes up the values in a vector from
which useful cosine and magnitude measures are derived. For record location and
separation, we use the object sets from the extraction ontology as dimensions in
vector space.

First, we create a vector that represents a prototypical record of genealog-
ical data. We call this vector the Ontology Vector (OV'). To create the OV,
we use the average value given in participation constraints. We do not include
dimensions for all object sets; instead, we include dimensions only for those
object sets most closely related to the primary object set. These object sets
give us the information most helpful for locating and separating instances of
the primary object set while more indirectly related object sets have more of a
potential for ambiguity and conflicts or for being completely unrelated. Specif-
ically, we create the OV by following relationships from the primary object set
until we encounter an object set with a keyword matcher or a value matcher.
The dimensions and dimension values for the OV selected for the ontology in
Figure 4 are (<Gender, 0.8>, <Name, 0.99>, <Birth, 0.95>, <Death, 0.9>,
<Christening, 0.6>, <Burial, 0.5>, <Marriage, 0.6>, <Relationship, 3.0>,
<RelationName, 3.0>), or, when we fix the number and order of dimensions,
simply (0.8, 0.99, 0.95, 0.9, 0.6, 0.5, 0.6, 3.0, 3.0).

For each candidate record, another vector contains the number of matches
found in that candidate record’s portion of the document. We call this vector
the Subtree Vector (SV') because it gives the number of value matches for each

dimension object set found within a subtree in the document’s DOM tree (Doc-
ument Object Module tree). Thus, for example, if in a subtree we find 50 gender
references, 100 names, 100 birth dates, 100 death dates, 20 christening dates,
40 burial references, 60 marriages, and 250 pairs of relationship references and
names of relatives, our SV for this subtree would be (50, 100, 100, 100, 20, 40,
60, 250, 250).

We judge each SV by its cosine score relative to the OV and by its magnitude
score. The cosine of the acute angle between any two vectors in n-space is the
dot product of the two vectors divided by the product of their magnitudes. This
provides a reliable method of determining the similarity of SV to OV. Cosine
measures close to one show that the subtree likely contains data that relates
to the ontology, i.e. has the proportion of values expected by the ontology. The
magnitude of SV divided by the magnitude of OV yields a rough estimate of
the number of records in SV, which turns out to be accurate enough to decide
whether to split a subtree into multiple records. Because large values along
any dimension skew these measures, object-set dimensions that are expected to
have an average of many more values than other object-set dimensions have too
much weight in these measures. We therefore normalize all vectors, including
the OV, prior to finding VSM scores by dividing each value in the vectors by its
corresponding average in the OV. Thus our sample vector (50, 100, 100, 100, 20,
40, 60, 250, 250) becomes (63, 101, 105, 111, 33, 80, 100, 83, 83) and its cosine
score is computed with respect to the normalized OV, (1,1,1,1,1,1,1,1,1).

Our method of record location and separation starts at the root of the tree
and evaluates the subtree rooted at each node. If its magnitude measure is less
than an empirically determined threshold value, we accept it as a record. If not,
we split the subtree using the heuristics of [EJN99] to find a separator tag. In
cases where these heuristics fail to find a separator (usually when a node has
fewer than four child nodes), we simply use the subtrees that are children of the
current node. We then use a technique from [EX00] to recombine these subtrees
where appropriate. This technique combines pairs of subtrees if the combination
has a better cosine measure with the OV than either of the subtrees alone.
Finally, we discard the subtrees with low cosine scores (empirically determined
to be less than 0.6), and we repeat the process with the remaining subtrees.

As an example, Figure 6 shows part of the DOM tree for the document in Fig-
ure 2 as well as the corresponding SVs, cosine scores, and magnitude scores. At
the first level, there are only two children: <!DOCTYPE> and <html>. <!DOCTYPE>
has a low cosine score (zero), so we discard it; <html> has a comparatively high
cosine score so we keep it. Since <html> has a comparatively large magnitude,
we split it into <head> and <body>. We discard <head> because its cosine score
is comparatively low. We split <body> because its magnitude is comparatively
high. Because <body> has many child nodes, we find a separating tag, <div>,
and divide the children accordingly. We continue processing with the second
<div> tag since its cosine score is comparatively high. After repeating this pro-
cess and dividing based on table rows and then table cells, we eventually start
finding individual records. The <td> in the example is a table cell that happens

