
Ontology-Based Constraint Recognition for Free-Form Service Requests

Muhammed J. Al-Muhammed∗ and David W. Embley∗

Department of Computer Science, Brigham Young University, Provo, UT 84602, U.S.A.

Abstract

Automatic recognition and formalization of constraints
from free-form service requests is a challenging problem.
Its resolution would go a long way toward allowing users to
make requests using free-form, natural-language-like spec-
ifications. In this paper, we address this challenge by offer-
ing an ontology-based, semantic-data-modeling approach
to recognize constraints in free-form service requests. We
encode domain information such as possible constraints
and instances within a domain ontology in terms of object
sets, relationship sets among these object sets, and opera-
tions over values in object sets and relationship sets. Our
system recognizes the constraints in a service request by
finding the domain ontology that best matches the request
and then by using relationships and operations relevant to
the request in the matched ontology to generate the service-
request constraints. In experiments conducted with our pro-
totype implementation, our system achieved an average of
96% recall and 99% precision.

1. Introduction

Allowing users to specify service requests using fully
free-form specifications is likely, if successful, to enhance
their ability to obtain needed services. Consider, for exam-
ple, the free-form request for an appointment with a derma-
tologist in Figure 1. To handle this request, a system must
somehow recognize the constraints involved and transform
them to a formal specification such as the one in Figure 2.
If the system can recognize the constraints in Figure 1 and
represent them in a predicate-calculus formalism like the
one in Figure 2, servicing this request becomes a matter of
instantiating the free variables, thexi’s, such that the con-
straints are satisfied.

This paper proposes a particular way to recognize con-
straints from free-form service requests. Rather than use
traditional natural language approaches that depend on syn-
tax analysis (e.g. [7]) or statistical analysis (e.g. [10]),

∗Supported in part by the National Science Foundation under grants
0083127 and 0414644.

this paper introduces an ontological approach that depends
on the long-standing notion of a semantic data model. In
our ontology-based approach, a domain ontology encodes
information such as applicable object sets, potential con-
straints over these object sets, and recognizers for instances
of these object sets and constraints. The system recognizes
the constraints in a service request by two-fold process. (1)
It matches a free-form service request against a collection of
ontologies that belong to different domains to find the ontol-
ogy that matches best. (2) It then selects from the given and
implied constraints in the matched ontology those that are
relevant to the service request to generate the constraints.

The semantic data model of our approach characterizes
the type of service requests our system is capable of han-
dling. Specifically, our approach handles service requests
whose objective is to instantiate an object set of interest in
the domain ontology with a single value such that all ap-
plicable constraints are satisfied. The objective of the ap-
pointment request in Figure 1, for example, is to instantiate
the variablex0 in Figure 2 with a value of typeAppointment
such that constraints onDate, Time, Distance, and Insur-
anceare satisfied. This type of service covers a wide range
of everyday service requests. Examples include scheduling
appointments, buying and selling products, renting apart-
ments, setting up meetings, and many more.1

Further, our initial work is for handling free-form ser-
vice requests with conjunctive constraints. Therefore, our
system in its current state does not handle service requests
with negated constraints such as “not at 1:00 PM,” disjunc-
tive constraints such as “at 10:00 AM or after 3:00 PM,”
and conditional constraints such as “if the appointment can
be next week, schedule me with Dr. Carter; otherwise with
Dr. Jones.” Conjunctive requests are common, are a restric-
tion to which users can likely adjust, and may be sufficiently
useful by themselves. In any case, they represent a funda-
mental starting point from which our approach may be ex-
tended to cover other types of constraints.

1We intend the word “service” to be thought of in accordance with its
typical meaning—“an act of assistance or benefit.” Technically, we de-
fine a very special type of service (as described herein). We do not intend
our services to be thought of in other technical ways such as registering
services with a broker so that they can be found by expressing their func-
tionality in terms of inputs, outputs, and capabilities.

I want to see a dermatologist between the 5th and the 10th, at 1:00 PM or after. The dermatologist
should be within 5 miles of my home and must accept my IHC insurance.

Figure 1. A free-form appointment request.

//I want to see a dermatologist
Appointment(x0) is with Dermatologist(x1) ∧Appointment(x0) is for Person(x2)
∧Dermatologist(x1) has Name(x3) ∧ Person(x2) has Name(x4)

//between the 5thand the 10th
∧Appointment(x0) is on Date(x5) ∧DateBetween(x5, “the 5th”, “the 10th”)

//at 1:00PM or after
∧Appointment(x0) is at T ime(x6) ∧ TimeAtOrAfter(x6, “1:00 PM”)

//within 5 miles from my home
∧Dermatologist(x1) is at Address(x7) ∧ Person(x2) is at Address(x8)
∧DistanceLessThanOrEqual(DistanceBetweenAddresses(x7, x8), “5”)

//accept my IHC insurance
∧Dermatologist(x1) accepts Insurance(x9) ∧ InsuranceEqual(x9, “IHC”)

Figure 2. The predicate-calculus formalism for the appointment request in Figure 1.

Our ontology-based approach also has the interesting ad-
vantage of being fully declarative. The algorithms to find
the ontology that matches best, generate constraints, and
produce a formal representation for the constraints are fixed.
As a consequence, to produce formal representations for
service requests for a new domain, it is sufficient to spec-
ify only the domain ontology—no coding is necessary.

The paper makes the following contributions. First, it
proposes an ontological approach to recognize and formal-
ize constraints in free-form service requests. Second, it
makes a significant step toward allowing users to invoke
services using only free-form specifications. Third, it al-
lows service providers to define services by specifying only
static knowledge (a domain ontology) not behavior (algo-
rithms and code).

