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Abstract

To integrate data from disparate, heterogeneous information sources in an open environment,
data-integration systems demand a resolution to specify mappings between target and source
schemas. Automating schema mapping is challenging. Previous approaches (e.g. [MBRO1,
DDHO1]) to automating schema mapping focus on computing direct matches between two
schemas. Schemas, however, rarely match directly. Thus, to complete the task of schema
mapping, we must also compute indirect matches. In this paper, we present a framework for
generating a source-to-target mapping containing direct as well as many indirect matches be-
tween a source schema and a target schema. Recognizing expected data values associated with
schema elements and applying schema-structure heuristics are the key ideas to computing indi-
rect matches. Experiments we have conducted over several real-world application domains show
encouraging results, yielding over 90% precision and recall measures for both direct and indirect
matches. We formalize direct and indirect matches as mapping elements in source-to-target
mappings by slightly extending the relational algebra. Based on source-to-target mappings, we
offer a unified approach for data integration. Compared with other data integration approaches,
our data-integration approach combines their advantages, mitigates their disadvantages, and
provides a viable alternative for flexible and scalable data integration.

1 Introduction

Data integration refers to the problem of combining data residing at autonomous and heterogeneous
sources and providing users with a unified global schema [Ul197, Hal0l, CCGL02]. Two main
concepts constitute the architecture of a data-integration system [Ull97]: wrappers and mediators.
A wrapper wraps an information source and models the source using a source schema. A mediator
maintains a global schema and mappings between the global and source schemas. We focus here on
data-integration systems that do not materialize data in the global schema. Currently, there are
two main initiatives to integrate data and answer queries without materializing a global schema:
Global-as-view (GAV) [CGMH"94] and Local-as-View(LAV) [LRO96, GKD97]. In either a GAV
or LAV approach, whenever a user poses a query in terms of relations in the global schema, the

mediator within the data-integration system uses a query-reformulation procedure to translate the
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query into sub-queries that can be executed in sources such that the mediator can collect returned
answers from the sources and combine them as the answer to the query.

One of the important applications for data integration is to deal with the explosion of data
on the World Wide Web. E-business applications such as comparison shopping and knowledge-
gathering applications such as vacation planning raise the following major issues for approaches to
data integration. (1) Heterogeneity. The sources are autonomous, establishing their own vocabulary
and structure. (2) Scalability. The number of sources to access and integrate is large. (3) Continual
infusion and change of local information sources. New sources continually become available and
become part of the system. Sources within the system may change frequently. (4) Query process
complezity. Users frequently pose queries, which can be very complex, with respect to the collection
of information sources. (5) Ewvolution. As applications evolve, Database Administrators (DBAs)
may wish to change the global schema to include some new items of interest. Most of the existing
approaches to data integration [CGMH"94, LRO96, GKD97, Ul197, FLM99, MHH*01, CCGL02],
however, have addressed only some of these issues. Thus, they do not meet the needs of the modern

I To address these issues, we present an alternative point of view, called

E-business applications.
TIQS (Target-based Integration Query System).

TIQS largely depends on schema mapping to resolve the five major issues in a unified framework.
Schema mapping is a challenging problem. It takes two schemas as input and produces semantic
correspondences between schema elements in the two input schemas [RB01]. In this paper, we
assume that we wish to map schema elements from a source schema into a target schema, where
the target schema corresponds to a global schema in data-integration systems. We express each
semantic correspondence as a mapping element, which binds two schema elements if the two schema,
elements are semantically equivalent. In its simplest form, a mapping element is a direct match
that binds a source schema element directly to a target schema element. To date, most research
[BCV99, DDHO1, EJX01, LC00, MBRO1, MZ98, PTUO00] has focused on computing direct matches.
Such simplicity, however, is rarely sufficient, and researchers have thus proposed the use of queries

over source schemas to bind with target schema elements [BE03, MHHO0]. In this more complicated

form, a mapping element is an indirect match that binds a view over the source schema, which is

! After describing our proposed solution we explain in Section 7 by way of comparison, how other proposed solutions
fail to address one or more of these issues.



a virtual source schema element, to a target schema element through appropriate queries over a
source schema.

We assume that all source and target schemas are described using rooted conceptual-model
graphs (a conceptual generalization of XML). We augment schemas with a variety of ontologi-
cal information. For this paper the augmentations we discuss are WordNet [Mil95], sample data,
and regular-expression recognizers. For each application, we construct a lightweight domain on-
tology [ECJT99], which declares the regular-expression recognizers. Based on the graph structure
and these augmentations, we exploit a broad set of techniques together to settle direct and indirect
matches between a source schema and a target schema. As will be seen, regular-expression recog-
nition over sample data and applying schema structural characteristics are the key ways to detect
indirect matches. Based on the discovered matches, the solution proposed here maps a source
schema into a target schema through a source-to-target mapping, which is formally specified such
that data in the source is readily accessible to load into the target.

By applying source-to-target mapping based on a predefined target schema, TIQS provides a
unified, scalable approach to data integration , which combines the advantages and avoids the
limitations of both GAV and LAV. TIQS has polynomial-time query reformulation, and is easy to
add or modify information sources. Moreover, DBAs create the target schema and wrap source
schemas independently, so that neither the target schema nor the source schemas are contingent
respectively on the source schemas or the target schema. Even when DBAs modify or add new items
of interest to the target schema, TIQS applies the schema mapping techniques to semi-automatically
generate or adjust required source-to-target mappings between source schemas and the new target
schema. Thus, TIQS increases both scalability and usability as compared to previously proposed
data-integration approaches.

In this paper, we offer the following contributions: (1) a way to discover many indirect semantic
correspondences between a source schema S and a target schema T' as well as the direct correspon-
dences, (2) an extension of relational algebra to express source-to-target mappings, (3) a unified
approach to data integration applying source-to-target mapping, and (3) experimental results of our
implementation to show that our solution performs as well (indeed better) than other approaches
for direct matches and also performs exceptional well for the indirect matches with which we work.

We present the details of our contribution as follows. Section 2 explains the internal representation



of input target and source schemas and output mappings for schema mapping. Section 3 describes
a set of basic matching techniques to find potential mapping elements between elements in S and
elements in T, and to provide confidence measures between 0 (lowest confidence) and 1 (highest
confidence) for each potential match. Section 4 presents an algorithm to settle direct and indirect
matches in a source-to-target mapping between S and 7. In Section 5 we describe TIQS that
mitigates the disadvantages and combines the advantages of basic data-integration approaches.
Section 6 gives experimental results for a data set used in [DDHO1] to demonstrate the success of
our approach. In Section 7 we review related work, and in Section 8 we summarize, consider future

work, and draw conclusions.

2 Internal Representation for Schema Mapping

In a data integration system, a mediator maintains a target schemas, and a wrapper wraps a
particular information source as a source schema. It is possible that the wrappers uses their own
expression languages to describe the source schema in insolation. In this paper, we assume that
we use a model language OSM-L [EKW92] to describe both source and target schemas, and an

extension of the relational algebra to describe source-to-target mappings.
2.1 Target and Source Schemas

We use rooted graphs to represent both the target schema and the source schemas as conceptual
specifications. Each of conceptual schemas consists of two components. One contained component
is an object/relationship-model instance that describes sets of objects, sets of relationships among
objects, and constraints over object and relationship sets. In each conceptual schema H, we denote
O as a set of object sets and Ry as a set of relationship sets in H. An object set has associated
either data values or object identifiers, which we respectively call lexical object sets or non-lexical
object sets. A relationship set has associated values to represent relationships connecting object
sets. The root node is a designated object of primary interest. Figure 1, for example, shows two
schema structures. In a schema structure we denote lexical object sets as dotted boxes, non-lexical
object sets as solid boxes, functional relationship sets as lines with an arrow from domain object
set to range object set, and nonfunctional relationship sets as lines without arrowheads. The other

component contained in a conceptual schema is a set of data frames, each of which defines the
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Water_front matches [10] case insensitive
keyword "\bwater(\s|_)?front\b";
end;

Golf_ourse matches [10] case insensitive
keyword "\bgolf(\s|_)course\b";
end;

location_description matches [25] case insensitive
constant

{ extract "\water(\s)?front\b"; },

{ extract "\bcorner\b"; },

{ extract "\bcul\-de\-sac\b"; },

{ extract "\blake\sfront\b"; },

{ extract "\bgolf(\s|_)course\b"; },
{ extract "\bfenced(\s)lot\b"; },

{ extract "\bview(s)?\b"; },

{ extract "\bbay\sfront\b"; },

{ extract "\bocean\sfront\b"; },

{"extract "\bbay\sfront\b"; };
end;

<DataSample>

<OSM domain="RealEstate" application="1" nrOfFiles="2367" nrOfValues="494" />
<ObjectSet id="10" name="location_description" />
<Row text="Ocean front, Water front" />

<Row text="Ocean front, Bay front, Corner, Cul-de-sac" />
<Row text="Canal front, Water front" />

<Row text="Bay front, Water front" />

<Row text="Ocean front, Water front” />

<Row text="Intracoastal, Water front" />

<Row text="Cul-de-sac" />

<Row text="Ocean front, Water front" />

<Row text="Ocean front, Water front" />

<Row text="Corner" />

<Row text="Ocean front, Water front" />

<Row text="Intracoastal, Ocean front, Water front" />
<Row text="Cul-de-sac" />

<Row text="Cul-de-sac" />

<Row text="Canal front, Water front" />

<Row text="Pond front, Cul-de-sac" />

<Row text="Intracoastal, Water front" />

<Row text="Pond front, Cul-de-sac" />

<Row text="Cul-de-sac" />

<Row text="Lake front" />

<Row text="Lake front" />

<Row text="Ocean front, Water front" />

Figure 2: Example of Data Frames: Lexical Appearances and Data Instances

potential contents of a lexical object set. A data frame for an object set either defines the lexical
appearance of constant objects for the object set and establishes appropriate keywords that are
likely to appear in a document when objects in the object set are mentioned, or lists of data instances
for objects. Figure 2 shows lexical appearances for lexical object sets Water_front, Gol f _course,
and location_description. A subset of data instances for lexical object set location_description is
also included. When both lexical appearance and data instances are available in an object set in
applications, a data frame for this object set provides both specifications of lexical appearance and
a set of lexical values.

For any schema H, which is either a source schema or a target schema, we let Xz denote the

union of Oy and Ry in H. Furthermore, our solution allows a variety of source derived data,



including missing generalizations and specializations, merged and split values, and transformation
of attributes with Boolean indicators into values, and schema paths as relationships. Therefore,
our solution “extends” the source schema elements in Y g, each of which we call real object or
relationship set, to include views, each of which we call virtual object or relationship set. We let

Vi denote the extension of X with derived virtual object and relationship sets.
2.2 Source-to-Target Mappings

We consider a source-to-target mapping Mgt between a source schema S and a target schema T
as a function fgr. The domain of fgr is Vs. And the range of fgr is Y. Thus, we can denote a
source-to-target mapping Mgt as a function fs7(Vs) — L. Intuitively, a source-to-target mapping
M; represents inter-schema, correspondences between a source schema S; and a target schema T.
If we let Schema 1 in Figure 1(a) be the target and let Schema 2 in Figure 1(b) be the source, for
example, a source-to-target mapping between the two schemas includes a semantic correspondence,
which declares that the lexical object set Bedrooms in the source semantically corresponds to the
lexical object set beds in the target. If we let Schema 1 be the source and Schema 2 be the target,
a source-to-target mapping declares that the union of the two sets of values in phone_day and
phone_evening in the source corresponds to the values for Phone in the target.

We represent semantic correspondences between a source schema S and a target schema T as a
set of mapping elements. A mapping element is either a direct match which binds a schema element
in Xg to a schema element in Y7, or an indirect match which binds a virtual schema element in Vg
to a target schema element in Y7 through an appropriate mapping expression over 3g. A mapping
expression specifies how to derive a virtual schema element through manipulation operations over
a source schema. We denote a mapping element as (t ~ s < 65(Xg)), where 05(Xg) is a mapping

expression that derives a source element s in Vg,2 and ¢ is a target schema element in X7.
2.3 The Algebra for Source-to-Target Mappings

Each object and relationship set (including derived object and relationship sets) in the target
and source schemas are single-attribute or multiple-attribute relations. Thus, relational algebra

directly applies to the object and relationship sets in a source or target schema. The standard

*Note that the mapping expression may be degenerate so that (t ~ s) is possible.



operations, however, are not enough to capture the operations required to express all the needed
source-to-target mappings. Thus, we extend the relational algebra.
To motivate our use of standard and extended operators, we list the following problems we must

face in creating derived object and relationship sets over source schemas.

e Union and Selection. The object sets, phone_day and phone_evening in Schema 1 of Fig-
ure 1(a) are both subsets of Phone values in Schema 2 of Figure 1(b), and the relationship
sets agent — phone_day and agent — phone_evening in Schema 1 are both specializations
of Agent — Phone value pairs in Schema 2. Thus, if Schema 2 is the target, we need the
union of the values in phone_day and phone_evening and the union of the relationships in
agent — phone_day and agent — phone_evening in Schema 1; and if Schema 1 is the target,
we should use Selection to find a way to separate the day phones from the evening phones
and separate the relationships between agents and day phones from those between agents and

evening phones.

e Merged and Split Values. The object sets, Street, City, and State are separate in Schema 2
and merged as address of house or location of agent in Schema 1. Thus, we need to split the

values if Schema 2 is the target and merge the values if Schema 1 is the target.

e Object-Set Name as Value. In Schema 2 the features Water_front and Golf_course are
object-set names rather than values. The Boolean values “Yes” and “No” associated with
them are not the values but indicate whether the values Water_front and Gol f _course should
be included as description values for location_description of house in Schema 1. Thus, we
need to distribute the object-set names as values for location_description if Schema 1 is the
target and make Boolean values for Water_front and Gol f_course based on the values for

location_description if Schema 2 is the target.

e Path as Relationship Set. The path M LS — basic_features — beds in Schema 1 semantically
corresponds to the path M LS — House — Bedrooms in Schema 2. Thus, if Schema 1 is the
target, we need derive two virtual relationship set corresponding with the target relationship
sets M LS — basicyeatures and basic_features — beds; otherwise, if Schema 2 is the target,

we need derive two virtual relationship sets corresponding with the target relationship sets



House — M LS and House — Bedrooms.