Subtree Vector Cosine|Magnitude
<!DOCTYPE...>|(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) 0.00 0.00
<html> (0.0,150.5,93.7,84.4,0.0,0.0,80.0,7.7,7.7) 0.67 70.77

<head> (0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) 0.33 0.34
< /head>
<body> (0.0,150.5,93.7,84.4,0.0,0.0,80.0,7.7,7.7) 0.67 70.53
<div> (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) 0.00 0.00
...header...
</div>
<div> (0.0,147.5,92.6,84.4,0.0,0.0,80.0,7.7,7.7) 0.67 69.90
<td> (0.0,1.0,1.1,1.1,0.0,0.0,0.0,0.0,0.0) 0.58 0.61

Fig. 6. DOM Tree Selections and Vector Scores

to contain one record. Note that its magnitude score is considerably lower than
the magnitude of the scores of the subtrees we split. Other table cells in this
document actually contain multiple records and need to be split.

As we implemented this algorithm, we encountered three problems that lim-
ited its effectiveness. First, differences between our ontology and the schema used
within documents often caused cosine measures to be too low. Second, the over-
richness of data particularly in single-record documents often caused magnitude
measures to be too high. Third, when separating simple multiple-record docu-
ments, our algorithm was sometimes outperformed by the old method ([EJN99])
because it did not take advantage of simple patterns in the data. We introduced
refinements into our algorithm to cope with these problems.

Schema Differences. Not everyone agrees on what attributes should de-
scribe a person in genealogy. We designed our genealogy ontology to hold typ-
ical data we were likely to find on the web. It contains many attributes such
as Gender, Burial, and Christening for which most web sites do not include
data. The fact that these attributes do not appear on a page does not mean
that the page is not about genealogy. It does affect the cosine scores of the doc-
ument, however, and can cause valid records to have cosine scores below the
threshold resulting in valid records being discarded. In Figure 6, for example,
the untrimmed score of even our largest cosine scores are not as high as we
would like them to be. If we detect these differences in schema at the page level
and compensate for them, we can more accurately find the records within the
page. We do this by pruning dimensions in our vector space. In order to detect
which object sets do have matches in a document’s schema, we count the object
set matches and prune any dimension with no matches. Since a few erroneous
matches are possible, we also prune dimensions with counts less than 5% of the

average count, weighted according to the participation constraints.

Over-richness of Data. Single-record documents tend to include more com-
plete information than multiple-record documents. It is not unusual to find seven
name matches in one single-record document. Single-record documents may also
repeat information or have multiple instances of one keyword. Magnitude mea-
sures for records in single-record documents are therefore much higher than
measures for multiple-record documents. To overcome this, we programmed our
record locator and separator to require a higher magnitude to split a document
than that needed to split at the highest level within a document.

Missed Simple Patterns. Simple multiple-record documents are distin-
guished by a simple list pattern. On some simple multiple-record documents,
our old technique ([EJN99]) is able to produce more correct records than our
new technique. In any document, some records contain more or fewer details
than others. Sometimes our matchers do not accept all the valid data such as
when names are incomplete or contain name components not in our lexicon.
At times, this variation is enough to cause our record separator to erroneously
discard or split a valid record. We can take advantage of the pattern in a simple
multiple-record document if we can detect the pattern. We do so when we split
a subtree by counting the records and computing the ratio of records with suffi-
cient cosine scores and low enough magnitudes to be a single record to the total
number of records. If there are more than three records and at least two-thirds
of them are single records, we consider all of them to be single records. As a
further refinement, we eliminate headers and footers by discarding records with
low cosine scores at the head and tail of the list.

4 Experimental Results

While implementing our system, we used a few example documents to debug
our code. Once our system was ready, we gathered 16 additional documents to
test our algorithm and made further refinements. When our system performed
adequately on this tuning set, we were confident it would perform well on any
genealogical page from the web. We gathered test documents by searching the
web for common surnames and genealogy. To ensure stability and reproducibility
throughout our test and to reduce load on the web hosts, we created a local cache
of our test pages. When collecting pages, we found that there were about three
generators commonly used for genealogical web pages. Since we were interested in
evaluating our system on a wide variety of sources, we only included a few pages
generated by each program. Further, some pages contained close to a hundred
records while others contained just one. To reduce skewing for record counts, we
trimmed long documents to between ten and twenty records. We were careful to
preserve any footers that might exist on each document.

