Query Rewriting for

Extracting Data Behind HTML Forms
A Thesis Proposal Presented to the

Department of Computer Science

Brigham Young University

In Partial Fulfillment of the Requirements
for the Degree Master of Science
Xueqi Chen

August 2002

I.
Introduction

With the enormous amount of information being put on the Internet, databases, which can be accessed by interacting with a form or a series of forms, becomes a useful and common data management tool for Internet information and service providers. Web forms and dynamically generated pages favor users because users can often get exactly the information they want. It is tedious, however, for users to visit dozens of sites for the same application and fill out different forms provided by each site. As a result, enabling automated agents and Web crawlers to interact with form-based interfaces designed primarily for humans would be of great value.

There are significant technical challenges in automating the form filling process. First, an automated agent must understand a user’s needs by interpreting the user’s input or query. Second, an automated agent must understand Web forms, which provide for site queries, and map the user’s query to a site query. This is challenging because different Web forms, even for the same application, provide different ways to query their databases.

Figures 1, 2 and 3 show three different Web forms for the same application, used-car searching, from three different information providers. In Figure 1, Year, Make, Model, Color, and Price are the fields on which a user can query. In Figure 2, only Make and Location are available. Figure 3 is more complicated than the previous two: it asks for information about location, which is a composite of ZIP Code and Search Within, and up to three vehicles, described by a combination of make and model, Year,

[image: image7.wmf]
Figure 1:Web form for used car search at http://wwwheels.com/cfapps/searchindex.htm,
June, 2002.

[image: image2.png]auto

aut =lolx|

B Gt v rwones |

uttess [g o crtayr ot

AllMakes AllAreas,
Acura (Alabama
(Alla Romen (Alaska
AMC |Arizona
[Aston Martin
Aud

Advanced Search

© tnternet

Figure 2: Web form for used car search at www.carbuyer.com, June, 2002.

[image: image3.png]Vehicle Search =l

2P Code-
Search Within -
Vehicle 1-
(optiona) venicle 2-
(optiona) venicle 3-
Year-

Mileage -

Price Range -

1]

Enter details below for the vehicle you are looking for.

]
[wite =]
[Ford 5] [AD——

(Gelect a Make)] [(5elect = fodel) 7]

(Gelect a ake) [7] [(Select a odel) 7]
. <

iy B

7 O | Continue >>

Figure 3: Web form for used car search at http://ucm.carpoint.msn.com, June, 2002.
Mileage, and Price Range. In addition, information providers can choose to represent their forms using different combinations of radio buttons, checkboxes, selection lists, and text boxes. All of these cause problems in mapping a user’s query to a site query.

Since Web forms are designed in a variety of ways, handling all kinds of Web forms according to user queries by one automated agent is challenging. Although seemingly simple, direct matches between user-query fields and form fields can be challenging [EJX01]. Even with this problem solved, synonymy and polysemy may make the matching nontrivial. Moreover, problems arise when user queries do not match with form fields. Mismatches occur in the following ways:

(1) Fields specified in a user query are not contained in a Web form, but are in the returned information.

(2) Fields specified in a user query are not contained in a Web form, and are not in the returned information.

(3) Fields required by a Web form are not provided in a user query, but a general default value, such as “All” or “Any”, is provided by the Web form.

(4) Fields required by a Web form are not provided in a user query, and the default value provided by the Web form is specific, not “All” or “Any”.

(5) Values specified in a user query do not match with values provided in a Web form, which leads to the problem that the desired information cannot be retrieved using a single form query.

To illustrate these problems, consider the three example forms in Figures 1, 2, and 3 and the user query, “Find green cars that cost no more than $10,000”.

This query fits the Web form in Figure 1 perfectly. All the fields above Color have proper default values; there is no need to fill out anything. For Color, “Green” is one of the options, and for Price, “$10,000” is one of the upper limit options. Figure 4 shows the results after filling out and submitting the form for the query.

The form in Figure 2 illustrates Problems 1, 2, and 3 mentioned above. Since there are no fields about car color, nor about car price in the form, we try to search for cars of “all makes” from “all areas”. From the retrieved data, which is presented in Figure 5, we notice that price information is provided, but not color information. Thus, with some post-processing, we can discard all cars that cost more than $10,000 and also inform the users that no color information is available.