Currently, we use the following operations over source relations to resolve these problems. In the
notation, a relation r has a set of attributes, which corresponds to the names of lexical or non-lexical
object sets; attr(r) denotes the set of attributes in r; and |r| denotes the number of tuples in r. For
non-standard operators, we provide examples to illustrate how to apply the operators over source

relations.
e Standard Operators. Selection o, Union U, Natural Join X, Projection w, and Rename p.

o Composition A. The X operator has the form A4, . 4,)ar where each A;, 1 <4 <, is either
an attribute of r or a string, and A is a new attribute. Applying this operation forms a new
relation 7/, where attr(r’) = attr(r) U {A} and |r'| = |r|. The value of A for tuple ¢ of row [
in 7’ is the concatenation, in the order specified, of the strings among the A;’s and the string

values for attributes among the A;’s for tuple ¢’ of row [ in 7.

Let r be the following relation, where attr(r) = {House, Street, City, State}.

House Street City State
hl 339 Wymount Terrace Provo Utah
h2 15 S 900 E Provo Utah
h3 1175 Tiger Eye Salt Lake City Utah

Applying the operation \(gireet,«, » City,«, » Street), AddressT yields a new relation r', where attr(r') =

{House, Street, City, State, Address}.

House Street City State Address
hl 339 Wymount Terrace Provo Utah 339 Wymount Terrace, Provo, Utah
h2 15 S 900 E Provo Utah 15 S 900 E, Provo, Utah
h3 1175 Tiger Eye Salt Lake City Utah 1175 Tiger Eye, Salt Lake City, Utah

e Decomposition y. The 7y operator has the form 'yf’A,r where A is an attribute of r, and A’ is a
new attribute whose values are obtained from A values by applying a routine R. Typically, R
extracts a substring from a given string to form part of a decomposition. Repeated application
of v allows us to completely decompose a string. Applying this operation forms a new relation
r', where attr(r') = attr(r) U{A'} and |r'| = |r|. The value of A’ for tuple ¢ of row [ in ' is

obtained by applying the routine R on the value of A for tuple ¢’ of row [ in 7.



Let r be the following relation, where attr(r) = {House, Address}.

House Address
hl Provo, Utah
h2 339 Wymount Terrace, Provo, Utah
h3 1175 Tiger Eye, Salt Lake City, Utah

Applying the operation fyffddr ess,Street”> Where R is a routine that obtains values of Street from

values of Address, yields a new relation r1, where attr(r;) = {House, Address, Street}.

House Address Street
hl Provo, Utah
h2 339 Wymount Terrace, Provo, Utah 339 Wymount Terrace
h3 1175 Tiger Eye, Salt Lake City, Utah 1175 Tiger Eye

Similarly, applying the operation 7f’ddress City" where R’ is a routine that obtains values of

City from values of Address, yields a new relation ro, where attr(ro) = { House, Address, City}.

House Address City
hl Provo, Utah Provo
h2 339 Wymount Terrace, Provo, Utah Provo

h3 1175 Tiger Eye, Salt Lake City, Utah  Salt Lake City

Boolean 3. The B operator has the form ﬁXﬁ,r, where Y and N are two constants representing
Yes and No values in r, A is an attribute of r that has only Y or N values, and A’ is a new
attribute. The 3 operator requires the precondition (attr(r) — {A}) — {A}. Applying this
operation forms a new relation 7', where attr(r') = (attr(r) —{A}) U{A'} and |r'| = |oa=y7r|.
The value of A’ for tuple ¢ in ' is the literal string A if and only if there exists a tuple #' in

r such that t'[attr(r) — {A}] = t[attr(r) — {A}] and ¢'[A] is a Y value.
Let 7 be the following relation, where attr(r) = {House, Water Front}.

House Water Front

h1 Yes
h2 No
h3 Yes

Applying the operation B & > NVo" r yields a new relation r’, where attr(r') =

Water Front,Lot Description

House, Lot Description}.
) 74
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House Lot Description
hl Water Front
h3 Water Front

e DeBoolean Q. The Q operator has the form QX”JX,T, where Y and N are two constants
representing Yes and No values, A is an attribute of r, and A’ is a new attribute. Applying
this operation forms a new relation ', where attr(r') = (attr(r) — {A}) U {A'} and || =
|Tattr(r)—{4}7]- The value of A" for tuple ¢ in 7' is Y if and only if there exists a tuple ¢’ in r
such that ¢'[attr(r) — {A}] = tlattr(r) — {A}] and ¢'[A] is the literal string A’, or is N if and
only if there does not exist a tuple ¢’ in r such that #'[attr(r) — {A}] = t[attr(r) — {A}] and

t'[A] is the literal string A’.
Let r be the following relation, where attr(r) = {House, Lot Description}.

House Lot Description
hl Water Front
h1 Golf Course
h1 Mountain View
h2 Water Front
h3 Golf Course

“Yes” , “No”

Lot Description,Water Front” Yields a new relation 7', where attr(r') =
)

Applying the operation Q
{House, Water Front}.

House Water Front

h1 Yes
h2 Yes
h3 No

W

o ield lation 7", wh
t Description,Gol f Course” Y1€lds a new relation -, where

Similarly, applying the operation \%‘Lo
attr(r") = {House, Golf Course}.

House Golf Course

hl X
h2
h3 b'e

o Skolemization ¢. The ¢ operator has the form ¢, (r), where f4 is a skolem function, and

A is a new attribute. Applying this operation forms a new relation 7/, where attr(r’) =

11



attr(r)U{A} and |r'| = |r|. The value of A for tuple ¢ of row [ in ' is a functional term that

computes a value by applying the skolem function f4 over tuple ¢’ of row [ in r.

Let r be the following relation, where attr(r) = { House}.

House
h1
h2
h3

Applying the operation @g,. . ... r yields a new relation r’, where attr(r') = {House,

Basic Features}.

House Basic Features
hl fBasic Features (h]-)
h2 fBasic Features (h2)
h3 fBasic Features (h3)

3 Matching Techniques

In this section we explain our four basic techniques for schema mapping: (1) terminological rela-
tionships (e.g. synonyms and hypernyms), (2) data-value characteristics (e.g. string lengths and
alphanumeric ratios), (3) domain-specific, regular-expression matches (i.e. the appearance of ex-
pected strings), and (4) structure (e.g. structural similarities). For the first two techniques we
obtain vectors of measures for the features of interest and then apply machine learning over these
feature vectors to generate a decision rule and a measure of confidence for each generated decision.
We use C4.5 [Qui93] as our decision-rule and confidence-measure generator. Moreover, even though
we could apply the former three matching techniques to identify mapping elements between object
or relationship sets, our solution focuses on discovering matches between object sets. The forth
one applies schema structural characteristics to combine the results from the former three ones for
object set matches and settle mapping elements between object and relationship sets in target and

source schemas.
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3.1 Terminological Relationships

The meaning of element names provides a clue about which elements match. To match element
names, we use WordNet [Fel98, Mil95] which organizes English words into synonym and hypernym
sets. Other researchers have also suggested using WordNet to match attributes (e.g. [BCV99,
CA99]), but have given few, if any, details.

Initially we investigated the possibility of using 27 available features of WordNet in an attempt
to match a token A appearing in the name of a source schema element s with a token B appearing
in the name of an target schema element ¢. The C4.5-generated decision tree, however, was not
intuitive.> We therefore introduced some bias by selecting only those features we believed would
contribute to a human’s decision to declare a potential attribute match, namely (f0) same word
(1 if A = B and 0 otherwise), (fl1) synonym (1 if “yes” and 0 if “no”), (f2) sum of the distances
of A and B to a common hypernym (“is kind of”) root (if A and B have no common hypernym
root, the distance is defined as a maximum number in the algorithm), (f3) the number of different
common hypernym roots of A and B, and (f4) the sum of the number of senses of A and B. For
our training data we used 222 positive and 227 negative A-B pairs selected from attribute names
found in database schemas, which were readily available to us, along with synonym names found
in dictionaries. Figure 3 shows the resulting decision tree. Surprisingly, neither f0 (same word) nor
f1 (synonym) became part of the decision rule. Feature f3 dominates—when WordNet cannot find
a common hypernym root, the words are not related. After f3, {2 makes the most difference—if
two words are closely related to the same hypernym root, they are a good potential match. (Note
that f2 covers fO and f1 because both identical words and direct synonyms have zero distance to
a common root; this helps mitigate the surprise about f0 and f1.) Lastly, if the number of senses

is too high (f4 > 11), a pair of words tends to match almost randomly; thus the C4.5-generated

%An advantage of decision-tree learners over other machine learning (such as neural nets) is that they generate
results whose reasonableness can be validated by a human.
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f3 <= 0: NO (222.0/26.0)

f3>0
f2 <= 2: YES (181.0/3.0)
2> 2
| f4<=11

| | f£2<=5: YES (15.0/5.0)
| | £2>5: NO (14.0/6.0)
|

|
|
|
|
|
| | 4> 11: NO (17.0/2.0)

Figure 3: Generated WordNet Rule

rule rejects these pairs and accepts fewer senses only if pairs are reasonably close (f2 <= 5) to a
common root.

The parenthetical numbers (z/y) following “YES” and “NO” for a decision-tree leaf L give the
total number of training instances z classified for L and the number of incorrect training instances
y classified for L. Based on the trained decision rule in Figure 3, we compute a confidence value,
denoted confi(s,t), where s is a source schema element and ¢ is a target schema element. However,
we want the feature f0 (same word) to dominate the others and assign a perfect confidence value
(1.0) for two tokens if f0 holds. When schema element names are abbreviations, we expand them
so that WordNet can recognize them. If the names of both s and ¢ are single-word tokens, the
computation of confi(s,t) is straightforward based on the decision rule when f0 does not hold. For
a “YES” leaf L, we compute confidence factors by the formula (z-y)/z where x is the total number
of training instances classified for L and y is the number of incorrect training instances classified
for L. For a “NO” leaf, the confidence factor is 1-(z-y)/x, which converts “NO’s” into “YES’s” with
inverted confidence values. If a schema element name is a phrase instead of a single-word token, we
select nouns from the phrase. Then if either s or ¢ has a name consisting of multiple noun tokens,
we use an injective greedy match algorithm in Figure 4 to locate the potential matching tokens
between the name phrases of s and t. We compute confi(s,t) as the average of the confidence

values collected from the potential matching tokens obtained from the injective greedy algorithm.
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Assuming Schema 1 in Figure 1(a) is a target schema, and Schema 2 in Figure 1(b) is a source
schema, when we apply the test for terminological relationships of schema element names, the
confidence value confi(s,t) is high for the matches such as (Agent,agent), (Bedrooms,beds),
(Bathrooms, baths), (Phone,phone_day), and (Phone, phone_evenining), as it should be. How-
ever, the confidence of (Gol f _course, location_description) is low, even though “Golf_course” around
a house property is a kind of “location_description”; and the confidences of (Style, category),
(Style, location_description), and (Style,address) are high based on the WordNet hierarchical
structure, even though they are not semantically correspondent with each other; but, as we shall

see, other techniques can sort out this anomaly.

3.2 Data-Value Characteristics

Whether two sets of data have similar value characteristics provides another a clue about which
elements match. Previous work in [LC00] shows that this technique can successfully help match
elements by considering such characteristics as string-lengths and alphabetic/non-alphabetic ratios
of alphanumeric data and means and variances of numerical data. We use features similar to those
in [LCO0], but generate a C4.5 decision rule rather than a neural-net decision rule. Based on the
decision rule, which turns out to be lengthy but has a form similar to the decision tree in Figure 3,

we generate a confidence value, denoted con fo(s,t), for each element pair (s,t) of schema elements

Input: a matrix M of confidence values, and a threshold T.
Output: a set of matching attribute pairs.