We present our contributions as follows. Section 2 in-
troduces and gives the necessary details about domain on-
tologies. Section 3 shows how to match a free-form service
request to a domain ontology and obtain the ontology that
matches best. Section 4 explains how to use the matched
ontology to produce formal representations. In Section 5
we evaluate our approach. In Section 6 we compare our
approach to other related work, and in Section 7 we give
concluding remarks and directions for future work.

2. Domain knowledge

In this section we describe the knowledge our system
needs to generate a formal representation for a service re-
quest in terms of a domain ontology. First, the system re-
quires explicit knowledge of basic concepts related to the
service request. This explicit knowledge is encoded in
terms of a domain ontology, which consists of two ma-
jor components: (1) a semantic data model declaring sets
of objects, sets of relationships, and constraints over the

Doctor

InsuranceInsurance SalespersonService Provider

ServiceDescription

Medical Service Provider

Appointment

Address

Person

Name

Pediatrician
Duration

Auto Service Provider Auto Mechanic

Dermatologist

Cost

Date

Time

has

is at

is on

has

provides

has

is with

is for

is at

is at

has

->

has

sells

accepts

Person Address

Doctor

InsuranceInsurance SalespersonService Provider

ServiceDescription

Medical Service Provider

Appointment

Address

Person

Name

Pediatrician
Duration

Auto Service Provider Auto Mechanic

Dermatologist

Cost

Date

Time

has

is at

is on

has

provides

has

is with

is for

is at

is at

has

->

has

sells

accepts

Person Address

Figure 3. Semantic-data-model view of a do-
main ontology for appointments (partial).

object and relationship sets (Subsection 2.1) and (2) in-
stance semantics declaring recognizers for object set data
values as well as operations applicable to these data val-
ues (Subsection 2.2). Second, the system includes implicit
knowledge—implied object sets, relationship sets, and con-
straints, which are based on knowledge explicitly given in
the domain ontology (Subsection 2.3).

2.1. Semantic data model

A semantic data modelspecifies named sets of ob-
jects, which we callobject sets, named sets of relationships
among object sets, which we callrelationship sets, and con-
straints over object and relationship sets. Figure 3 shows
a small part of a semantic data model representation of a
domain ontology for scheduling an appointment. The se-
mantic data model consists of object-set concepts such as
Date, Time, andService Providerthat can be used to sched-

ule appointments with service providers such as doctors and
auto mechanics. The semantic data model has two types of
object sets, those that are lexical (enclosed in dashed rec-
tangles) and those that are nonlexical concepts (enclosed in
solid rectangles). An object set islexical if its instances
are indistinguishable from their representations.Timeis an
example of a lexical object set because its instances (e.g.
“10:00 a.m.” and “2:00 p.m.”) represent themselves. An
object set isnonlexicalif its instances are object identifiers,
which represent real-world objects.Dermatologistis an ex-
ample of a nonlexical object set because its instances are
identifiers such as, say, “D1”, which represents a particular
person in the real world who is a dermatologist. Each object
set maps to a one-place predicate. For instance, the predi-
cateDate(x) is derived from the object setDate in Figure 3.
The variablex in the predicateDate(x) represents a place
holder.

We designate the main object set in a semantic data
model by marking it with “–> •” in the upper right cor-
ner (e.g.Appointmentin Figure 3). This notation,“–> •”,
denotes that when an ontology is used to satisfy a service re-
quest, the main object set becomes (“->”) an object (“•”).
The system satisfies a service request by instantiating the
main object set with a single value.

Figure 3 also shows relationship sets among object sets,
represented by connecting lines, such asAppointment is on
Date. The arrow connections represent functional relation-
ship sets, from domain to range, and non-arrow connections
represent many-many relationship sets. For example,Ser-
vice Provider has Nameis functional fromService Provider
to Name, andService Provider provides Serviceis many-
many. A small circle near the connection between an object
setO and a relationship setR represents optional, so that
an instance ofO need not participate in a relationship inR.
For example, the small circle on theAppointmentside of the
relationship setAppointment has Durationstates that an in-
stance ofAppointmentmay or may not relate to an instance
of Duration. Each relationship set of artyn (n ≥ 2) maps to
ann-place predicate. For instance,Appointment(x0) is with
Service Provider(x1) is a two-place predicate derived from
the relationship setAppointment is with Service Providerin
Figure 3.

Constraints over unary predicates (object sets) andn-ary
predicates (relationship sets) are closed predicate-calculus
formulas. Referential integrity holds; thus, for example, in
Figure 3 we have∀x∀y(Doctor(x) accepts Insurance(y) ⇒
Doctor(x) ∧ Insurance(y)). Each functional constraint from
an object setO to some other object set over a binary2 rela-
tionship setRhas the form∀x(O(x)⇒ ∃≤1yR(x, y)). For in-
stance,∀x(Service Provider(x)⇒∃≤1y(Service Provider(x)
has Name(y))) is the functional constraint for the relation-

2The definition of the constraints for binary relationship sets can easily
be extended ton-ary relationship sets forn > 2.

ship set fromService Providerto Name. Each constraint for
a mandatory object setO for a binary relationship setR has
the form∀x(O(x)⇒ ∃≥1yR(x, y)). For instance,∀x(Service
Provider(x) ⇒ ∃≥1y(Service Provider(x) has Name(y))) is
the mandatory constraint forService Providerin theService
Provider has Namerelationship set.

A triangle in an ontology diagram (see Figure 3) de-
notes generalization/specialization. The generalization ob-
ject set connects to the apex, and specialization object sets
connect to the base. For each generalization/specialization,
we write the constraint∀x(S1(x) ∨ ... ∨ Sn(x) ⇒
G(x)), where G is the generalization object set andS1,
..., Sn are the specialization object sets. If the general-
ization/specialization has mutual-exclusion constraint (rep-
resented by the “+” in the triangle in Figure 3), we also
write the constraints∀x(Si(x) ⇒ ¬Sj(x)) for 1 ≤ i, j ≤
n, i 6= j. For example, the constraint∀x(Dermatologist(x)
∨ Pediatrician(x) ⇒ Doctor(x)) states that dermatologists
and pediatricians are specializations of doctors, and the
constraints∀x(Dermatologist(x) ⇒ ¬Pediatrician(x)) and
∀x(Pediatrician(x)⇒¬Dermatologist(x)) state that derma-
tologists and pediatricians are mutually exclusive.