[image: image4.png]] World Wide Wheel

Used Car Search

rosoft Internet Explorer

=lolx|

Ghack = - @ [0 A Qearch Gravortes Biveds 3 |BN- S - AP E R

ukress [€1 o ffwmwhect conippsfserchindoxin

B

GREEN
w/ TAN int. 6 CYLINDER 90,833mi.
AUTO FOR MORE INFO CALL 630-
241-4846 $7,995 Stock No. K-10318
[
]

GREEN
w/ TAN int. 4 CYLINDER 90,883mi.
AUTO $8,995 Stock No. K-10318
[]

GREEN w/
GRAY int. 4 CYLINDER 5 SFD. If
you are Looking for a Great car to fit
your Budget? Lok no More! This
Tntegra is Loaded with Power
Windows, Lacks, Mirrors, Moonroof,
Air Cond., Alloys and Lots More!
Drive it Home Today! Only at The
Autoham! $5,980 Stock No. VE4152B

GREEN $4,995 Stock No. 5768
[|

Internet

RN

Figure 4: Retrieved data from http://wwwheels.com/cfapps/searchindex.htm, June, 2002.

[image: image5.png]Ele Edt Vew Favortes Took Hel

[Sr e ————

(e [o=t [oo | mitesse [civy [stare | price =)

Honds CRx 1550
STRATUS
Dod2e yywarranTy1%%®
lIronds prelude SR 1391
Chevrolet Lumina LS 1995
bscura Legend 1387
Mustang
forord convertible 270
Chevrolet Camaro 1968
K8
(®I20U" Convertiole 1%
Mercedes” 300 Sedan 1995
3oz
Bestle GLS
lsvolkswagene? 2000

A4 Ouattrn

56540
64500

210000
82500
166000

57695
38552
33214

107761

40011

Bkiyn
GADSDEN

victoria
Rankin
Meminnville

Y
AL

BC
1L
or

Hendersanville TN

Billerica

Nashville

Nashville

Nashville

Ma
™

™

™

$3800
$10000

$7900
$6000
$2000

$13398:
$8000
$45900

$13900,

$16900

Figure 5: Retrieved data from www.carbuyer.com, June, 2002.
[image: image6.png]carpoint Newsearch

] MakeandModel Year Color Mieage
A PHOTO. Ford Contour GL 1995 PINK 104,049
O PHOTO. Ford Contour LX 1998 BLUE 85605 $7,450
A PHOTO. FordEscortLX 1999 WHITE 52,972 8,750

NopHOTO
NOPHOTO FordEscortLX 2.Door 1994 GREEN 160,237

5] T

Internet

Figure 6: Retrieved data from http://ucm.carpoint.msn.com, June, 2002.

The form in Figure 3 illustrates Problem 1 since it does not have any field about car color or price, but the retrieved data in Figure 6 contains information about both. It also illustrates Problem 4 because it requires information about location (ZIP Code, Search Within) and a preferred car make, whereas the user query does not specify any of those. In other words, the user does not care about car make, which leads to Problem 5. Under these circumstances, we need to submit multiple queries until every car make provided in the selection list has been selected. We should not submit every ZIP Code because there are too many, and we should not submit every Search Within range because we only need the largest range. (Either we should present these fields to the user, or we should realize that location information is commonly requested and obtain this information from users in advance.) Figure 6 is the retrieved page after submitting the query “Zip Code = 84606, Search Within 100 miles, Vehicle make = Ford, Model = Any, Year = Any, Mileage = Any, and Price Range from $0 to $10,000”. From the retrieved page, we noticed that car color is returned. With proper post-processing, we can give a precise answer to the user for Fords. By repeatedly processing the form with all makes, we can thus give a precise and complete answer for the query.

Besides the problems of filling in and submitting the form, there are still issues to resolve after the submission. (1) How should the system recognize the boundary of each record in a page? (2) How should the system handle error pages and pages with error messages? (3) What is the system action when the retrieved data is contained in multiple pages using “next” or “more” links? (4) How should the system remove duplicates when multiple submissions return results that overlap? (5) How does a system identify the layout of the retrieved pages, such as tables, lists, or paragraphs separated by horizontal lines, and correctly extract information and populate our database? All these issues make the automation of form filling challenging. Fortunately, previous work has addressed Problems 1 – 5. [EJN99] solves the record boundary separation problem; [Yau01, LYE01] gives a solution to Problem 2, 3, and 4; and current work [ETL02] addresses the problem of extracting data from tables with unknown structure. Our system will integrate these solutions and make possible the form filling process with respect to user queries.