While there is an unsettled confidence value in M greater than T
Find the largest unsettled confidence value V in M;
Settle V by setting it to 1;
Mark V as being settled;
For each unsettled confidence value W in the rows and columns of V
Settle W by setting it to O;
Mark W as being settled;
Output the settled attribute pairs whose value is 1;

Figure 4: Injective-Match Settling Algorithm
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that have data values available.

Testing the decision rule using data values associated with Schema 1 in Figure 1(a) as a source
schema and Schema 2 in Figure 1(b) as a target schema, the confidence value con fs(s,t) is high for
the matches such as (beds, Bedrooms), (baths, Bathrooms), (phone_day, Phone), and (fax, Faz)
as expected. However, M LS in the target and address in the source tend to look alike according to
the value characteristics measured, a surprise which needs other techniques to find the difference.
Interestingly, the house location description in location_description, the category in category , and
the house address in address of the source schema do not have similar value characteristics with
style values in Style of the target schemas; this is because either their string length ratios or their

alpha/non-alpha ratios are vastly different, as they should be.

3.3 Expected Data Values

Whether expected values appear in a set of data provides yet another a clue about which elements
match. For a specific application, we can specify a lightweight domain ontology [ECJ*99], which
includes a set of concepts and relationships among the concepts, and associates with each concept
a set of regular expressions that matches values and keywords expected to appear for the concept.
Then, using techniques described in [ECJT99], we can extract values from sets of data associated
with source and target elements and categorize their data-value patterns based on the regular
expressions declared for application concepts. The derived data-value patterns and the declared
relationship sets among concepts in the domain ontology can help discover both direct and indirect
matches for schema elements.

We declare the concepts and relationship sets in our lightweight domain ontologies indepen-
dently of any target and source schemas. We call them lightweight for two reasons. (1) The con-
struction of concepts and relationships is not the same as the construction of a conceptual schema

in GAV data-integration approaches [Ull97] for integrating heterogeneous information sources. A

16



GAV data-integration system maintains a global schema, and the system needs to update the global
schema when new information sources become available. Thus, the GAV approach requires that the
global schema should be complete in the sense that it embodies all the contents in the underlying
information sources. We neither require nor expect that the knowledge declared in an application
domain ontology is complete for the application. Moreover, (2) the objective of the regular ex-
pressions declaring expected values for application concepts is to discover corresponding concepts,
not to extract items of interest [ECJT99]. Since the domain ontology need not be as complete nor
as exact as the declarations for a data-extraction ontology, we see our domain ontologies as being
lightweight.

Figure 5 shows three components in our real-estate domain ontology, which we used to automate
matching of the two schemas in Figure 1 and also for matching real-world schemas in the real-estate
domain in general. The three components include an address component specifying Address as po-
tentially consisting of State, Clity, County, and Street;* a phone component specifying Phone as a
possible superset of Day Phone, Evening Phone, Home Phone, Of fice Phone, and Cell Phone;®
and a lot-feature component specifying Lot Feature as a possible superset of View values and in-
dividual values Water Front and Golf Course. Behind a dotted box (or individual value), a
regular-expression recognizer [ECJT99] describes the expected data values for a potential applica-
tion concept. The ontology explicitly declares that (1) the expected values in Address match with
a concatenation of the expected values for Street, County, City and State; (2) the set of values
associated with Phone is a superset of the values in Day Phone, Evening Phone, Home Phone,
Of fice Phone, and Cell Phone; and (3) the set of values associated with Lot Feature is a super-
set of the values associated with the set of View values and the singleton-sets Water Front and

Golf Course.

“Filled-in (black) triangles denote aggregation (“part-of” relationships).
®Open (white) triangles denote generalization /specialization (“ISA” supersets and subsets).
Large black dots denote individual objects or values.
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Water Front

Golf Course

Figure 5: Application Domain Ontology (Partial)

Provided with the domain ontology just described and a set of data values for elements in

Schema 1 in Figure 1(a) and Schema 2 in Figure 1(b), we can discover indirect matches as follows.

(We first explain the idea with examples and then more formally explain how this works in general.)

1. Composition and Decomposition. Based on the Address declared in the ontology in Figure 5,

the recognition-of-expected-values technique [ECJT99] can help detect that (1) the values
of address in Schema 1 of Figure 1(a) match with the ontology concept Address, and (2)
the values of Street, City, and State in Schema 2 of Figure 1(b) match with the ontology
concepts Street, City, and State respectively. Thus, if Schema 1 is the source and Schema 2 is
the target, we can use Decomposition over address in the source to derive three virtual object
sets such that the three virtual object sets match with Street, City, and State respectively
in the target. If we switch and let Schema 2 be the source and Schema 1 be the target, based
on the same information, we can identify an indirect match that declares a virtual object set
derived by applying Composition operation over the source to merge values in Street, City,

and State directly match with address in the target’.

. Union and Selection. Based on the specification of the regular expression matched for Phone,

the schema elements phone_day and phone_evening in Schema 1 of Figure 1(a) match with the

"When applying the manipulation operations over sources in data integration applications, the data integration
system requires routines to merge/split values so that correctly retrieving data from sources.

18



concepts Day Phone and Evening Phone respectively, and Phone in Schema 2 of Figure 1(b)
also matches with the concept Phone. Phone in the ontology explicitly declares that the
set of expected values of Phone is a superset of the expected values of Day Phone and
FEvening Phone. Thus, we are able to identify the indirect matching schema elements between
Phone in Schema 2 and phone_day and phone_evening in Schema 1. If Schema 1 is the source
and Schema 2 is the target, we can apply a Union operation over Schema 1 to derive a virtual
schema element Phone', which can directly match with phone in Schema 2. If Schema 2 is the
source and Schema 1 is the target, we may be able to recognize keywords such as day-time,
day, work phone, evening, and home associated with each listed phone in the source. If so,
we can use a Selection operation to sort out which phones belong in which specialization (if

not, a human expert may not be able to sort these out either).

3. Schema Element Name as Value. Because regular-expression recognizers can recognize schema
element names as well as values, the recognizer for Lot Feature recognizes names such as
Water_front and Gol f _course in Schema 2 of Figure 1(b) as values. Moreover, the recognizer
for Lot Feature can also recognize data values associated with location_description in Schema
1 of Figure 1(a) such as “Mountain View”, “City Overlook”, and “Water-Front Property”.
Thus, when Schema 1 is the source and Schema 2 is the target, whenever we match a target-
schema-element name with a source location_description value, we can declare “Yes” as the
value for the matching target concept. If, on the other hand, Schema 2 is the source and
Schema 1 is the target, we can declare that the schema element name should be a value for

location_description for each “Yes” associated with the matching source element.

We now more formally describe these three types of indirect matches. Let ¢; be an application
concept, such as Street, and consider a concatenation of concepts such as Address components.

Suppose the regular expression for concept ¢; matches the first part of a value v for a schema
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element and the regular expression for concept c¢; matches the last part of v, then we say that the
concatenation ¢; oc; matches v. In general, we may have a set of concatenated concepts Cs match a
source element s and a set of concatenated concepts C; match a target element ¢. For each concept
in Cs or in C;, we have an associated hit ratio. Hit ratios give the percentage of s or ¢ values
that match (or are included in at least some match) with the values of the concepts in Cs or Cy
respectively. We also have a hit ratio rs associated with Cs that gives the percentage of s values
that match the concatenation of concepts in Cs, and a hit ratio r; associated with C} that gives
the percentage of ¢ values that match the concatenation of concepts in C;. To obtain hit ratios for
Boolean fields recognized as schema-element names, we distribute the schema-element names over
all the Boolean fields.

We decide if s matches with ¢ directly or indirectly by comparing Cs and Cy. If Cs equals C;,
we declare a direct match (s, t). Otherwise, if Cs D Cy (Cs C Cy), we derive an indirect match (s, t)
through a Decomposition (Composition) operation. If both Cs and Cy contain one individual concept
¢s and ¢; respectively, and if the values of concept cs (¢;) are declared as a subset of the values of
concept ¢; (¢s), we derive an indirect match (s, t) through a Union (Selection) operation. When
we have schema-element names as values, distribution of the name over the Boolean value fields
converts these schema elements into standard schema elements with conventional value-populated
fields. Thus, no additional comparisons are needed to detect direct and indirect matches when
schema-element names are values. We must, however, remember the Boolean conversion for both
source and target schemas to correctly derive indirect matches.

We compute the confidence value for a mapping (s, ¢), which we denoted as confs(s,t), as
follows. If we can declare a direct match or derive an indirect match through manipulating Union,
Selection, Composition, Decomposition, Boolean, and DeBoolean for (s, t), and the hit ratios rg

and r; are above an accepted threshold, we output the highest confidence value 1.0 for con f3(s,t).
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Otherwise, we construct two vectors vs; and vy whose coefficients are hit ratios associated with
concepts in Cs and Cy. To take the partial similarity between v, and v; into account, we calculate
a VSM [BYRN99] cosine measure cos(vs,v;) between vs and vy, and let confs(s,t) be (cos(vs,vy)
X (rs +1¢)/2).

3.4 Structure

We consider structure as one more technique that provides a clue about which elements match. The
former discussed matching techniques compute confidence measures for an element pair between
two schemas in element-level, which means determining matching elements in a target schema with
an element in a source schema [RB01] in isolation. Our solution takes structural characteristics into
account, match combinations of schema elements that appear together in a schema, and compute
structure-level mapping elements [RBO1].

The former three matching techniques including the terminological relationships, the value
characteristics, and the expected data values compare only object sets between a target schema
and a source schema. In additional to object set matches, structure matching applies schema
structural properties to resolve relationship set matches between two schemas. The object set
matches themselves are not enough to provide access paths for retrieving data from the source.
Assume that we let Schema 1 of Figure 1(a) as a target schema and Schema 2 of Figure 1(b) as a
source schema. Based on the terminological relationships, value characteristics, and expected data
values, we obtain the object set matches such as (M LS, MLS) and (beds, Bedrooms). Without
relationship set matches, however, it is impossible to correctly answer a user query “finding houses
with 4 bed rooms”. In a source-to-target mapping, a mapping element w(t ~ s <= 65(Xg)) is either
an object set match or a relationship set match. Since the mapping element declares that a source
schema element s, which is either an element in the source or a view querying over the source, is

semantically equivalent to a target element ¢, we can access data of s into the target for the facts of
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t. Intuitively, a source-to-target mapping between a target schema and a source schema describes
all of the possible access paths to retrieve data facts from the source into the target.

When comparing structural properties of a target schema and a source schema, we apply a
top-down strategy. At the top level, we compute the semantic correspondences between abstracted
components of the target and source schemas. Each of the components for both schemas composes
of a set of object sets and relationship sets among the object sets. The structure matching algo-
rithm dynamically decides component composition for target and source schemas based on schema
structural constraints and available confidence values for potential object set matches from the
terminological relationship sets, the value characteristics, and the expected data values. Then, at
the bottom level, with the guide of compatible components between the target and source schemas,
we compute the finer-level correspondences between the object and relationship sets.

The abstraction for target and source schemas uses equivalence-class transformations [Emb98].
Based on the relationship-set constraints in a conceptual schema H, we analyze H into a set of
equivalence classes and relationship sets among the equivalence classes. Equivalence-class trans-
formations capitalize on the idea that we may be able to find two or more object sets, or sets of
object sets, that are in a one-to-one correspondence and thus in an equivalence class. Let X and Y
be subsets of the object sets in H, and let F' be a set of functional dependencies over H. X and Y
are equivalentif X - Y € FTandY - X € FF.If X Y andY — X, we write X <+ Y. The
relation <+ over subsets of the set of object sets Oy is an equivalence relation because the relation
is reflexive, symmetric, and transitive. For any equivalence relation formed from the relation <,
we can form a set of pairwise nonintersecting sets of object sets, where each set of object sets
determines every other set functionally. We call this set an equivalence class. An equivalence class
is trivial if it only contains a single object set. Otherwise, the equivalence class is nontrivial. Based

on the definition of equivalence class, a singular set containing an object set o is in an equivalence
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class because {0} <> {0} holds. In our approach, we are interested in mazimum-set equivalence
classes. If an equivalence class e is a maximum-set equivalence class in a schema schema H, there
is not other subset €/ of Oy in ¥ available such that €/ < e and e’ D e.Bhe equivalence classes
mentioned following in this paper are maximum-set equivalence classes By analyzing a schema H,
we can divide the object sets into subsets, each of which form a maximum-set equivalence class,
and the subsets do not overlap[Emb98]. We denote the set of maximum-set equivalence classes in
H as Ep, where the union of equivalence classes in Eyr is the object sets Op. In Schema 2 of
Figure 1(b), there is one non-trivial equivalence class { House, M LS} containing both House and
MLS two object sets. All the equivalence classes in Schema 1 and other equivalence classes in
Schema 2 are trivial, singleton sets.