Every connection between an object set and a relation-
ship set is a role. A role designates the set of objects of an
object set that participate in a relationship set. If we wish to
name the role, we place the role name near the connection
between its object set and its relationship set. For instance,
the rolePerson Addressin Figure 3 appears near the con-
nection between the object setAddressand the relationship
setPerson is at Address. A named role is a specialization of
the object set to which it connects.Person Addressthus rep-
resents the subset of addresses that associate with persons.

2.2. Data frames

Each object set (including each named role) in a domain
ontology has an associated data frame [6], which describes
instances for the object set. Data frames capture the in-
formation about object-set instances in terms of their ex-
ternal and internal representation, their context keywords
or phrases that may indicate their presence, operations that
convert between internal and external representations, and
other manipulation operations that can apply to instances of
the object set along with context keywords or phrases that
indicate the applicability of an operation and operands in an
operation. Figure 4 shows sample (partial) data frames for
several object sets.

We use regular expressions to capture external textual
representations. TheTimedata frame, for example, captures
instances that end with “AM” or “PM” (e.g. “2:00 PM”
and “9:30 a.m.”). A data frame’s context keywords/phrases
are also regular expressions. For example, theDistance
data frame in Figure 4 includes context keywords such as

Time
...
text representation:

([2-9]|1[012]?):([0-5]\d)\s * [aApP]\.?[mM]\.?|...
TimeAtOrAfter(t1: Time, t2: Time)

returns (Boolean)
context keywords/phrases:

(at\s+)?{t2}\s+or\s+after|...
TimeEqual(t1: Time, t2: Time)

returns (Boolean)
context keywords/phrases: (at\s+)?{t2}

...
Date

...
text representation:

...|(the\s+)?([1-9]|[12]\d|3[01])\s * (th|...)|...
DateBetween(x1: Date, x2: Date, x3: Date)

returns (Boolean)
context keywords/phrases:

between\s+{x2}\s+and\s+{x3}|...
...

Address
...
DistanceBetweenAddresses(a1: Address, a2: Address)

returns (Distance)
...

Person Address
...
context keywords/phrases:

(my\s+)?home|(my\s+)?house|where\s+I\s+live|...
...

Dermatologist
internal representation: object id
context keywords/phrases:

[Dd]ermatologist|skin\s+doctor|...
...

Appointment
internal representation: object id
context keywords/phrases:

appointment|want\s+to\s+see\s+an?|...
...

Distance
internal representation: real
text representation: \d+(\.\d+)?|(\.\d+)
context keywords/phrases: miles?|kilometers?|...
DistanceLessThanOrEqual(d1: Distance, d2: Distance)

returns (Boolean)
context keywords/phrases: (within|...)\s+{d2}|...

...

Figure 4. Some sample data frames.

“miles” or “kilometers”. In the context of one of these key-
words, if a number appears, it is likely that this number is a
distance. A nonlexical object set such asDermatologisthas
only context keywords or phrases. Figure 4 shows that the
Dermatologistdata frame includes keywords and phrases
that could indicate the presence of an instance of a derma-
tologist.

The operations in data frames manipulate object-set in-
stances. For example, the operationDistanceBetweenAd-
dresses(a1: Address, a2: Address) computes the dis-
tance between its two address argumentsa1 and a2.
Boolean operations represent possible general constraints
in the domain. For instance, the Boolean operation
TimeAtOrAfter(t1: Time, t2: Time) in the Timedata frame
returnstrue if time t1 is the same as or comes after timet2.

The context keywords/phrases for an operation indi-
cate the possible applicability of the operation. The con-

text keywords/phrases are regular expressions that include
keywords or phrases and possibly expandable expressions
represented by operand names enclosed in braces. The
system expands these expressions by finding the types
of their operands and substituting the textual representa-
tions in the data frames of the types for these expres-
sions. When context keywords/phrases for an operation
match substrings in a service request, the system can
record which values are for which operands. For instance,
the context keywords/phrases associated with the opera-
tion DateBetweenin Figure 4 has the regular expression
between\s+{x2}\s+and\s+{x3}, which includes the ex-
pandable expressions{x2} and{x3}. As Figure 4 shows,
the operands of these two expressions are of typeDate.
When this regular expression matches a substring in a re-
quest such as “make the appointment between the 10th and
the 15th,” the system can record that the first date value
(“the 10th”) is forx2and the second date value (“the 15th”)
is for x3.

2.3. Implied knowledge

Object sets, relationship sets, and constraints that can
be computed from the domain ontology constitute the im-
plied knowledge. For example, the system can derive
a relationship set betweenAppointmentand Name from
the given relationship setsAppointment is with Service
Provider and Service Provider has Name. The system
can also determine thatNamemandatorily depends onAp-
pointment from the given constraints∀x(Appointment(x)
⇒ ∃≥1y(Appointment(x) is with Service Provider(y)))
and ∀x(Service Provider(x)⇒ ∃≥1z(Service Provider(x)
has Name(z))). Further, the system can determine that
Namefunctionally depends onAppointmentfrom the given
constraints∀x(Appointment(x) ⇒ ∃≤1y(Appointment(x)
is with Service Provider(y))) and ∀x(Service Provider(x)
⇒ ∃≤1z(Service Provider(x) has Name(z))). As ad-
ditional examples, there are many implied generaliza-
tion/specialization constraints derivable from the con-
straints in Figure 3. For instance, the system can de-
rive the implied constraint∀x(Dermatologist(x) ⇒ Service
Provider(x)) by transitivity from the following given con-
straints:∀x(Dermatologist(x) ⇒ Doctor(x)), ∀x(Doctor(x)
⇒ Medical Service Provider(x)), and∀x(Medical Service
Provider(x) ⇒ Service Provider(x)).