To the best of our knowledge, no other existing form-extraction system considers all the issues mentioned above. The existing BYU form extraction system [LES02, Yau01], a fully automated system, tries to extract all the information from one Web site (behind one Web form), regardless of what a user wants. The Hidden Web Exposer (HiWE) system [RaG00, RaG01], extends crawlers by giving them the capability to fill out Web forms automatically. HiWE, however, must start with a user-specified list of sources for a particular task, and human-assistance is critical to ensure that the crawler issues queries that are relevant to the particular task. Microsoft’s Passport and Wallet system [Mic01] encrypts a user’s personal information and then automatically fills out Web forms with the user-provided information whenever it is applicable, but the system makes no attempt to retrieve information behind those forms. The commercial system ShopBot [DEW96] is a general purpose mechanism for comparison shopping. Its form filling process is an automatic but simple process. ShopBot fills each form using a set of domain-specific heuristic rules provided in a domain description. The domain description contains regular expressions encoding synonyms for each attribute. If the regular expression matches the text preceding a field, then the system associates that attribute with the field; if there are multiple matches, the first one listed on the domain description is used; if a match fails, the field is left blank.

II.
Thesis Statement

For a given application domain, we intend to produce a prototype system designed to fill out Web forms automatically according to a given user query against a global schema and to the extent possible extract just the relevant data behind these Web forms.

III.
Methods

Our prototype system has two central parts, the Input Analyzer and the Output Analyzer. Figure 7 shows a flowchart of the process.

Input Analyzer

The Input Analyzer (1) takes a user query written with respect to a given application ontology as input, (2) analyzes a site form, (3) matches the user query with the site form, and (4) fills out and submits the form.

[image: image1.png]e Edt Vew

Tools

e

ukress [€1 o ffwwhecl confposisearchindoxin

New Car,
Showroom|

Year:

Make:

Model:

Color:

Price:

World Wide Wheels ~

The Hottest Automotive Spot on the Nett

1921 =] 0 [2003 =

— All Makes — -
Al Madels
—— All Calors -

80] to[nolimit 7]
Begin Search | Reset

Figure 7: System Flowchart.

· Acquire User Query

Our system provides a user-friendly interface for users to enter their queries. In order to make the interface user-friendly and make query specification easy to understand for our system, we apply an application-specific ontology in constructing the interface. An expert builds an application ontology in advance and constructs an application-specific form corresponding to application ontology
. Once a user enters a query, our system can parse the query easily and store each attribute-value pair for later use.

· Analyze Site Form

Site form understanding is an essential part of our project. However, as stated previously, site forms vary from site to site, even for the same application domain. Thus, site form understanding is difficult.

Site form understanding consists of two parts — (1) field name understanding and (2) field type understanding (which includes option values if applicable) — they both depend on information in the HTML tags.

HTML form designers create many fields with the <input> tag. For example:

<input type="text" size="10" name="zip" maxlength="5" value="">
They use <select> and <textarea> to create other fields. An example is:

<select name="radius">

<option value="10">10 miles</option>

<option value="30">30 miles</option>

<option value="60">60 miles</option>

<option value="100" selected>100 miles</option>

<option value="250">250 miles</option>

<option value="500">500 miles</option>

</select>
Although there are many attributes for the <input> tag, we are only interested in the type and name attributes (if type is submit or reset, then name is not required). Thus, we can parse the <input> tag to extract and store the field name and field type. For the <select> tag, we can analyze the content between the opening and closing tags to extract and store the field name and the option values provided. For the <textarea> tag, the only thing we can use is the field name.

Field name matching is essentially a problem of discovering mappings between the filled-in ontologically specified form and the site form. To discover these matches, we plan to adapt schema-matching techniques already developed in [EXJ01].

· Fill Out Form

Form filling is the critical part of our project. Because fields in a user query do not always match exactly with fields in a site form, we treat different cases in different ways. We offer solutions for the five issues raised in the Introduction (Case 1 – 5 below) and add the direct mapping between user-query fields and site-form fields as Case 0.

Case 0: Fields specified in user query are the same as in a site form. For example, a user searches for cars around a certain ZIP Code, and ZIP Code is a field of type “text” in the site query.

Solution: We simply pair and store the user-provided value with the ZIP Code attribute.

Case 1: Fields specified in a user query are not contained in a site form, but are in the returned information. For example, a user searches for “Green” cars, but Color is not a field in the site query.

Solution: We ignore this field for input, but use it in the post-processing phase.