With the equivalence classes in a conceptual schema H, we further analyze a conceptual schema
H by abstracting the equivalence classes into a set of representative equivalence classes, which we
denote as EII}. Intuitively, the set of representative equivalence classes of a conceptual schema is
the most important and informative ones to describe the purpose of the schema. We distinguish
representative equivalence classes Eﬁl from Ep, which contains all of equivalence classes in a con-
ceptual schema H, if and only if an equivalence class e satisfies either (1) the equivalence class e is
nontrivial, which contains more than one object set, or (2) the object sets in e determine one other
set of object sets in an equivalence class ¢/, where ¢/ € FEp. In Figure 6, the shaded boxes describe
the object sets in the representative equivalence classes { M LS}, {agent}, and {basic_features} in
Schema 1 of Figure 1(a), and the representative equivalence classes { House, M LS}, {Agent}, and
{Address} in Schema 2 of Figure 1(b).

In additional to representative equivalence classes, the structure matching technique makes

use of one other notion, “context” of schema elements. By taking relationship sets around a

8T
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Figure 6: Context Analysis for Schema 1 and Schema 2 at the First Phase
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representative equivalence class e into account, we cluster a set of object sets and relationship sets
with a representative equivalence class as a component to describe the conceptual schema. We call
this component as the context for the representative equivalence class e, which we denote as C'ont,.
The context Cont. for a representative equivalence class e composes a set of object sets, which we
denote as Cont?, and a set of relationship sets, which we denote as ContZ.

To obtain a context Cont, for a representative equivalence class e in either the target or the
source schema, the structure matching technique proceeds in two phases using an context-collection
algorithm in Figure 7. In the first phase, we use the the available confidence measures and struc-
tural properties in an individual schema to compute contexts for representative equivalence class
independently. In the algorithm, since the compatibilities between equivalence classes in the two
input schemas are unknown, the algorithm uses a default initialized “false” value, which means that
the corresponding equivalence class in this schema is not compatible with any equivalence class in
the other schema. Figure 6 shows the contexts of representative equivalence classes for Schema 1
and Schema, 2, where each circled curve denotes a context for a representative equivalence class.
Note that the shaded boxes inside a circled curve represent the object sets in an equivalence classes.
Because the context collection in the algorithm of Figure 7 uses a recursive computation in the for
loop based on functional closure, it is possible that the contexts of different representative equiva-
lence classes exist overlap in a schema. For example, the context of the equivalence class {M LS}
subsumes the contexts of {agent} and {basic_features} in Schema 1, and the context of the equiv-
alence class {House, M LS} subsumes the context of {Agent} and the context of {Address} in
Schema 2.

After the first phase of context computation for representative equivalence classes in target
and source schemas, we compare the representative equivalence classes as well as their contexts

between the schemas. Thus, we make a guess to map the source schema into the target schemas
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by determining a set of compatible representative equivalence classes that are highly similar. In
Figure 6, we guess that {House, M LS} matches {M LS}, and {Agent} matches with {agent}.
Then, in the second phase of context computation for representative equivalence classes, with the
available guess about the map between the target and source schemas, we use the algorithm in Fig-
ure 7 to recompute contexts for representative equivalence classes in the target and source schemas.
Figure 8 shows the new contexts for representative equivalence classes for schemas in Figure 1. Note
that the contexts for representative equivalence classes {M LS} and {House, M LS} are smaller
than their original contexts before the re-computation. Even though {MLS} — {agent} and
{House, M LS} — {Agent}, however, because {agent} and {Agent} in the two schemas are
correspondent with each other, we do not include their contexts for {M LS} and {House, M LS}.
We reduce the context scopes for representative equivalence classes at the top-level such that the
structure matching limits the search of finer-level correspondences in smaller search spaces.

With the guide of the available comparative representative equivalence classes, instead of glob-
ally identifying semantic correspondences between schema elements in target and source schemas,
the structure matching technique discovers object and relationship set matches between the con-
texts of compatible representative equivalence classes. We base our structure contexts for both

direct and indirect matches on four intuitive ideas, which we illustrate using Schemas 1 and 2 in

Input: a representative equivalence class e in a schema H.
Output: a context C of e.

Include all the object sets in e into a set Co
for each equivalence class e’ connected by e
if e’ is non-representative
Include the object set in e’ into Co
else if e’ is not potential compatible
Include the object sets in the context of e’ into Co
Collect relationship sets among Co in H into a set Cr
Output Co and Cr as the context C for e;

Figure 7: Context Computation of Representative Equivalence Classes
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Figure 8.

1. Non-lexical object set. Two non-lexical object sets match if their element names are similar
and the lexical object sets around them describe similar data in the two schemas. A non-
lexical object set has only object identifiers in a target or source schema. The object identifiers
themselves do not describe the objects in the non-lexical object set. Instead, the values of
object sets around the non-lexical object set describe non-lexical objects. The context analysis
provides a limited scope for selecting the lexical object sets around the non-lexical object
sets. In Figure 8, both the agent in Schema 1 and the Agent in Schema, 2 represent the agent
for a house. The confidence value confi(agent, Agent) computed based on terminological
relationships between the two element names declares that Agent of Schema 2 is similar
to agent of Schema 1 in Figure 8. The data associated with the adjacent Name, Faz, and
Phone as well as the adjacent Street, City, State around the object Address together represent
semantics for Agent in Schema 2. In contrast, the data associated with the adjacent location,
name, fax, phone_day, phone_evening together represent the semantics of agent in Schema 1.
By taking the adjacent lexical object sets into account, Agent of Schema 2 does match with

agent of Schema 1.

One non-lexical object set is possible to match a virtual non-lexical object set between target
and source schemas. With the available compatibility between {House, M LS} of Schema
2 and the equivalence class {M LS} of Schema 1 in Figure 8 obtained at the top level of
comparison between the schemas, assume that Schema 1 is a source schema and Schema
2 is a target schema, we create a virtual non-lexical object set House’ based on values for
MLS in Schema 1. The virtual non-lexical object set House' matches with House in Schema
2. The non-lexical object set match satisfy the requirement, for example, the terminological

relationships between names and the similarity between values of closely related lexical object
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sets, for non-lexical object set matches discussed in the above paragraph.

. Lezical object set. The closely related, for example, adjacent and sibling, lexical and non-
lexical object sets supply additional constraints for lexical object sets. In Figure 8(a), address
and location denotes house and agent locations respectively. Based on the context analysis
for the two schemas, we got the context distribution for representative equivalence classes
of schemas in Figure 8. Figure 8(a) shows that the object set location is in the context
for {agent} and address is in the context of {MLS}. Thus, even though both address and
location describe addresses, we distinguish the semantic correspondences in Figure 8(b) for
location and address by considering the context similarities. In Figure 8(b), the address
objects are in contexts for { House, M LS} and {Agent}. Since we obtained the guess that
{House, M LS} matches {M LS}, given that the values for Street, City and State describe
addresses in Figure 8(b), we decide that there exists an indirect match between the addresses
in the context of { House, M LS} of Figure 8(b) and the addresses in the context of {M LS}
of Figure 8(a). Similarly, we decide the other indirect match between the addresses in the

context of { Agent} of Figure 8(b) and the addresses in the context of {M LS} of Figure 8(a).

. Relationship set. Each relationship set, which is either in the source or in the target, is a
graph, which nodes and edges represent object sets and connections among the object sets
respectively. A source relationship set s, which could be a virtual element, matches with a
target relationship set ¢ if and only if two graphs signaturing the two relationship sets s and
t are isomorphic. That means, a mapping function f, from s to ¢ exists such that there is an
object set f,(0s) with constraint ¢ connected by ¢ if and only if there is an object set os with
constraint ¢ connected by s. Thus, the requirement for relationship set matches falls into two

categories: (1) type requirements to satisfy node isomorphism, and (2)constraint requirements
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to satisfy edge isomorphism. The type requirement between two nodes is satisfied if and only if
there exists an object set match w(o; ~ 05 < 6,,(Xg)) where the two nodes represents o5 and
o¢. To check constraint compatibility between two connections, [BE03] proposed four cases,
which guide user’s involvements for schema mapping operations while translating source data

into the target.

Since our approach for schema mapping allows derived data in source schemas, the exhaustive
search for relationship set matches between X7 and Vg, where T is a target schema and S is
a source schema, would be exponential time complexity. To avoid generating a large amount
of views over a source schema, we make constriction to the search space for view generation.
At the bottom-level comparison of the structure matching, With the obtained compatible
contexts, the matching technique first discovers object set matches. Then ,with the guide
of object set correspondences, it discovers relationship set matches. Intuitively, we want
to use type requirements for relationship set matches to trigger deriving views over source
within a subset of a context, where the subset composes of a set of object sets and a set of
relationship sets among the object sets. The decision of the object sets is based on obtained
object set matches and context limitations. For example, we let Schema 1 in Figure 8(a) as
a target schema and Schema 2 in Figure 8(b) as a source schema. Assume that we discover
that the objects in Agent in the context of { Agent} corresponds the objects in agent in the
context of {agent}, and discover that the values for Street, County, City, and State of objects
Address in the context of {Agent} in Schema 2 semantically corresponds location in the
context of {agent} in Schema 1. To obtain the semantic correspondence of the relationship
set agent —location in Schema 1, with the available semantic correspondences between object
sets in the contexts of {agent} and { Agent}, we derive views over Agent— Address, Address—

Street, Address — County, Address — City, and Address-State in the source to form a virtual
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relationship set matching agent — location in the target.

4 Matching Algorithm

We have implemented an algorithm using our matching techniques that produces both direct and
indirect matches between a source schema S and a target schema 7. We use one running example
applying two schemas in Figure 1. Let Schema 1 be a source schema S, and let Schema 2 be a

target schema T

Step 1: Compute conf measures between S and T. For each pair of schema elements (s, t),
which are either both lexical object sets or both non-lexical object sets, the algorithm computes
a confidence value, conf(s,t), to combine the output confidence values of the three nonstructural

matching techniques. We compute conf(s,t) using the following formula.

confi(s,t) , if s and t are non-lexical object sets
conf(s,t) =< 1.0, if confs(s,t) = 1.0 and s and ¢ are lexical object sets
wg(con fi(s,t)) +wy(confa(s,t) + confs(s,t))/2 , otherwise

9 When the confidence value

In this formula, ws and w, are experimentally determined weights.
confs(s,t) = 1.0, we let confs dominate and assign conf(s,t) as 1.0 and keep the detected ma-
nipulation operations (Selection, Union, Composition, Decomposition, Boolean, DeBoolean) for
indirect element matches. The motivation for letting con f3(s,t) dominate is that when expected
values appear in both source and target schema elements and they both match well with the values
we expect, this is a strong indication that the elements should match (either directly or indirectly).
Since the domain ontology is not guaranteed to be complete (and may even have some inaccuracies)
for a particular application domain, the confidence values obtained from the other techniques can
complement and compensate for the inadequacies of the domain knowledge. This motivates the
third part of the computation for conf (s, t).

Step 2: Analyze equivalence classes and their semantic correspondences between S and T. We

identify two sets of equivalence classes Es and E7 in S and T using an algorithm in [Emb98]. We

9The two parameters ws, which weights schema element names, and w,, which weights schema element values,
are application dependent. Using a heuristic guide, however, we can determine the two parameters based on schemas
and available data even without experimental evidence. If the schema element names are informative and the data
is not self descriptive, we assign w, as 0.8 and w, as 0.2. On the other hand, if the schema element names are not
informative and the data is semantically rich, we assign w, as 0.2 and w, as 0.8. For all other cases, we assign both
ws and w, as 0.5.
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further distinguish the representative equivalence classes between S and 7', and compute their origi-
nal contexts using the algorithm in Figure 7. Figure 6 shows the original contexts for representative
equivalence classes for the schemas in Figure 1.

When comparing two representative equivalence classes eg and ey, where eg € Eg and e € Er,
we take three factors into account: (1) a set of combined confidence measures {conf(s,t)|s €
es, t € er}, (2) an importance similarity measure simimportance(€s,er), and (3) a vicinity similarity
measure siMyjcinity (€5, €r). We can declare a compatible pair, which we denote as (er ~ eg) if there
exists at least one conf(s,t), siMimportance(€s, €T), and siMyjicinity(es, er) are high. The latter two
measures together represent the similarity between the contexts of eg and er, which we denote as
Cont.s and Cont,, respectively obtained using algorithm in Figure 7. Given an experimentally
determined threshold, th.y, f,m we calculate simimportance(€s,er) and simuyicinity(€s, er) based on

the following formulas.

|{x\xeCont£S /\EyeCont?T (conf(z,y)>thcons)}
|Cont, ’

STMyicinity (8, 1) = maz(

|{x\xeConteoT AJye C’onteos (conf(y,z)>theonf)}
|ContQ, )

[Contes| |C0nteT||
25| ||

Simimportance(esa eT) =1.0- |

Intuitively, simyicinity measures the similarity of the vicinity surrounding eg and the vicinity sur-
rounding er, and simmportance Measures the similarity of the “importance” of eg and the “impor-
tance” of ep where we measure the “importance” of an equivalence class e by counting the number
of schema elements in the context of e. When the number of schema elements is largely different,
it is difficult to decide the vicinity similarity based on one singular measure, simuyicinity [MBRO1].
The conceptual analysis techniques discussed in [CAFP98] motivated simjmportance, Which helps
measure the context similarity from an additional perspective.