The connections between operands of an operation
in a data frame and the relationship sets of a seman-
tic data model may be implicit. Consider, for exam-
ple, the operationDistanceBetweenAddressesin the Ad-
dressdata frame. Although not explicitly given in the do-
main ontology whether this operation computes the dis-
tance for two service-provider addresses, two person ad-
dresses, or a service-provider address and a person ad-

dress, the system can reason that for an appointment, if
there is a constraint on distance, then it must be between
a service-provider address and a person address. The sys-
tem reasons as follows. The constraints∀x(Appointment(x)
⇒ ∃≤1y(Appointment(x) is with Service Provider(y)))
and ∀x(Appointment(x) ⇒ ∃≥1y(Appointment(x) is with
Service Provider(y))) allow the system to infer the im-
plicit constraint∀x(Appointment(x) ⇒ ∃1y(Appointment(x)
is with Service Provider(y))), which states that for any
appointment there exists exactly one service provider.
The system can derive from the constraints∀x(Service
Provider(x) ⇒ ∃≤1y(Service Provider(x) is at Address(y)))
and ∀x(Service Provider(x) ⇒ ∃≥1y(Service Provider(x)
is at Address(y))) the constraint∀x(Service Provider(x) ⇒
∃1y(Service Provider(x) is at Address(y))), which states that
there is exactly one address for a service provider. Since
there are only two possible addresses for anAppointment,
the system can infer that the two operandsa1 anda2 of the
operationDistanceBetweenAddressesmust obtain their val-
ues from addresses in the relationship setsService Provider
is at AddressandPerson is at Address.

3. Domain ontology recognition

The objective of the domain ontology recognition
process is to find a domain ontology that best matches a
service request. The process takes a set of available ontolo-
gies belonging to different domains and a service request
as input and returns a marked-up domain ontology that best
matches the service request as output.

For each domain ontology, the system applies all the
recognizers in the data frames of every object set in the do-
main ontology to the service request. It marks every object
set whose recognizers match a substring in the service re-
quest and every operation whose applicability recognizers
match a substring in the service request. The result is a set
of marked-up domain ontologies.

When the recognition process executes for the domain
ontology in Figures 3 and 4 and the appointment request in
Figure 1, it produces as output the marked-up ontology in
Figure 5. Figure 5(a) shows the matched (X) object sets
in the semantic data model in Figure 3, and Figure 5(b)
shows the matched (X) operations and the additional object
set (Distance) from Figure 4. The recognizers in the data
frame in Figure 4 forDermatologist, for example, recognize
the context keyword “dermatologist” in the service request
in Figure 1, and thereforeDermatologistis marked (X).
Similarly, other object sets are marked. This includes even
the spurious marking ofInsurance Salespersonwhose data
frame would surely recognize “insurance”.

Given the data frames in Figure 4, additional matched
operations and object sets may have been expected. For
example, the context keywords/phrases for the operation

�

�

�

�

�

�

�

Doctor

InsuranceInsurance SalespersonService Provider

ServiceDescription

Medical Service Provider

Appointment

Address

Person

Name

Pediatrician
Duration

Auto Service Provider Auto Mechanic

Dermatologist

Cost

Date

Time

has

is at

is on

has

provides

has

is with

is for

is at

is at

has

->

has

sells

accepts

Person Address

Doctor

InsuranceInsurance SalespersonService Provider

ServiceDescription

Medical Service Provider

Appointment

Address

Person

Name

Pediatrician
Duration

Auto Service Provider Auto Mechanic

Dermatologist

Cost

Date

Time

has

is at

is on

has

provides

has

is with

is for

is at

is at

has

->

has

sells

accepts

Person Address

(a) Matched (X) object sets in the semantic data model in Fig-
ure 3.

XDistance
XTimeAtOrAfter(t1: Time, “1:00 PM”)
XDateBetween(x1: Date, “the 5th”, “the 10th”)
XDistanceLessThanOrEqual(d1: Distance, “5”)
XInsuranceEqual(i1: Insurance, “IHC”)

(b) Matched (X) object sets and operations in the data
frames in Figure 4.

Figure 5. Output of the recognition process—
the marked-up domain ontology.

TimeEqualin the Time data frame would match “at 1:00
PM” and theCost data frame may have recognizers that
would match “within 5”. We eliminate these matches, how-
ever, based on a subsumption heuristic. The system does
not mark an object set or an operation if its matched sub-
string is properly subsumed by another matched substring.
We assume that there is only one match for a string and that
the subsuming substring is a better match. Thus, although
the context keywords/phrases for the operationTimeEqual
would recognize “at 1:00 PM”, the system would not mark
the operationTimeEqualbecause it matches with only the
substring “at 1:00 PM”, which is subsumed by the sub-
string “at 1:00 PM or after”, matched by the operation
TimeAtOrAfter.

To choose the marked-up domain ontology that best
matches the service request, the system ranks them. In our
approach, the system grants rank values for each marked-
up domain ontology based on the marked object sets. The
marked main object set of the marked-up ontology has the
highest weight for obvious reasons. Marked mandatory ob-
ject sets contribute with the next highest weight because
they represent the necessary requirements to establish the
main concept. Marked optional object sets contribute with
lower weights because they are not necessary for establish-
ing the main concept. To continue with our running exam-

ple, we assume that the system selects our appointment on-
tology as the best matched ontology for the service request
in Figure 1.