We divided our test documents into three groups: single-record documents,
simple multiple-record documents, and complex multiple-record documents. To
test record location and separation, we compared the records produced to records
that should have been produced. Because of the nested nature of genealogical

data, this was not always simple. A name by itself in some contexts could be
considered to be a record while in other contexts the name may just be the name
of a relative within a valid record. As a general rule, we considered information
about a relative to be a distinct record if it contained more than just a name.

Single-Record Documents. We tested 21 single-record documents. As can
be seen in Table 1, our record separator correctly handled most of these docu-
ments resulting in 90% recall and 73% precision. This success is due to the
refinement we made to compensate for over-richness of data. In two cases, data
was still rich enough to overwhelm even this refinement. Attempting to split
these records, the system destroyed the relationships within these records and
produced several incorrect records, which explains the relatively low precision.
We could increase the threshold to cover more of these cases, but raising it too
much would cause multiple-record documents not to be split. Thus, our refine-
ment worked fairly well, but since it is not just a simple matter of finding a
proper balance, it is clear that a different approach is needed to produce even
better results.

records|returned|correct|precision| recall
singlel 1 1 1| 100.00%(100.00%
single2 1 1 1| 100.00%(100.00%
single3 1 1 1{ 100.00%|100.00%
singled 1 1 1{ 100.00%|100.00%
singleb 1 1 1| 100.00%(100.00%
single6 1 1 1{ 100.00%|100.00%
single7 1 1 1{ 100.00%|100.00%
single8 1 4 0| 0.00%| 0.00%
single9 1 1 1{ 100.00%|100.00%
single10 1 1 1{ 100.00%|100.00%
singlel1 1 1 1| 100.00%(100.00%
single12 1 3 0| 0.00%| 0.00%
singlel13 1 1 1{ 100.00%|100.00%
single14 1 1 1| 100.00%(100.00%
singlel5 1 1 1{ 100.00%|100.00%
single16 1 1 1{ 100.00%|100.00%
singlel7 1 1 1| 100.00%(100.00%
singlel8 1 1 1| 100.00%(100.00%
single19 1 1 1{ 100.00%|100.00%
single20 1 1 1| 100.00%(100.00%
single21 1 1 1| 100.00%(100.00%
Total 21 26 19| 73.08%| 90.48%

Table 1. Single-Record Document Results

Simple Multiple-Record Documents. Table 2 shows the results of our

experiments on simple multiple-record documents. By using our refinement for
exploiting patterns in simple documents, we were able to correctly process seven
more documents than we would have otherwise and achieved 95% precision and
93% recall. In some documents, we lost the first record because it did not have
a high enough cosine score and was misinterpreted as part of the header. In one
case less than two thirds of the records were acceptable as single records, so the
algorithm did not detect that it should have treated it as a simple pattern that
could be better handled in other ways.

records|returned |correct|precision| recall
simplel 19 20 19| 95.00%]|100.00%
simple2 19 17 17| 100.00%| 89.47%
simple3 11 11 11| 100.00%100.00%
simple4 9 9 9(100.00%|100.00%
simpleb 12 13 11| 84.62%| 91.67%
simple6 12 11 10| 90.91%| 83.33%
simple7 14 10 10{ 100.00%| 71.43%
simple8 5 7 5 71.43%[100.00%
simple9 14 14 14| 100.00%100.00%
simplel0 15 15 15| 100.00%|100.00%
Total 130 127 121 95.28%| 93.08%

Table 2. Multiple-Record Document Results

Complex Multiple-record Documents. Since most of the genealogical
documents on the web fall into this category, performance on complex multiple-
record documents for our application area is critical. Table 3 shows our results.
Considering the difficulty of the task, 92% recall and precision should be seen
as a very good result. The most common problem we encountered stems from
conflicting matches. As currently programmed, our system has no way of knowing
whether a name is a member of the Name object set or the RelationName
object set and must consider it a potential match for both object sets. This
becomes a problem when recombining fragments of a record. Figure 7 shows two
records produced from complex/ that should have been recombined. The first
record has matches for Name, Birth, and Marriage. The second has matches for
Name, Relationship, and Death. Although the names in the second record are
really names of relatives, they prevented our system from recombining these two
records. Since this problem prevented the correct record from being returned and
created two incorrect records, it affected both the precision and the recall of our
record separator. Another problem arose in complex18. Since the document only
contained four records, its magnitude measure was low enough that it appeared
to be a single-record document. Our record separator did not attempt to split it
so we lost three records.