The comparison between equivalence classes in the target 7" and the source S provides a guess
about the semantic correspondences. By using the algorithm in Figure 7, we recompute the con-

texts for compatible equivalence classes. Figure 8 shows the modified contexts for representative

For any application, the computed confidence values tend to converge to a specific high measure for element
matches between two schemas. Thus, we use a universal threshold value. Experimentally, we have determined that
0.8 works well across all applications.
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equivalence classes in our running example. At this step, we finish the top-level comparison between
S and T , and we are ready to detect the object and relationship set matches at the bottom-level.
Step 3: Discover object and relationship set matches. For each matching pair (ep ~ eg) of
representative equivalence classes settled in Step 2, we first settle object set matches between Cont?s
and Conth for eg and er that match with high confidence (conf = 1.0). For all remaining unsettled
object sets of Conteos and C’ont?T, we find a best possible match using the injective algorithm in
Figure 4 so long as the confidence of the match is above the threshold, th.o,r. For each of the
matches, given the expected-value matches, we keep the information required to transform source
elements into virtual elements that directly match with target object sets with the recognized object
set matches. For example, we keep the Decomposition operations identified by the expected data
values between [ocation of agent in Schema 1 and Street, County, City, and State in Schema 2. We
are going to use the operations to specify mapping expressions for indirect matches at Step 4.

With the available semantic correspondences between object sets in S and T, we further discover
matches between relationship sets. The recognition for most of relationship set matches are also
limited in the contexts of compatible representative equivalence classes between S and T at this
step. However, for the relationship sets among contexts of representative equivalence classes, we
identify semantic correspondences globally without the limitation of contexts. Within the context
for a representative equivalence class e, we distinguish the relationship sets in the context Cont,
for an equivalence class e into inner relationship sets, which are relationship sets among object
sets in e, and outer relationship sets, which are other relationship sets in C'ont, that are not inner
relationship sets. We denote ContZi as the set of inner relationship sets and Contfe as the set of
outer relationship sets.

Within the contexts of two compatible representative equivalence classes er and eg, first, we
recognize the semantic correspondences for inner relationship sets Contfqi in the context of the
target representative equivalence class er with relationship sets or views over C'ont., the context of
es in the source. For example, we use Skolemization to derive a virtual relationship House' — M LS
and a virtual object set House' based on the values for M LS in the context of { M LS} in the source,
Schema 1 of Figure 8(a), to match with House— M LS and House in the context of { House, M LS}
in the target, Schema 2 of Figure 8(b). Second, we recognize the semantic correspondences for

outer relationship sets Contfe in the context of the target representative equivalence class er.
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For example, to match with House — Bedrooms, which is a outer relationship set in the context
of {House, MLS} in the target, we use Join and Projection to derive a virtual relationship set
House' — beds over the context of {M LS} in the source. Figure 9(a) and Figure 9(b) show the
virtual object and relationship sets in the contexts for { House, M LS} and {Agent} obtained when
discovering relationship-set correspondences. The dashed lines represent virtual relationship sets,
and the shaded boxes represent virtual object sets. Given the value correspondences detected based
on expected data values, we keep the information required to transform source elements into virtual
elements that directly match with relationship sets with the recognized relationship set matches. For
example, in the context of { M LS}, the relationship sets Addressl’ —address corresponds the target
relationship sets Address — Street, Address — County, Address — City, and Address-State based
on Composition operation recognized by the expected values. The obtained Composition operation
is transferred from the semantic correspondences between object sets address in the source context
of {M LS} and Street, County, City, and State in the target context of {House, M LS}.

After discovering relationship set matches within contexts of compatible representative equiv-
alence classes, we further discover the relationship set matches for inter relationship sets between
contexts. In our running example, a target relationship set House — Agent is an inter relationship
sets between the contexts for { House, M LS} and {Agent} in Figure 8(b). With the available
object set match between House' in the source and House in the target, where House' is a virtual
object set derived when processing the inner relationship set House — M LS in the context of target
representative equivalence class { House, M LS}, and the other object set match between agent in
the source and Agent in the target, we derive a virtual relationship set House' — agent over the
source in Figure 9(c) beyond the limitation of contexts.

In the following, the <= explained in each step denotes a derivation of a virtual schema element
on the left through applying the algebra expression on the right. The derivation describes the
view definitions triggered by object set correspondences while recognizing relationship set matches

within and beyond context limitations.
1. Deriving virtual object and relationship sets in the context of {MLS}.
House! — MLS < ¢y, (MLS)
House' <= mouse (House' — MLS)

House' — Addressl’ < ¢y, . (House')
Addressl’ < Tagaress1” (House' — Address1’)
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Addressl’ — address < mgddressi’ ,address(M LS — House' X House' — Addressl’ X M LS — address)
House' — baths < Trouse' paths (M LS — basic_features X basic_features — baths X House' — M LS)
House' — beds < THouse' peds(M LS — basic_features X basic_features — beds X House' — M LS)

House' — SQFT < mhouse',sQrr(M LS — basic_features X basic_features — SQFT X House' — M LS)
House' — location_description <= Touse’ jocation_description (M LS — location_description X House' — M LS)

The structure matching decides that the values for M LS, bath, beds, SQFT in the context of
{M LS} of Figure 8(a) directly corresponds to the values for M LS, Bathrooms, Bedrooms,
Square_feet in the context of { House, M LS} of Figure 8(b) respectively. In additional to the
direct object set matches, the algorithm determines that the values for location_description
in the context of {M LS} are generalization of the lot description implied in the values for
Water_front and Golf_course in the target context of {House, M LS}, and the values for
Street, County, City, and State in the target are split values for values in address in the

source.

The derivation of virtual relationship sets House' — M LS happened when processing inner
relationship set House — M LS in the target context of { House, M LS}. When applying the
Skolemization operator to derive virtual object set House’, the system can compute the skolem
function fgouser as a function on MLS values in MLS because the target object set M LS,
which is semantically equivalent to M LS in the source, is functionally dependent on House,
which is semantically equivalent to House’. When processing the the outer relationship set
House — Address in the target, we use one other Skolemization operation to derive a virtual
relationship set House' — Adderess’, which is based on the functional terms in the derived
virtual object set House'. The matching technique derives other virtual relationship sets
when processing outer relationship sets in the context of { House, MLS}.

. Deriving virtual object and relationship sets in the context of {agent}.

agent — Address2' < ¢y, . (agent)
Address2' < 7 pddress2 (agent — Address2')
Address2' — location <= T Address2 location(@gent — Address2' X agent — location)

The structure matching decides that the objects in agent and the values for name, fax
in the context of {agent} of Figure 8(a) directly corresponds to the objects in Agent and

the values for Name, Faz in the context of {Agent} of Figure 8(b) respectively. With
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the object set matches, the relationship sets Agent — Name, Agent — Faz in the target
directly match agent — name, agent — fax in the source. Thus, it is no need to derive
virtual relationship sets in the source to correspond with the two target relationship sets.
In additional to the direct object set matches, the algorithm determines that the values for
Phone in the context of { Agent} are generalization of the phone numbers for phone_day and
phone_evening in the context of {agent}, and the values for Street, County, City, and State
in the context of { Agent} are split values for values in location in the context of {agent}. The
indirect object set matches guide the derivation of virtual relationship sets agent — Phone'

and Address2' — location over the context of {agent}.
3. Deriving a virtual relationship set between the contexts of {M LS} and {agent}.

House' — agent <= Trouse ,agent (House — MLS'" X M LS — agent)

Even though the view derivation for inter-relationship-set matches is beyond the limitation
of contexts of compatible representative equivalence classes, we, however, still can constrict

the search space with the guide of object set matches.

Step 4: Specify mapping expression for object and relationship set matches. For direct matches,
the specification of mapping expressions for mapping elements are straightforward. However, the
specification of mapping expressions for indirect matches is not trivial. Within this step, we use
a bottom-up strategy to derive mapping expressions for indirect matches. At the bottom level,
we derive virtual elements based on instance-level information with the limitation of contexts for
compatible representative equivalence classes between S and T'. Then, at the top level, we derive
virtual elements globally beyond the limitation of contexts. We discuss the the two levels as follows.

First, use instance-level information to derive virtual object and relationship sets. In our match-
ing framework, we apply instance-level information for two matching techniques including data-
value characteristics and expected data values. However, the data-value characteristics does not
contribute to indirect matches. Thus, the derivation of virtual object and relationship sets apply-
ing instance-level information dependent on confidence measures output from expected data values.
Figure 10 shows the virtual object and relationship sets derived after applying the instance-level
information in the running example. We still use the shaded boxes to denote virtual object sets,

and use the dashed lines to denote virtual relationship sets.
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1. Deriving virtual object and relationship sets in the context of {MLS}.

I ' _ Gol , Q“Yes”,“No”
ouse — Of_COUT‘Se - location_description,Gol f _course’

Gol f_course' <= wGoif_course (House — Gol f_course')

“Yes”,“No” . -
! ! ’ !
House' — Water_front' < QlOmtion_descrmion,Wate,,_fmnt, (House' — location_description)

Water_front' < Twater_front' (House — Water_front')

address

Addressl' — Streetl’ <= Taddressi’,streett’ (Vadirean -Street1r (Addressl’ — address))
Streetl’ < Tsireet1’ (Addressl’ — Streetl’)

(House' — location_description)

address

Addressl’ — Countyl’ < 7rAddr6331/7County1/('yadcd‘;f‘e’;:éoumyl,(Addressl' — address))
Countyl' < wcountyrr (Addressl’ — Countyl’)

address
Addressl’ — Cityl' « WAddressl’,Cityl’('Yad%i;:;’s,cz'tyy (Address1’ — address))
Cityl’ < meiy1 (Addressl’ — Cityl')
address
Addressl’ — Statel’ « ﬂAddressy,smtd/('yads‘diﬁ;;',smwl, (Address1’ — address))
Statel’ < Tgiqterr (Addressl’ — Statel’)

Applying two DeBoolean operators makes new virtual relationship sets such that the values in

the formed virtual relationship sets uses boolean indicators “Yes” as values. The application

of four DeComposition operator uses routines RZIress R%‘ffff,ff;l,, R‘é‘%‘ffs, and R&ddress ¢

decompose the string values for address as values for the new virtual object sets Streetl’,
Countyl’, Cityl’, and Statel’.
2. Deriving virtual object and relationship sets in the context of {agent}.

location

R : .
Address2’ — Street2’ < Taqdress2',Street2’ ('ylogégﬁgiisweeﬁ, (Address2' — location))
Street2' < wgireets (Address2’ — Street2')

location

oun ! N
Address2’ — County2' < T address2 County2’ ('yloccatio;i%ountyy (Address2' — location))

County?2' < Toounty2 (Address2’ — County?2')

location
Address2' — City2' <= Taddress2' ,City2' (7lo§a";z”.§;hcity2, (Address2' — location))
City2' < meinyr (Address2' — Clity2')
location
tate2’

Address2' — State2' <= Taddress2',State2 (Vjooniion srates (Address2’ — location))

State2' < Tgtater (Address2’ — State2')

agent — Phone' <= pphone_day« Phone (agent — phone_day) U pphone_evening«— Phone’ (agent — phone_evening)
Phone' < mpponeagent — Phone'

Applying four DeComposition operator makes virtual relationship sets based on routines
ng"ﬁ‘gfg, Rlé’gﬁff;%,, Rlé’fgé?", and Rg’f&?;ﬁ decomposing the string values for location as
values for the new virtual object sets Street2’, County?2', City2', and State2’. Indeed, the

four routines used here are same as those used to extract values for Streetl’, Countyl’, Cityl’,

and Statel’ in the context of {MLS}.
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Figure 11: Source elements in the Source-to-Target Mapping between S and T

Second, use schema-level information to derive virtual object and relationship sets. The match-
ing techniques apply source and target schema structural characteristics to derive virtual object
and relationship sets beyond the constraints of contexts. Basically, we collect matches happened in
different contexts. For example, both objects in Addressl’ in the context of {M LS} and objects
in Address2’ in the context of {agent} in the source correspond objects in Address in the target,
which is in both the context of {House, MLS} and {Agent}. In a source-to-target mapping,
between S and T, however, a target element { € Y7 corresponds to at most one source element
s € Vg. Thus, we use Union or Selection operations to force the 1-1 relationship sets between target

elements in Y7 and source elements in V.

1. Deriving virtual object sets for indirect object set matches.

AddT'ESSI <~ PAddressl’« Address’ Addressl’ U pAddress2’<—Address’Addr63521
Street' < pStreetl’%Street’Street]-, V) pStreet2’%Street’StTEEtQI

C’ounty’ <= PCountyl’+County’ Oountyll U PCounty’ +County’ CountyQI
City" <= pcity1 —city Cityl" U pcityar city City2'

State' <= pStatel’eState’Statell U pStateQ’eState’StateQ,
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Input: a virtual source element s and a set of derivation rules Views.
Output: a mapping expression Me of s.