4. Formal representation generation

A formal representation of a free-form service request
is a predicate-calculus formula. The system generates the
predicates of a formal representation for a free-form service
request only from the given and implied knowledge. For
instance, if the appointment ontology designer leaves out
the Insuranceobject set, any constraint in a service request
about insurance such as “must accept my IHC insurance”
will be ignored.

The input to the formal representation generation process
is a marked-up ontology. The output is a predicate-calculus
formula. Not all knowledge in a marked-up ontology is rel-
evant. Irrelevant knowledge should be pruned away. Other-
wise, the system will generate an overconstrained predicate-
calculus formula. The system, therefore, should find the
sub-ontology including object sets, relationship sets, and
operations that are relevant to the service request.

4.1. Relevant object set and relationship set
identification

The system uses the explicit and implicit knowledge in
a marked-up ontology to find the object sets and the rela-
tionship sets that are relevant for a service request. In gen-
eral, the relevant object sets and relationship sets are: (1) the
main object set (the object set marked with “–> •”) because
we must establish an object in this object set to satisfy the
service request; (2) the object sets that mandatorily depend
on the main object set either directly or transitively because
they are the essential requirements to establish an object in
the main object set; (3) the marked optional object sets be-
cause they represent additional, user-chosen requirements;
and (4) the relationship sets that connect these object sets.
All other object sets and relationship sets are pruned away.

The system obtains the object sets that mandatorily de-
pend on the main object set from the given and implied re-
lationship sets that involve the main object set and from
the given and implied constraints for these relationship
sets. In our running example, the given relationship set
Appointment is with Service Providershows thatService
Provider is related toAppointment, and the given constraint
∀x(Appointment(x) ⇒ ∃≥1y(Appointment(x) is with Ser-
vice Provider(y))) shows thatService Provideris manda-
tory. Further, as we discussed in Subsection 2.3, there is an
implied relationship set betweenAppointmentand service-
providerName, and an implied constraint for this implied
relationship set that makesNamemandatorily depend on
Appointment. Likewise, the system can infer thatDate,

Dermatologist Insurance

Appointment

Address

Person

Name

Date Time
is atis on

has

is with

is for

is at

is at

has

->

Person Address

accepts
Dermatologist Insurance

Appointment

Address

Person

Name

Date Time
is atis on

has

is with

is for

is at

is at

has

->

Person Address

accepts

Figure 6. The relevant object sets and rela-
tionship sets for the appointment in Figure 1.

Time, Person, service-providerAddress, and personName
are all mandatory.

The object setDuration optionally depends on the
main object set because of the absence of the con-
straint∀x(Appointment(x)⇒∃≥1y(Appointment(x) has Du-
ration(y))). SinceDuration is not marked, the system does
not include it as a relevant concept for the service request.
Likewise, since the object setsService, Price, andDescrip-
tion are optional with respect to the main object set and
unmarked, the system does not included them. Although
Person Addressoptionally depends on the main object set
Appointment, the system keeps it because it is marked.

To determine what the system keeps in a generaliza-
tion/specialization (is-a) hierarchy, the system considers the
constraints imposed by the main object set on an is-a hier-
archy and the constraints that the hierarchy imposes on its
object sets. If the constraints imposed by the main object set
on the is-a hierarchy allow only one instance of a marked
specialization and the marked specializations are mutually
exclusive, the instance can be in only one marked special-
ization. Thus, the system keeps only the one marked spe-
cialization.

Referring to our example, the implied constraint
∀x(Appointment(x) ⇒ ∃1y(Appointment(x) is with Service
Provider(y))) requires exactly one instance value in the is-
a hierarchy to be associated with an appointment. Further,
the implied mutual exclusion constraint between the marked
specializations,Dermatologistand Insurance Salesperson,
allows the system to infer that the single instance must be-
long to only one of these marked specializations. To de-
termine which one of the marked specializations, the sys-
tem ranks them. Each marked specialization receives a rank
value according to: (1) the number of strings in a service re-
quest matched by the data frame recognizers of the special-
ization, (2) the number of the marked object sets directly re-
lated to the specialization, and (3) the distance between the
locations of the strings in the service request matched by the
specialization and the locations of the strings in the service

request matched by the main object set. For the first cri-
terion for our example,Dermatologistmatches with more
strings (two occurrences of “dermatologist”) than doesIn-
surance Salesperson(matches with the single string “insur-
ance”). For the second criterion, both the marked special-
izations relate to one marked object set,Insurance. (Ob-
serve that sinceDermatologistin Figure 5 is aDoctor, it in-
herits all the relationship sets in whichDoctor is involved.)
For the third criterion, the location of the first occurrence
of “dermatologist” in the service request is closer to the lo-
cation of the string “want to see a”, matched by the main
object set than is the location of the string “insurance”,
matched byInsurance Salesperson. Thus, the system keeps
only the marked specializationDermatologistin the is-a hi-
erarchy. The system removes all the other specializations
and collapses the is-a hierarchy. Figure 6 shows the result-
ing relevant object sets and relationship sets for the appoint-
ment request in Figure 1.

When the constraints imposed by the main object set al-
low only one marked specialization, but mutual-exclusion
constraints in the is-a hierarchy do not force the single in-
stance to be in only one marked specialization, it is possible
that the single instance could belong to one or more of the
marked specializations. For this case we find the least up-
per bound object setOLUB in the is-a hierarchy to which
instances of all marked specializations belong. We then
prune away all unmarked specializations in the is-a hier-
archy, collapse all specializations toOLUB , and replace the
root object set withOLUB . In doing so, we also keep all re-
lationship sets to other marked object sets if these relation-
ship sets connect to object sets in the is-a hierarchy that are
not pruned away. These other marked object sets are related
mandatorily or optionally toOLUB depending on given or
implied constraints.