records|returned |missed |extra|correct|precision| recall
complex1 10 10 0 0 10{ 100.00%|100.00%
complex2 15 15 0 0 15| 100.00%|100.00%
complex3 12 12 0 0 12| 100.00%]|100.00%
complex4 7 9 1 3 6| 66.67%| 85.71%
complexh 16 15 1 0 15| 100.00%| 93.75%
complex6 15 16 2 3 13| 81.25%| 86.67%
complex7 13 12 1 0 12| 100.00%| 92.31%
complex8 10 10 0 0 10{ 100.00%|100.00%
complex9 19 20 1 2 18| 90.00%| 94.74%
complex10 10 10 1 1 9| 90.00%| 90.00%
complex11 15 11 4 0 11} 100.00%| 73.33%
complex12 15 15 0 0 15| 100.00%]|100.00%
complex13 11 11 0 0 11{ 100.00%|100.00%
complex14 16 18 1 3 15| 83.33%| 93.75%
complex15 8 8 2 2 6| 75.00%| 75.00%
complex16 8 9 0 1 8| 88.89%)]|100.00%
complex17 10 11 0 0 11{ 100.00%|110.00%
complex18 4 1 3 0 1| 100.00%| 25.00%
complex19 8 11 0 3 8| 72.73%]|100.00%
complex20 16 13 4 1 12| 92.31%| 75.00%
Total 238 237 21 19 218 91.98%| 91.60%

Table 3. Complex Multiple-record Document Results

BROWN, Edwin, Born 18 Apr 1899 in Somerset, Kentucky, Married 1928
Ruth V. Rosenburg dau. of Johan N. and Anna Marie Eriksson
Rosenberg, he died 4 Aug 1960 in Toledo, Ohio at age 61

Fig. 7. Split Record

5 Conclusion

Based on vector space modeling, we implemented a technique to accurately lo-
cate and separate records even when these records have a complex layout such
as is found in genealogy web pages. The technique we developed achieved an
average of 93% precision and 92% recall in our experiments over a collection
of single-record documents, multiple-record documents, and complex multiple-
record documents. We added this technique to our system for ontology-based
extraction.

Acknowledgements: This material is based upon work supported by the National
Science Foundation under grant No. IIS-0083127.

References

[BLPO1] D. Buttler, L. Liu, and Calton Pu. A fully automated object extrac-
tion system for the world wide web. In Proceedings of the 21st Interna-
tional Conference on Distributed Computing Systems (ICDC’01), Mesa,
Arizona, April 2001.

[ECJT99] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale,
Y .-K. Ng, and R.D. Smith. Conceptual-model-based data extraction from
multiple-record web pages. Data & Knowledge Engineering, 31(3):227—
251, November 1999.

[EJN99] D.W. Embley, Y.S. Jiang, and Y.-K. Ng. Record-boundary discovery
in web documents. In Proceedings of the 1999 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’99), pages 467478,
Philadelphia, Pennsylvania, 31 May - 3 June 1999.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems
Analysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs,
New Jersey, 1992.

[Emb&0] D.W. Embley. Programming with data frames for everyday data items.
In Proceedings of the 1980 National Computer Conference, pages 301-305,
Anaheim, California, May 1980.

[EX00] D.W. Embley and L. Xu. Record location and reconfiguration in un-
structured multiple-record web documents. In Proceedings of the Third
International Workshop on the Web and Databases (WebDB2000), pages
123-128, Dallas, Texas, May 2000.

[KT02] S. Kuhlins and R. Tredwell. Toolkits for generating wrappers—a sur-
vey of software toolkits for automated data extraction from web-
sites. In M. Aksit, M. Mezini, and R. Unland, editors, Objects, Compo-
nents, Architectures, Services, and Applications for a Networked World—
Proceedings of the 2002 International NetObjectDays Conference, pages
184-198, Erfurt, Germany, October 2002.

[LRNdST02] A.H.F. Laender, B.A. Ribeiro-Neto, A.S. da Silva, and J.S. Teixeira. A
brief survey of web data extraction tools. SIGMOD Record, 31(2):84-93,
June 2002.

[SM83] G. Salton and M.J. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, New York, 1983.

This article was processed using the IHTEX macro package with LLNCS style