Include the derivation rule for s in Views into Me
for each virtual element s’ appeared in the rule
Derive a mapping expression Me’ of s’
Union Me with Me’

Figure 12: Derivation of a Mapping Expression for an Virtual Element

When the objects in Addressl’ and Address2’ are generalized in Address’, it is an object
identity problem. In this paper, we leave this problem out and assume that we already have
a resolution. At this level, if Selection operation is applied, we may be able to recognize
keywords for values in an object set to sort out the specializations. If not, a human expert

may not be able to sort these out either.

2. Deriving virtual relationship sets for indirect relationship set matches.

Address' — Street' <= paddressi’« Address',Street1’«Streetr Addressl’ — Streetl

! !
UpAddress2’« Address' ,Street2’ < Street’ Address2' — Street2
Address' — County' <= paddressi’« Address’ ,Countyl’«County Addressl’ — Countyl

' '
Up Address2’« Address’ ,County2’ +County’ Address2' — Street2
Address’ — CZtyl = pAddressl’eAddress’,Cityl’eCity’AddreSS]-l - CZty]—

UpAddres.SZ’%Address’,CityZ’%City’ Address2' — CZtle
Address' — State' <= paddressi’« Address’,Statel’ «Stater Address1’ — Statel

UpAddreSSQ’<—Address’7Stat62’<—State’Addr@SSQI — State2'
—agent — Phone' < oppone (agent — Phone')

The open white triangle in Figure 11 denotes generalization/specialization. We use the no-
tion to illustrate that the objects in Address’ are union of the objects in Addressl’ and
Address?2’. The last derivation forces the participation constraint of agent in the relationship
set _agent — Phone’ matches with the participation constraint “1:1” of Agent in the relation-
ship set Agent — Phone. We can use the list of issues in [BE03] to resolve the constraint

matching problem.

Figure 11 shows the source elements in the source-to-target mapping between S and T of our
running example. We use a table Views memorize the derivation rules for virtual elements in
Vs. The derivation algorithm in Figure 12 has a recursive flavor to collect a mapping expressions

for a virtual source element of an indirect match. Note that the derivation of virtual object and
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relationship sets is incrementally added as the matching algorithm proceeds, thus, the algorithm
in Figure 12 to compute mapping expressions for virtual elements in the source must finish after
finite steps.

Step 5: OQutput both direct and indirect element matches with manipulation operations.
5 Data Integration

The following five characteristics describe TIQS. Each characteristic addresses one of the five major

issues we want to address for data integration.

1. Heterogeneity. Each relation in a target schema, which is our global schema, is predefined
and independent of any source schema. Moreover, we wrap sources in isolation, without
reference to the global schema.!' Thus, in TIQS, source and target schemas use different
structures and vocabularies. A mapping tool [XE03] within TIQS produces a set of mapping
elements semi-automatically in a source-to-target mapping that maps a source schema to
a target schema. The mapping elements include both direct and many indirect semantic
correspondences. Thus, TIQS reduces heterogeneity by applying semantic correspondences

expressed using source-to-target mappings between target and source schemas.

2. Scalability. Although TIQS still requires a DBA to validate and sometimes adjust the gen-
erated source-to-target mappings, TIQS largely automates this mapping procedure [XE03].
This facilitates scalability, and allows TIQS to specify views over a large number of source

schemas that match with elements in the target schema in a semi-automatic way.

3. Continual infusion and change of local information sources. When a new information source
becomes available (changes), a source-to-target mapping must be created (adjusted). With
the assistance of the semi-automatic mapping tool in TIQS, the maintenance requires little

manual work to create (adjust) mappings.

4. Query processing complexity. Whenever a users poses queries in terms of target relations,
TIQS uses its generated source-to-target mappings to reduce query reformulation to sim-
ple rule unfolding (standard execution of views in ordinary databases). This reduces query

processing complexity.

1 Often these sources are structured, and we simply take the local schema without change [ETL02].
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5. Ewolution. If the target schema evolves, the mapping tool of TIQS semi-automatically gener-

ates (or adjusts) mapping elements between the new target schema and the source schemas.

TIQS operates in two phases: design and query processing. In the design phase, the system
synergistically automates the generation of source-to-target mappings. For a mapping element
w(t ~ s < 05(3g)), we think the source element s is a virtual target-view element for t. This leads
automatically to a rewriting of every target element as a union of corresponding virtual target-view
elements. In the query processing phase, a user poses queries in terms of target relations. Query
reformulation thus reduces to rule unfolding by applying the view definition expressions for the

target relations in the same way database systems apply view definitions.
5.1 The Data Integration System

Definition 1. A data-integration system Iis a triple (T', {S;}, {M;}), where T is a target schema,
{S;} is a set of n source schemas, and {M;} is a set of n source-to-target mappings, such that for
each source schema S; there is a mapping M; from S; to T', 1 <1 < n.

The source and target schemas in I are model instances in OSM-L. If the wrappers in I use
different expression languages beyond OSM-L, we use import programs to bridge the representations
used by wrappers and the internal representation for schemas.

To specify the semantics of I, we start with a wvalid interpretation Dg, of a source schema
S; € {S;} € I, 1 < i < n. For an interpretation of a schema H to be valid, each tuple in Dy
must satisfy the constraints specified for H. In our running example, let S7 denote the information
source whose schema is Schema 1 in Figure 1(a). For purposes of illustration, assume that we have
one additional information source, which we denote as So, and assume that the wrapped Schema
for S is exactly the same as Schema 2 in Figure 1(b). Further, assume that both S; and Sy have
valid interpretations. The tables in Figure 13 show some partial populated data for relations in Sy

and Ss.

A target interpretation Dg,r with respect to a source interpretation Dg, in I (1) is a valid
interpretation of T, and (2) satisfies the mapping M, between S; and T with respect to Dg,.
Assume that the mapping function for M; is f;. If f; matches s, with ¢;, ¢ is a tuple for ¢; in Dg,1

if and only if ¢ is a tuple for s; derived through applying the mapping expression 6, (Xg,) over
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h 1 ion_ ipti . .
ouse _location description house Dbasic_features  basic_features SQFT

}Iﬁg ggltfef:i?gg h10 b10 b10 1000
hil Golf_course h11 b11 b1l 1500

(a) Partial populated data for relations in S

House Water_front House Golf_course House Square_feet

hl Yes h1 Yes h1 990
h2 No h2 Yes h2 1420
h3 Yes h3 No h3 2500

(b) Partial populated data for relations in S»

Figure 13: Some partial populated data for relations in sources

Dg,. For our running example, recall that the target schema is Schema 1 in Figure 1(a). Section 4
describes the source-to-target mapping between the target schema and the source schema for Sy
in Figure 1(a). Based on the source-to-target mapping, a valid target interpretation Dg,7 with
respect to a valid interpretation Dg, contains tuples in a valid interpretation for the schema in
Figure 11. Moreover, since we assume that the source schema for Sy is exactly the same as the
target schema T', the source-to-target mapping between the target schema and the source schema
for Sy is trivial. Thus, the tuples in a valid target interpretation Dg,7 with respect to Dg, are
those of source relations in S5.

The semantics of I, denoted as sem(I), are defined as follows: sem(I) = {Dg,r | Ds,T is
a target interpretation with respect to Dg,, S; € I}.!'2 Intuitively, the semantics of I represent
relevant data allowed in a predefined target schema T retrieved from available heterogeneous in-
formation sources. We are able to prove that if a source has a valid interpretation, then we can
“load” data from the source into the target such that the part of the target populated from the

source will necessarily have a valid interpretation [BE03].

12When sources share objects, both the object-identification problem and the data-merge problem need a resolution.
(Note that neither this paper nor other papers that focus on data integration with virtual global schemas resolve
these problems. The focus of this paper is on mediation, mappings, and query reformulation.)
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5.2 Query Reformulation

In the design phase, the data-integration system I collects the information including a target
schema T, a set of source schemas {S;}, and a set of source-to-target mappings {M;}. In the
query-processing phase, the system reformulates user queries in polynomial time.

In this paper, a query can be a conjunctive query, a conjunctive query with arithmetic compar-
isons, or a recursive query. We use logic rule notation in [UllI88] to express user queries. Here, the
queries are in terms of elements in Y7, which means that a predicate in a query body is either a
target relation in Y7 or a head predicate of a logic rule. We call a predicate representing a target
relation appearing in a query body a target predicate. Like pure Datal.og, we do not allow negations
of predicates that appear in user queries because we adopt the “Open World Assumption” in our
approach. In our running example, assume that a user wants an answer to the query, “For houses
on water-front and golf-course property, list the number of square feet.” We can express this query,

which we denote as gegampie, using the following logic rule.

House — Square_feet(z,y) : — House — Square_feet(xz,z) X House — Gol f_course(z, “Yes”)
X House — Water_front(z, “Yes”)

Let ¢ be a user query such as the one above. When evaluating ¢ over sem(I), the system I trans-
parently reformulates ¢ as ¢!, which is a query evaluated by retrieving data from the underlying
information sources in I. Let D = {Dg;|S; € {S;} € I} be the set of valid interpretations of source
schemas in I. By reformulating ¢ as ¢"*!, the system transforms the task of evaluating g over
sem(I) into a task of answering ¢”** over D.

The system I reformulates a user query ¢ by applying the inclusion dependencies for target
relations collected in the design phase. Since a user poses queries in terms of elements in Y, each
target relation r; that appears in the body of ¢ corresponds to a set of inclusion dependencies 1D,

1 <i< N and N = |E7|. We expand the user query ¢ for each inclusion dependency (Sj.s C ;)
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in ID;, where s € Vs; (1 < j < n and n is the number of sources), and where r; is a target
predicate that appears in the body of ¢, by adding a logic rule, r;(X) : — Sj.sk(Y), where X is
a vector of variables. Thus, the added logic rules as well as the logic rule of ¢ together form the
query ¢&et.

To reformulate gegqmpie for our running example, the system I applies inclusion dependencies for
target relations House — Square_feet, House — Water_front and House — Gol f _course appearing

in the body of query gezampie.- In addition to the logic rule above for the user query gezampie, the

Ezxt

following logic rules are added to form the reformulated query Qepample-

House — Square_feet(z,y) : — Si1.House' — SQFT (z,y)

House — Square_feet(z,y) : — So.House — Square_feet(z,y)
House — Water_front(z,u) : — Si.House' — Water_front' (z,u)
House — Water_front(z,u) : — Ss.House — Water_front(z,u)
House — Gol f _course(z,v) : — Si.House' — Gol f _course'(x,v)
House — Gol f _course(x,v) : — Sy.House — Gol f_course(z,v)

To evaluate a reformulated query ¢! over sources, the system I decomposes ¢”%! into sub-
queries, and retrieves and combines query answers to sub-queries from individual information

sources. We use a logic program P5® to describe the evaluation of ¢”*!

over D, where D is
the set of valid interpretations of source schemas in I. The logic program PL® is defined as

follows.

e Rules. The logic rules for ¢®*t.

e Facts. For each source relation S;.s; in the body of the logic program for g, we treat data
for the source relations as ground facts. For example, if a tuple ¢ is in the source relation

S;.sk, we have the fact'®: S;.s1(t).

By evaluating Pg”, the facts for the head predicate of ¢ are query answers to the reformulated

query ¢ over D, which we denote as qg”. Note that when sending a sub-query to obtain data

'3We use this logic program to capture the semantics of g5*¢. In real-world applications, query processing in I can
optimize the evaluation of ¢Z*¢.
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from an information source Sj, the system I also sends the mapping expression ¢, (Xs;) to the
source S; so that the source S; correctly executes the mapping expression to derive source facts for

5. Given the data in Figure 13, for our running query example, ¢ezqmpie, We add the following list

Ext

i Ext
example above to form a logic program PX*

of source facts from S7 and S5 to the rules in ¢ ezampleD-

Si.House' — Water_front'(h10, “Yes”)
Si.House' — Gol f _course’(h10, “Yes”)
Si.House' — Gol f _course’(h11, “Yes”)
Si.House' — Square_feet(h10,1000)
Si.House' — Square_feet(h11,1500)
Sa.House — Water_front(hl, “Yes”)
Sa.House — Water_front(h2, “No”)
Sa.House — Water_front(h3, “Yes”)
Sa.House — Gol f _course(hl, “Yes”)
Sa.House — Gol f —course(h2, “Yes”)
Sa.House — Gol f —course(h3, “No”)
Sa.House — Square_feet(hl,990)
Sy.House — Square_feet(h2,1420)
Sy.House — Square_feet(h3,2500)

Note that the facts for S; have been transformed according to the source-to-target mapping in

Section 4. By evaluating this logic program P2t we obtain the House — Square_feet facts

exampleD?
(h1,990) and (h10,1000) in ¢2Zt . 5.