When the constraints imposed by the main object set al-
low more than one marked specialization, we find the least
upper bound object setOLUB for the marked specializa-
tions. We then prune away all the other specializations
from the is-a hierarchy and collapse the is-a hierarchy as
described for the previous case.

Finally, if there is no marked specialization in an is-a
hierarchy but an element in the is-a hierarchy is mandatory,
we keep the root of the is-a hierarchy and prune away all its
specializations. We also keep all relationship sets that lead
to marked object sets, if any, and optionally connect them
to the root. If no element in the is-a hierarchy is mandatory
and none is marked, we discard the entire hierarchy and all
connected relationship sets.

4.2. Relevant operation identification

The operations relevant to a service request are the
Boolean operations whose applicability recognizers match

strings in the service request and operations on which
operands of these Boolean operations may depend for val-
ues. For our appointment example, the Boolean operations
in Figure 5(b) are the relevant Boolean operations.

The system needs to bind the operands of the opera-
tions that, as of yet, are not instantiated to value sources.
Value sources can be the relevant object sets for the ser-
vice request or operations in the data frames that compute
values for the operands. In our running example, the op-
erationDateBetweenhas the uninstantiated operandx1 of
type Date. SinceDate is involved in one relationship set
Appointment is on Date, the system bindsx1 to this rela-
tionship set yielding the constraintsAppointment(x0) is on
Date(x1) ∧ DateBetween(x1, “the 5th”, “ the 10th”). Sim-
ilarly, the system binds the uninstantiated operandst1 in
TimeAtOrAfterto yield the constraintAppointment(x0) is
at Time(t1) ∧ TimeAtOrAfter(t1, “1:00 PM”) and the unin-
stantiated operandi1 in InsuranceEqualto yield the con-
straint Dermatologist(x3) accepts Insurance(i1) ∧ Insur-
anceEqual(i1, “ IHC”).

The operandd1of the operationDistanceLessThanOrE-
qual is of typeDistance, which is not involved in any given
relevant object set in Figure 6. The system, therefore, must
find an operation that depends on the relevant object sets
and computes values for this input parameter. If the system
cannot find such an operation, the operation is ignored. The
operandd1 can potentially be computed by the operation
DistanceBetweenAddresses, which depends on the relevant
object setAddress. The system, therefore, bindsd1 to the
operationDistanceBetweenAddresses. As we discussed in
Subsection 2.3, the system can infer from constraints on
the relationship sets on which the operationDistanceBe-
tweenAddressesdepends that the address valuesa1 anda2
come respectively from theAddressobject sets inDerma-
tologist is at AddressandPerson is at Address. Figure 7
shows the relevant operations for the appointment request
in Figure 1.

4.3. Predicate-calculus formula generation

The system conjoins the predicates generated as de-
scribed in Subsection 4.1 and Subsection 4.2 to generate the
formal representation for a free-form service request. For
our running example, the system conjoins the predicates for
each relationship set in Figure 6 with the formulas in Fig-
ure 7 to produce the formal representation for the service
request in Figure 1. After renaming variables, we have ex-
actly the predicate-calculus formula in Figure 2.

We point out that the algorithms to identify the relevant
object sets, relationship sets, and the operations work on
general ontological knowledge. The algorithms consider
whether object sets are marked or not, and they consider
constraints over relationships and among operations in data

• Appointment(x0) is at Date(x1) ∧ DateBetween(x1, “ the 5th”, “ the 10th”)
• Appointment(x0) is at Time(t1) ∧ TimeAtOrAfter(t1, “1:00 PM”)
• Dermatologist(x3) is at Address(a1) ∧ Person(x2) is at Address(a2)
∧ DistanceLessThanOrEqual(DistanceBetweenAddresses(a1, a2), “5”)

• Dermatologist(x3) accepts Insurance(i1) ∧ InsuranceEqual(i1, “IHC”)

Figure 7. The relevant operations for the appointment request in Figure 1.

Table 1. Service requests statistics.
Requests Predicates Arguments

Appointment 10 126 34
Car Purchase 15 315 98
Apt. Rental 6 107 38
Totals 31 548 170

Table 2. Recall and precision.
Recall Precision

Appointment predicates 0.978 1.000
arguments 0.941 1.000

Car Purchase predicates 0.998 0.999
arguments 0.979 0.997

Apt. Rental predicates 0.968 1.000
arguments 0.921 1.000

All predicates 0.981 0.999
arguments 0.947 0.999

frames. The knowledge the algorithms consider is indepen-
dent of a specific domain. As a significant consequence,
these algorithms are fixed and work across domains with no
need to recode them.

5. Performance analysis

We conducted experiments to evaluate our system. The
objective was to evaluate the system performance in finding
the predicates of a formal representation for a free-form ser-
vice request and values for predicate arguments. We tested
the system on service requests belonging to the following
domains: scheduling appointments with medical doctors,
purchasing cars, and renting apartments.

We asked subjects from Brigham Young University to
make free-form, natural-language-like service requests be-
longing to these domains using their own words. We pro-
vided the subjects with no information about the structure of
the underlying domain ontologies or the recognizers or op-
erations in the data frames. We asked the subjects to make
service requests with only conjunctive constraints and pos-
itive literals. To avoid technical terms (e.g. “conjunctive”
and “positive literals”), we provided users with illustrative
examples of what not to ask (e.g. not “at 10:00 amor after
3:00 pm” and not “not at 9:00 am”).

Table 1 shows the number of requests and the number of
included predicates and constant values in these requests.
We received a total of 31 requests, which included a total of

548 constraints and a total of 170 constant values. We re-
viewed all service requests, manually extracted the included
constraints and constant values in each service request, as-
signed each constant value to its respective operand, manu-
ally generated a formal representation for each request, and
stored it in a format similar to the way the system records re-
sults. We then fed each service request to the system, which
created the formal representation for the request, compared
this formal representation against the manually generated
request, and automatically computed the recall and preci-
sion.