With query reformulation in place, we can now prove that query answers to any query are
sound—every answer to a user query is a fact according to the semantics of I—and mazimal—the
query answers contain all the facts the sources have to offer with respect to the facts allowed in the
global target schema. Let ¢r denote the query answers to a user query q over the semantic of I,
sem(I), which represents all data relevant to the target schema T from all information sources in

I. The proofs are based on an observation that the semantics of ¢; can be captured using a logic

program Pr. The logic program P is defined as follows.

e Rule. A user query ¢ in terms of target relations in T'.

e Facts. For each tuple ¢ for a target relation r in Dg, 1, where Dg;7 € sem(I) and S; € {S;} €

I, we have the fact: r(t). (Note that these facts include all facts the sources have for T'.)
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The facts for the head predicate of ¢ by evaluating P; are the query answers ¢q;. Based on the

characteristics of the two logic programs Pg"’"t and Pr, we can now prove the following theorem.

Theorem. Let I = (T,{S;},{M;}) be a data-integration system. Let D = {Dg,|S; € {S;} € I'}
be the set of valid interpretations of source schemas in I. Let qr be the query answers obtained by
evaluating q over sem(I) and let qg” be the query answers obtained by evaluating ¢®** over D.
Given a user query q in terms of target relations, a tuple a = < a1,a9,...,ap > where M is the

number of variables and constants in the head predicate of q, is in qr if and only if a is a tuple in

FExt
dp~ -

Proof. Assume that we define two logic programs Pg’”t and Pr based on the semantics of qg‘”t and

qr respectively as we discussed in Section ?7.

If. Assume that a tuple a = < ay,az,...,ay > is in ¢5% but not in ¢;. Since a is in g5,
there exists a substitution 9, which binds variables in P5®* with constants such that the evaluation
of PE™9 yields the tuple a for the head predicate of q. By using a subset of substitution ¥’ of 9
for variables in ¢ while evaluating Pr, since ¢ is not in ¢y, there must exist at least one subgoal of

g that is not satisfied in P;d’. Based on the evaluation theory in [SC90], the subgoal could be a

target predicate or an arithmetic comparison. We make an analysis for each possibility as follows.

e Arithmetic comparison. Assume that we have an arithmetic comparison, which is a subgoal
of ¢, satisfied in Pg’”tﬁ but not in P;¥’. Since we use the same bindings for variables of ¢ in
¥ and ¥', if the arithmetic comparison is satisfied in P5%%9, it must also be satisfied in P4’

Thus, the unsatisfied subgoal is not an arithmetic comparison.

e Target predicate. Assume that we have a target predicate r, which is a subgoal of ¢, satisfied
in PE*%9 but not in Prd’. Based on the substitution 9, the subgoal r is satisfied in P5®

because r(c) holds, where ¢ is a vector of constants using the bindings in 9. Since r(c) holds,
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there must exist a rule r(c) : — Sj.si(c) and a fact Sj.si(c), where S; € {S;} € I and
sk € Vg;, in PE™9 such that r(c) is derived from the rule and the fact. Since we define the
rule, 7(c) : — Sj.s;(c), based on an inclusion dependency (S;.s; C r), there must exist a
mapping element (r ~ Sj.s; <= 05, (Xs;)) between S; and T Since s; matches with r and ¢
is a tuple of s; in Sj, based on the semantics of Dg;r in sem(I), c is a tuple of r in Dg;r.
Then, based on the definition of Pr, there must exist a ground fact r(c) in P;. Since r(c) is
a ground fact in Py, the subgoal r(c) is satisfied in P;d’. This is contrary to the assumption.

Thus, the unsatisfied subgoal in P; must not be a target predicate.

By analyzing the two possibilities, we conclude that all of the subgoals in ¢ are satisfied while
evaluating Prd’ to obtain the tuple a as a fact for the head predicate of q. Thus, based on the

semantics of Pr, a is a tuple in ¢r. This is contrary to our assumption.

Only if. Assume that we have a tuple ¢ = < a1,03,...,a) > in ¢ but not in qg”. Since a is

a tuple in gy, there must exist a substitution 9 for variables in ¢ such that the evaluation of Pr?
outputs the tuple a as a fact for the head predicate of q. By using the same substitution 9 for
variables in ¢ while evaluating Pg”, since @ is not in qg”, there must exist at least one subgoal in
g that cannot be satisfied in Pg’”tﬁ. Based on the evaluation theory in [SC90], the subgoal could
be a target predicate or an arithmetic comparison. We make an analysis for each possibility as

follows.

e Arithmetic comparison. Assume that we have an arithmetic comparison, which is a subgoal
of g, satisfied in P;¥ but not in Pg”ﬁ. Since we use the same bindings for variables of ¢ in
¥, if the arithmetic comparison is satisfied in Py, it must also be satisfied in P5**9. Thus,

the unsatisfied subgoal is not an arithmetic comparison.

e Target predicate. Assume that we have a target predicate r, which is a subgoal of ¢, satisfied
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in P9 but not in P5*19. Since the subgoal r is satisfied in Prd, r(c) holds, where c is a
vector of constants by using bindings in . Since r(c) holds, based on the definition of P,
c is a tuple of 7 in a target interpretation Dg,7 of sem(I), where S; € {S;} € I. Based on
the semantics of Dg;r, since c is a tuple of r in Dg,r, there must exist a mapping element
(r ~ Sj.s; < 05,(3s;)) between S; and T where c is a tuple of the source relation Sj.sy.
By applying the mapping element that matches S;.sp with r, we can derive an inclusion
dependency (Sj.s; C r). Hence, since we have the inclusion dependency (S;.sp C 7) and
the fact that c is a tuple of the source relation S;.s;, based on the definition of Pg‘”t, there
must exist a rule r(X) : — Sj.s£(X) and a fact S;.s(c) in PEF*"9, where S; € {S;} € I,
sk € Vs;, and X is a vector of variables corresponding attributes of r. Based on the rule
and the fact, 7(c) holds in P5*%). This is contrary to the assumption. Thus, the unsatisfied

subgoal in P59 must not be a target predicate.

By analyzing the two possibilities, we conclude that all of the subgoals in ¢ are satisfied while
evaluating Pg”ﬁ to obtain the tuple a as a fact for the head predicate of q. Thus, based on the

semantics of Pg”, a is a tuple in qg”. This is contrary to our assumption. O

6 Experimental Results

We evaluate the performance of our approach based on three measures: precision, recall and the
F-measure, a standard measure for recall and precision together [BYRN99]. Given (1) the number
of direct and indirect matches N determined by a human expert, (2) the number of correct direct
and indirect matches C selected by our process described in this paper and (3) the number of
incorrect matches I selected by our process, we compute the recall ratio as R = C'/N, the precision
ratio as P = C/(C + I), and the F-measure as F = 2/(1/R + 1/P). We report all these values as

percentages.
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We tested the approach proposed here using the running example in our paper and also on
several real-world schemas in three different application domains. In our experiments, we evaluated
the contribution of different techniques and different combinations of techniques. We always used
both structure and terminological relationships because given any two schemas, these techniques
always apply even when no data is available. Thus, we tested our approach with four runs on each
source-target pair. In the first run, we considered only terminological relationships and structure.
In the second run, we added data-value characteristics. In the third run, we replaced data-value

characteristics with expected data values, and in the fourth run we used all techniques together.

6.1 Running Example

We applied the matching algorithm explained in Section 4 to the schemas in Figure 1 populated
(by hand) with actual data we found in some real-estate sites on the Web. First we let Schema 1
in Figure 1(a) be the source and Schema 2 in Figure 1(b) be the target. Then, we reversed the

schemas and let Schema 2 be the source and Schema 1 be the target.

Run Nr. Number of | Number | Number | Recall | Precision | F-Measure
Matches | Correct | Incorrect % % %

1 (WS) 31 17 2 55% 89% 68%

2 (WCS) 31 17 0 55% 100% 1%

3 (WES) 31 31 0 100% 100% 100%

4 (WCES) 31 31 0 100% 100% 100%

W = Terminological Relationships using WordNet
C = Data-Value Characteristics

E = Expected Data Values

S = Structure

Table 1: Results for Running Example: Source-Schema 1, Target-Schema 2

Table 1 shows a summary of the results for each run in the first test where we let Schema 1 be
the source and Schema 2 be the target. In the first run for the first test, the algorithm discovered 8
direct object set matches correctly, but it also misclassified the source object set address (meaning

house address) and the virtual relationship set house’ — address by matching them with the target
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schema element Style (meaning “apartment” or “townhouse”) and House — Style. In the first
run, the algorithm also successfully discovered 9 of the 23 indirect matches. For example, the
algorithm matches the union of values for phone_day and phone_evening in the source matches
with values for Phone in the target. By using Skolemization operation, the algorithm matches the
object identifiers for a virtual non-lexical House' based on the values in M LS matches with object
identifiers in House. The structure matching algorithm also correctly matches relationship sets,
such as House — Square_feet, House — Bathrooms, and House — Bedrooms, in the target with
virtual relationship sets derived in the source based on Join and Projection operations. Especially,
the algorithm uses Skolemization operator two times to compute virtual objects in Addressl’
and Address2’ matching with objects in Address in the target, and correctly output a Union
operation to union the two sets of object identifiers in a new virtual object set Address’ that directly
matches with Address. In the second run, by adding the analysis of data-value characteristics,
the false positive between Style and address disappeared, but the algorithm generated no more
indirect matches than in the first run. In both the third and fourth runs, the algorithm successfully
discovered all direct and indirect matches. Note that we correctly generated a Selection operator to
select the right subsets of location_description (meaning “view,” etc.) in Schema 1 for Water_Front
and Golf Course, and discarded the remaining values, which were inapplicable for Schema 2. The
Selection operator sorted out values based on the expected data values specified in the lightweight

domain ontologies.

Run Nr. Number of | Number | Number | Recall | Precision | F-Measure
Matches | Correct | Incorrect % % %

1 (WS) 25 17 2 68% 89% 7%

2 (WCS) 25 17 0 68% 100% 81%

3 (WES) 25 25 0 100% 100% 100%

4 (WCES) 25 25 0 100% 100% 100%

W = Terminological Relationships using WordNet

Data-Value Characteristics
Expected Data Values

C
E
S = Structure

Table 2: Results for Running Example: Source-Schema 2, Target-Schema, 1

The result of the second test on our running example, in which we switched the schemas and let

Schema 2 be the source schema and Schema 1 be the target schema, gave the results as in Table 2.
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In the first run for the second test, the algorithm discovered 9 direct and 8 indirect matches
correctly, but it also misclassified the source object set Style and House — Style by matching them
with the target object set address and a virtual relationship set house’ — address. In the first
run, We observe, however, that although we correctly generated a Selection operator to specialize
the Phone value in Schema 2, the value transformation for Selection depends on keywords such
as day — time, day, work phone, evening, and home associated with listed phone numbers. If
the keywords are not available, the Selection operation fails to sort out the phone values. In the
second run, by adding the analysis of data-value characteristics, the false positive between Style
and address disappeared. In both the third and fourth runs, the algorithm successfully discovered
all direct and indirect matches. Especially noteworthy, we observed that our approach correctly
discovered context-dependent indirect matches (e.g. (City, address), (State, address), ...) and
appropriately produced operations consisted of a combination of Composition, Join, Projection,
and Selection. The Selection operator sorted out the addresses composed from state, city, county,
and street based on the two relationship sets House — Address and Agent — Location in Schema

2.
6.2 Real-World Examples

We considered three real-world applications: Course Schedule, Faculty, and Real Estate to eval-
uate our approach. We used a data set downloaded from the LSD homepage [DDHO1] for these
three applications, and we faithfully translated the schemas from DTDs used by LSD to rooted
conceptual-model graphs. Table 3 shows the characteristics of the source schemas. The table shows
the number of object sets and relationship sets (Number of ObjSets and Number of RelSets), the
maximum depth of the DTD trees. The rightmost column shows the percentage of object and
relationship sets in a source schema that have either direct or indirect matches with other source
schemas. The percentages show that the source schemas for Course Schedule and Faculty are
relatively highly matchable, and the source schemas for Real Estate, however, are not.

For testing these real-world applications, we decided to let any one of the schema graphs for an
application be the target and let any other schema graph for the same application be the source.
We decided not to test any single schema as both a target and a source. Since for each application

there were five schemas, we tested each application 20 times. All together we tested 60 target-
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Domains Number of | Number of | Number of | Number of | Matchable
Sources ObjSets RelSets Depth %
Course Schedule 5 15-19 14 - 18 1-4 62 - 93 %
Faculty 5 14 13 3 100%
Real Estate 5 34 - 88 33 - 86 1-4 17 - 73%
Table 3: Domains and Schemas for Real-World Examples
Application Number of | Number | Number | Recall | Precision | F-Measure
Matches Correct | Incorrect % % %
Course Schedule 490 454 6 93% 99% 96%
Faculty 540 540 0 100% 100% 100%
Real Estate 875 816 92 93% 90% 92%
All Applications 1905 1810 98 95% 95% 95%

Table 4: Results for Real-World Examples

source pairs. For each target-source pair, we made four runs, the same four (WS, WCS, WES,
and WCES) we made for our running example. All together we processed 240 runs. Table 4 shows
as summary of the results for the real-world data using all four techniques together.