Table 2 shows the performance of the system. As Table 2
shows, the recall for predicates was high for all three do-
mains. The recall numbers for constant values (arguments)
were a little lower, but nevertheless quite high. The system
did not recognize these variations of date for appointments:
“any Monday of this month” and “most days of the week”,
these features for cars: “power doors and windows” and
“v6” (the engine size), and these features for apartments:
“a nook”, “dryer hookups”, and “extra storage”. Therefore,
the recall for arguments dropped off from 100%. Further,
missing these constant values caused the system to miss the
constraints over these values causing the recall for predi-
cates to be lower than they otherwise would have been.

The precision was near 100% for both predicates and ar-
guments. When the system selects the right ontology for a
service request, the system almost cannot obtain irrelevant
constraints because our ontology is narrowly focussed on
the service. The only way the system can produce an ir-
relevant predicate is when the system incorrectly marks an
operation or an object set based on the appearance of some
constant value or a context keyword/phrase and the ontolog-
ical knowledge is not enough to enable the system to prune
it away. Consider, for example, this constraint “I want a
Toyota with a cheap price, 2000 would be great ...”, which
was taken from one of the requests and for which our system
incorrectly generated the constraint,PriceEqual(p1: Price,
“2000”). The appearance of the contextual keyword “price”
close to the number 2000 makes our system recognize 2000
as a price value rather than a year value. The type of am-
biguity in this constraint is not easy to handle (perhaps not
even easy for humans) because it is not so clear whether the
subject meant the price to be 2000 or the year to be 2000.3

3Note that the “a” that would usually have appeared in front of “2000”
really is missing. If it had been there, our system would have correctly
extracted the “2000” as a year.

6. Related work

Some researchers in the natural language processing
community work on systems that transform natural lan-
guage to a formal specification such as predicate calculus,
as we do here. These systems, called logic form generation
or transformation systems [4, 5, 9], use parsers to parse a
syntactically correct sentence and identify its constituents
such as nouns, verbs, and adjectives. Each constituent
defines a predicate. The syntactic structure of a parsed
sentence defines the relationships among the constituents,
which are captured through shared arguments among the
predicates. Based on reported results in [4], [5], and [9] and
in [12], which compares the performance of three other ap-
proaches, these systems are able to achieve a recall within
the interval [78%, 90%] and a precision within [81%, 87%]
at the predicate level, and a recall within [65%, 77%] and a
precision within [72%, 77%] at the argument level.

For many years, researchers in the database community
have also worked on generating constraints from natural
language queries. Older approaches, surveyed in [3], parse
their input using either syntactic parsers or sematic parsers
to produce parse trees. In both cases, the parse tree is used
to generate a database query with the help of mapping rules
that specify how each element in the parse tree maps to an
element in the database query.

Newer approaches build on these older approaches by
introducing additional techniques that improve results. The
approach proposed in [7] uses a dependency parser to deter-
mine how the words in a sentence depend on each other. A
query is parsed to create the parse tree, which captures the
dependencies between the query tokens, and then each node
in the parse tree is classified according to XQuery compo-
nents (e.g. areturn clause). If the system cannot classify
some node in the parse tree, it asks a user to rephrase the
query. Thewhere clause constraints are created based on
patterns that appear in a dependency tree. For instance, the
appearance of the pattern “〈variable〉 + 〈constant〉” maps
to the constraint “variable = constant” in a where clause.
Experiments reported in [7] show that this approach is able
to achieve 95.1% precision and 97.6% recall. These results
are for queries that are correctly parsed and whose result-
ing parse-tree nodes are correctly classified. With respect to
all queries, however, the reported recall and precision were
respectively 90.1% and 83%.

The PRECISE system, proposed first in [11] and later
enhanced with a semantic model to correct some parser er-
rors [10], uses a statistical parser and lexicons, consisting of
names of relations, attributes, and values of the attributes as
well aswh-designators (what, which, where, who, and when
designators) attached to the attributes. A natural language
query is parsed with respect to the lexicon that matches each
main word in the query to one or more database elements

(table name, attribute name, value, andwh-designator). The
system then constructs attribute-value mappings, which are
validated by the relationships produced by the parser. The
where clause in the generated SQL query is a conjunction
of attributes with mapped values along with join conditions
that reflect the join paths among tables. The reported re-
sults for experiments on three domains show that PRECISE
is able to achieve 100% precision and a recall within the in-
terval [∼75%,∼93%] for “semantically tractable queries.”
Like our proposed system, PRECISE extensively exploits
the schema of the database. Since neither system generates
constraints beyond its schema, precision tends to be high.
Improper constraints can only be generated by false posi-
tives within the purview of the database schema.

The approach described in [8] is quite close to our ap-
proach. It uses a semantic model of an underlying database,
which is a graph that consists of nodes representing data-
base relations and attributes and edges representing connec-
tions among relations. Keywords or keyword phrases are at-
tached as labels to nodes and operators (standard operators
such as “<”, “ >”, or “=”). The system matches a natural
language query to the keywords attached to semantic-model
elements and uses a statistical approach (n-grams) to disam-
biguate matches. As with our approach, this approach does
not seem to require syntactically correct queries. No em-
pirical results are reported in [8], and therefore it is hard to
assess its performance.

All these approaches, except [8], expect syntactically
correct sentences. We do not. Further, generally speaking,
our approach performed with better recall and precision.
Our approach has two important novelties that contribute
to its performance. First, the semantic data model cap-
tures the relationships among objects and constraints over
these objects in the domain, and therefore we avoid pre-
cision errors introduced when parsers try to determine re-
lationships among constituent parts of the input. Further,
as an added benefit of our particular service-oriented para-
digm, the semantic data model allows the system to derive
relationships that are necessary for satisfying a service re-
quest even though the service request does not specify them
at all. Second, the semantics associated with the object
sets through data frames allow our approach to capture con-
straints through operations in these data frames. This means
that once a constraint in a service request is recognized by
the applicability recognizers of an operation, this constraint
is correctly formalized by means of this operation. Our ap-
proach, however, does require designers of service-request
ontologies to produce a proper semantic data model that ap-
propriately covers the scope of the service and to produce
recognizers in data frames that correctly recognize appro-
priate value and keyword instances. We believe, however,
that because of the narrow focus of a particular service, this
task is as easy (and possibly easier) than producing required

lexicons, parsers, and similar components for alternative ap-
proaches.

7. Conclusions and future work

We proposed an ontology-based approach for recogniz-
ing constraints in free-form service requests and formally
representing them in terms of predicate calculus formulas.
We tested our proposed approach and found that it achieved
a recall averaging 98.1% for predicates and 94.7% for ar-
guments, and achieved a precision of nearly 100% for both
predicates and arguments. Thus, we believe that our ap-
proach is likely to be a valuable alternative in situations
where (1) the input is a free-form service request with con-
junctive constraints, (2) the request provides enough of a
hint to allow our system to find a matching domain ontol-
ogy, and (3) the request can be satisfied by inserting a single
object in an object set of interest in a domain ontology and
then by inserting other mandatory and optional objects re-
quired for the request.

We have two main objectives for future work. First,
we have recently extended the capabilities of our system to
recognize and process disjunctive and negated constraints.
We intend to conduct a user study to evaluate the perfor-
mance of our augmented system. Second, we plan to inte-
grate the work reported here with other work we have done
[1] to produce the overall system we have envisioned [2].
The system we have envisioned transforms a service request
into a predicate-calculus formula as explained here. It uses
the predicate-calculus formula to create a query to a data-
bases associated with the domain ontology from which the
formula was generated to instantiate as many variables of
the formula as possible. The system then discovers the vari-
ables in the predicate-calculus formula that are yet to be
instantiated and interacts with a user to obtain values for
these variables. When all the variables are instantiated, the
system checks whether the constraints of the formula are
satisfied. Constraint satisfaction can yield too many solu-
tions or no solution. As reported in [1], the system controls
the potential overload on users when there are too many so-
lutions by returning the best-m solutions rather than all of
them or offers users the best-m near solutions when there
is no solution. When a user chooses one of the suggested
solutions or near solutions, the system completes the ser-
vice request by inserting an object (e.g. an appointment) in
the main object set of the domain ontology and by inserting
other mandatory and optional objects and relationships and
thus satisfies the service request.

References

[1] M. J. Al-Muhammed and D. W. Embley. Resolving Un-
derconstrained and Overconstrained Systems of Conjunctive

Constraints for Service Requests. InProceedings of the 18th
International Conference on Advanced Information Systems
Engineering (CAiSE06), pages 223–238, Luxembourg, June
2006.

[2] M. J. Al-Muhammed, D. W. Embley, and S. W. Liddle. Con-
ceptual Model Based Semantic Web Services. InProceed-
ings of the 24th International Conference on Conceptual
Modeling (ER 2005), pages 288–303, Klagenfurt, Austria,
October 2005.

[3] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural
Language Interfaces to Database: An Introduction.Journal
of Natural Language Engineering, 1(1):29–81, March 1995.

[4] S. Anthony and J. Patrick. Dependency Based Logical Form
Transformation. InProceedings of the 3rd International
Workshop on the Evaluation of Systems for the Semantic
Analysis of Text, pages 54–57, Barcelona, Spain, July 2004.

[5] S. Bayer, J. Burger, W. Greiff, and B. Wellner. The MITRE
Logical Form Generation System. InProceedings of the 3rd
International Workshop on the Evaluation of Systems for the
Semantic Analysis of Text, pages 69–72, Barcelona, Spain,
July 2004.

[6] D. W. Embley. Programming with Data Frames for every-
day Items. In D. Medley and E. Marie, editors,Proceedings
of AFIPS Conference, pages 301–305, Anheim, California,
May 1980.

[7] Y. Li, H. Yang, and H. Jagadish. Constructing a Generic
Natural Language Interface for an XML Database. InPro-
ceedings of the 10th International Conference on Extending
Database Technology (EDBT 2006), pages 737–754, Mu-
nich, Germany, March 2006.

[8] F. Meng and W. W. Chu. Database Query Formation from
Natural Language using Semantic Modeling and Statistical
Keyword Meaning Disambiguation. Technical Report CSD-
TR 990003, University of California, Los Angeles, Califor-
nia, 1999.

[9] A. Mohammed, D. Moldovan, and P. Parker. Sensevale 3
Logic Form: A system and Possible Improvements. InPro-
ceedings of the 3rd International Workshop on the Evalu-
ation of Systems for the Semantic Analysis of Text, pages
163–166, Barcelona, Spain, July 2004.

[10] A. M. Popescu, A. Armanasu, and O. Etzioni. Modern Nat-
ural Language Interfaces to Databases: Composing Statis-
tical Parsing with Semantic Tractability. InProceedings of
the 20th International Confereence on Computational Lin-
guistics, pages 30–39, University of Geneva, Switzerland,
August 2004.

[11] A. M. Popescu, O. Etzioni, and H. Kautz. Toward a Theory
of Natural Languages Interfaces to Databases. InProceed-
ings of the 8th International Conference on Intelligent User
Interfaces, pages 149–157, Miami, Florida, January 2003.

[12] V. Rus. A First Evaluation of Logic Form Identification Sys-
tems. InProceedings of the 3rd International Workshop on
Evaluation of Systems for Semnatic Analysis for Text, pages
37–40, Barcelona, Spain, July 2004.