In Faculty application, there were 4 indirect relationship set matches because of constraints
conflicts between relationship sets. Because the structure matching algorithm correctly identified
the constraints conflicts, for all four runs on Faculty every measure (recall, precision, F-measure)
was 100%. Since the five source schemas are highly similar, and however, the data instances
collected for each object sets are vastly different, we assigned a higher weight for wg than wy to
dominate schema-level information.

In Course Schedule application, there were indirect relationship set matches requiring manip-
ulations using Join, Skolemization and Projection operators. For Course Schedule, the first and
second run achieved above 90% and below 95% on all measures; and the third and fourth run
gave the results for Course Schedule as Table 4 shows. When using all the four techniques, the
correctly recognized mapping elements included 382 direct and 72 indirect matches. Even when
values for lexical object sets are not available, since most of the indirect matches appeared in this
application are largely dependent on schema-level information, the matching algorithm correctly
identified direct 376 and 76 indirect matches for this application.

The Real Estate application exhibited several indirect object and relationship set matches.

Overall, the algorithm correctly identified 417 direct and 399 indirect matches. The problem of
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Merged/Split Values appeared four times, the problem of Subsets/Supersets appeared 48 times, and
the problem of Schema Element Name as Value appeared 10 times. The experiments showed that
the application of expected data values in the third and fourth run greatly affected the performance.
In the first run, the measures were only about 75%. In the second run, the use of data-value
characteristics improved the performance, but only a little because the measures were still below
80%. By applying expected data values in the last two runs, however, the performance improved
dramatically. In the third run, the F-measures reached 91% and reached 92% by using all four
techniques as Table 4 shows.

Our process successfully found all the indirect matches related to the problems of Merged/Split
Values and Schema Element Name as Value. For the problem of Subsets/Supersets, our process
correctly found all of the indirect matches related to 44 of 48 problems of Subsets/Supersets and in-
correctly declared 4 extra Subsets/Supersets problems. Of these eight, six of them were ambiguous,
making it nearly impossible for a human to decide, let alone a machine. In four cases there were
various kinds of phones for firms, agents, contacts, and phones with and without message features,
and in another two cases there were various kinds of descriptions and comments about a house
written in free-form text. The two clear incorrect happened when our process unioned/selected
office and cell phones together and mapped them to phones for a firm instead of just mapping office

phones to firm phones and discarding cell phones, which had no match at all in the other schema.
6.3 Discussion

The experimental results show that the combination of terminological relationships and structure
alone can produce fairly reasonable results if schemas are highly matchable and indirect matches
happen because of the problem Path as Relationship Sets. Moreover, the result shows that, by
adding our technique of using expected data values, the performances are dramatically better even
for applications, for example, Real Estate, whose schemas are relatively complex. Unexpectedly, the
technique of using data-value characteristics did not help very much for these application domains.
Our analysis of data-value characteristics is similar to the analysis in SEMINT [LC00], which
produced good results for their test data. The data instances in the real-world applications we used,
however, do not appear to be as regular as might be expected. The statistics are highly variant,

for example, in applications such as Course Schedule and Real Estate. For these applications, a
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large amount of training data would be needed to train a universal decision tree required for this
approach. Collecting enough training data, however, is not a trivial problem.

Some element matches failed in our approach partly because they are potentially ambiguous,
and our assertions about what should and should not match are partly subjective.'* Even though
we tested our approach using the same test data set as in LSD [DDHO1], the answer keys were
generated separately and LSD focuses on computing direct object set matches. Furthermore, nei-
ther the experimental methodologies nor the performance measures used are the same. With this
understanding, we remark that they reported approximate accuracies of 70% for Course Schedule,
90% for Faculty, 70% and 80% for the two experiments they ran on the Real Estate application.
Thus, although our raw performance numbers are an improvement over [DDHO01], we do not try to
draw any final conclusion.

One obvious limitation of our approach is the need to construct an application-specific domain
ontology. Currently, we manually construct these domain ontologies. As we explained in Section 3,
however, these domain ontologies are lightweight and are relatively easy to construct and need
not be complete. It is possible, however, to make use of statistical learning techniques to collect
a set of informative and representative keywords for application concepts. Thus, without human
interaction, except for some labeling, we can make use of many keywords taken from the data of
the application itself and thus specify regular-expression recognizers for the application concepts
at least in a semi-automatic way. Furthermore, many values, such as dates, times, and currency
amounts are common across many application domains and can easily be shared. Since domain
ontologies appear to play an important role in indirect matching, finding ways to semi-automatically
generate them is a goal worthy of some additional work.

One other limitation of our approach is that the schemas for real-world applications we used in
the experiment are in same domains even though they may not have largely overlap'®. For example,
the root nodes, which describe the designated object of primary interest, of the five schemas used
in each application are semantically correspondent. The structure matching algorithm we used
applies a top-down strategy to compare two schemas. When discovering object and relationship

set matches, the algorithm is robust to recognize the correspondences between object sets by ap-

Y1t is not always easy to do ground-truthing [HKLT01].
'5The matchable percentages in real estate application is only in the range from 17% to 73%
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plying available schema-level and data instance-level information. When discovering relationship
set matches, however, the algorithm is highly depend on structure similarities at the context-level
comparison. As [DDHO1] mentioned, this is typically the case for “aggregator” domains, where the
data-integration system provides access to sources that offer essentially the same service. In future,

we plan to examine more applications beyond such limitation using our algorithm.

7 Related Work

[RBO1] provides a survey of several schema mapping systems. And [Ul197] compares the two basic
approaches GAV and LAV for data integration. We do not repeat this work here, but instead
describe work related to our approach from three perspectives: (1) work on discovering direct
matches for schema elements, (2) work on discovering indirect matches for schema elements, and
(3) work in integrating data from heterogeneous information sources.

Direct Matches. Most of the approaches [BCV99, DDHO01, EJX01, LC00, MBRO1, MZ98,
PTUO00] to automating schema mapping focus only on generating direct matches for schema el-

ements.

e In some of our previous work [EJX01], we experimented with using data instances to help
identify direct element matches. In this paper, we refine this work by adding a structural

component and also extend it to the harder problem of discovering indirect matches.

e Like our approach, the LSD system [DDHO1] applies a meta-learning strategy to compose
several base matchers, which consider either data instances, or schema information. LSD
largely exploits machine learning techniques. There are two phases in the LSD system: one
is training and the other is testing. In the training phase, LSD requires training data for
each matching element between two schemas for base matchers and the meta matcher. For
each different application, however, both base and meta learners have to be supervised, and
the supervisor must supply and mark training data to train the learners. Our approach
differs in the three ways. (1) We applied machine learning algorithms only to terminological
relationships and data-value characteristics. (2) Our system learned a universal decision tree
for all application domains based on a domain-independent training set. Thus our system

avoids the work of collecting and labeling training data for each application as in LSD. (3) To
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combine techniques, we let structure features guide the matching based on the results from

multiple kinds of independent matches.

e SEMINT [LCO00] applies neural-network learning to automating schema mapping based on
instance contents. It is an element-level schema matcher because it only considers attribute

matching without taking the structure of schemas into account.

e The structure matching algorithm in Cupid [MBRO1] motivated our structure matching al-
gorithm. Cupid, however, does not properly handle two schemas that are largely different.
Moreover, the structure matching algorithm Cupid matches two schemas using a bottom-up
strategy. Our matching algorithm discovers direct and indirect matches using a top-down

strategy.

e ARTEMIS [BCV99], DIKE [PTU00], and Cupid [MBRO01] exploit auxiliary information such
as synonym dictionaries, thesauri, and glossaries. All their auxiliary information is schema-
level—does not consider data instances. In our approach, the auxiliary information including
data instances and domain ontologies provide a more precise characterization of the actual
contents of schema elements. The imported dictionary we use, WordNet, is readily available

and no work is required to produce thesauri as in other approaches.

Indirect Matches. Some work on indirect matches is starting to appear [BE03, MBR01, MHHO00,

MW J99], but researchers are only beginning to scratch the surface of the multitude of problems.

e Both Cupid [MBRO1] and SKAT [MWJ99] can generate global 1 : n indirect matches [RBO01].
To illustrate what this means, if in Figure 1 we let Schema 1 be the source and Schema 2
be the target, and if we make address a lexical object set rather than a non-lexical object
set and discard street, county, city, and state in Schema 2, Cupid can match both Address
and Location in the source directly with the modified address in the target. Thus Cupid can
generate a global 1 : n indirect match through a Union operation. Our approach, however,
can find indirect matches for Location and Address in the source with street, county, city,
and state in the target based on finding expected data values and using the Decomposition

operator as well as the Union operator, something which is not considered in Cupid.
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e The Clio system [MHHOO] introduces an interactive mapping creation paradigm based on
value correspondence that shows how a value of a target schema element can be created from
a set of values of source elements. A user or DBA, however, is responsible to manually input

the value correspondences.

e [BEO03] proposes a mapping generator to derive an injective target-to-source mapping includ-
ing indirect matches in the context of information integration. The mapping generator raises
specific issues for a user’s consideration. The mapping generator, however, has not been

implemented. Our work therefore builds on and is complimentary to the work in [BE03].

Data Integration. Data integration is thought as one of the most important problems in modern
information systems. In this paper we focus on data integration systems without materializing
the global schemas. We describe several approaches related to the proposed approach for data

integration in this paper.

e [CLLO1] surveys the most important query processing algorithms proposed in the literature
for LAV [LRO96, GKD97], and describes the principle GAV [CGMH'94] data-integration
systems and the form of query processing they adopt. In a GAV approach, query reformu-
lation reduces to rule unfolding. However, changes in information sources or adding a new
information source requires a DBA to revise the global schema and the mappings between
the global schema and source schemas. Thus, GAV is not scalable for large applications.
LAV scales better, and is easier to maintain than GAV because DBAs create a global schema
independently of source schemas. Then, for a new (or changed) source schema, the DBA only
has to give (adjust) a source description that describes source relations as views of the global
schema. Automating query reformulation in LAV, however, has exponential time complexity
with respect to query and source schema definitions. Thus, LAV has low query performance

when users frequently pose complex queries.

e [FLM99] proposes a Global-Local-as- View (GLAV) approach, which combines expressive pow-
ers of both LAV and GAV. In a GLAV approach, the independence of a global schema, the
maintenance to accommodate new sources, and the complexity to reformulate queries are the

same as in LAV. However, instead of using a restricted form of first-order logical sentences as
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in LAV and GAV to define view definitions, GLAV uses flexible first-order sentences such that
it allows a view over source relations to be a view over global relations in source descriptions.
Thus, GLAV can derive data using views over source relations, which is beyond the expressive
ability of LAV, and it allows conjunctions of global relations, which is beyond the expressive
ability of GAV. Our solution, TIQS, also has the ability to derive views over source schemas.
The sets of view-creation operators in TIQS, however, are more powerful because GLAV has
nothing comparable to merge/split or Boolean operators. Moreover, GLAV claims no ability

to semi-automate the specification of source descriptions.

e [CCGLO02] proposes a translation algorithm to turn LAV into GAV such that it can keep
LAV’s scalability and obtain GAV’s simple query reformulation. The translation results in a
logic program that can be used to answer queries using rule unfolding. However, even though
the translation to obtain the logic program is in polynomial time, the evaluation of the
logic program could produce an exponential number of facts because of recomputing source
relations over all source data. In contrast, TIQS encapsulates views for source relations in
mapping elements. Since the view definitions are immediately available, query processing in
TIQS has better query performance than the translation approach. Furthermore, [CCGL02]

does not claim the ability to semi-automate the specification of source descriptions.

8 Conclusion and Future Work

We presented a framework for automatically discovering both direct matches and many indirect
matches between sets of source and target schema elements. In our framework, multiple techniques
each contribute in a combined way to produce a final set of matches. Techniques considered
include terminological relationships, data-value characteristics, expected values, and structural
characteristics. We detected indirect element matches for Join, Projection, Selection, Union,
Skolemization, Composition, and Decomposition operations as well as Boolean conversions for
Schema-Element Names as Values. We base these operations and conversions mainly on expected
values and structural characteristics. Additional indirect matches, such as arithmetic computations
and value transformations, are for future work. We also plan to semi-automatically construct do-

main ontologies used for expected values, automate application-dependent parameter tuning, and
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test our approach in a broader set of real-world applications. As always, there is more work to
do, but the results of our approach for both direct and indirect matching are encouraging, yielding
over 90% in both recall and precision.

We formalized the output mapping between a target schema and source schema from our match-
ing framework as a source-to-target mapping. By applying source-to-target mapping based on a
predefined target schema, we propose TIQS, which provides solutions for five major issues: het-
erogeneity, scalability, continual infusion and change of local information sources, query processing
complexity, and global-schema evolution in a unified approach to data integration. TIQS combines
the advantages and avoids the limitations of both GAV and LAV. And it has polynomial-time query
reformulation, and is easy to add or modify information sources. In summary, TIQS increases both

scalability and usability as compared to previously proposed data-integration approaches.
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