Case 2: Fields specified in a user query are not contained in a site form, and are not in the returned information.

Solution: We ignore this field when filling out the form, and inform the user when returning results to the user.

Case 3: Fields required by a site form are not provided in user query, but a general default value, such as “All” or “Any”, is provided by the site form. For example, a user does not specify any particular Make of cars of interest, and Make is a field with a <select> tag in a site form with a list of option values including “All” or “Any” as a selected default value.

Solution: We ignore this field.

Case 4: Fields appear in a site form are not provided in a user query, and the default value provided by the site form is specific, not “All” or “Any”. For example, a user does not specify any particular Make of cars of interest, and Make is a field with a <select> tag in a site form with a list of option values. Unfortunately, “All” or “Any” is not in the option list.

Solution: We pair and store the field with each of the values provided for the fields by the site form. Later in the submission process, we submit the form once for each field-value pair.

Case 5: Values specified in a user query do not match with values provided in a site form. For example, a user searches for cars cost no more than “$9,000”, but the Price in the site form is in the format of :

<select name="myprice" size=1>

<option value="">Any Price

<option value="5000">$5,000 and under

<option value="10000">$5,001 - $10,000

<option value="15000">$10,001 - $15,000

<option value="20000">$15,001 - $20,000

<option value="20001">$20,001 and over

</select>

Solution: We need to find the least number of range that covers the user’s request and store the field-value pairs. For example, we should store the two pairs: (myprice, 5000) and (myprice, 10000). Later in the process, we submit the form once for each pair in the submission phase. However, we need to filter out irrelevant records returned in the post-processing phase, e.g., cars with price higher than $9,000.

· Submit Form

Once we have Web form fields paired with values, we can “fill out” and “submit” the form. To “fill out” the form, we concatenate the attribute-value pairs. To “submit” the form, we send the server site a string constructed by appending the attribute-value pairs to the URL collected from the meta information of the page and the action attribute of the <form> tag. As an example, for the page http://www.ads4autos.com/autos/index.cfm,

we find

<FORM NAME="SearchIt" ACTION="searchlist.cfm" METHOD=POST onSubmit="return _CF_checkSearchIt(this)">

<INPUT TYPE="Text" NAME="myzip" SIZE=13>

<SELECT NAME="mydistance" SIZE=1>

<option value="25">25 Miles

<option value="50">50 Miles

<option value="100">100 Miles

<option value="300">300 Miles

<option value="500">500 Miles

<option value="1000">Regional

<option value="4000">National

</SELECT>

…

</FORM>

The following string is our query if a user is interested in cars located within “50 miles” of ZIP Code “98195”:

http://www.ads4autos.com/autos/searchlist.cfm?myzip=98195&mydistance=50&...

Output Analyzer

The Output Analyzer handles all the post-processing issues. It takes the retrieved pages as input and (1) distinguishes the valid pages from the error pages or pages with error messages, (2) concatenates the results if they are returned in more than one page, (3) recognizes the boundary of each record, (4) identifies the formats of the retrieved pages, (5) removes duplicates if the results overlap, (6) extracts key information contained in the retrieved pages, (7) places the results in a database, and (8) executes the original user query and output the results. Fortunately, except for (4) and (8), previous work [EJN99, Yau01] have addressed all these issues. For simplicity, we accomplish task (4) by analyzing the HTML tags of the returned pages. If a <table> tag is discovered in a page, we assume the records in the page are stored in a table and use [ETL02] to extract records; otherwise, we assume the records are stored in other formats and apply the existing BYU Ontos to extract the records. To resolve issue (8), we generate the SQL query corresponding to the user’s original query and apply it to the populated database.

Experiments and Measurements

In this project, we will experiment on 10 sites for each of 3 applications. The approach, however, is not limited to the 3 applications on which we will experiment. It can be easily generalized to other applications as long as those applications have Web sites with forms, and we have ontologies for those applications. Of course, we make the same assumptions as we do for ontology-based extraction — namely that the application is narrow in breath and rich in data [ECJ+99]. The process of rewriting queries in terms of site forms is the same.

We are interested in three kinds of measurement: field-matching efficiency, submission efficiency, and post-processing efficiency.

To know if we properly matched the fields in a user query with the fields in a site query, we measure the ratio of the number of correctly matched fields to the total number of fields that could have been matched (a recall ratio), and we measure the ratio of the number of correctly matched fields to the number of correctly matched fields plus the number of incorrectly matched fields (a precision ratio).

To know if we submitted the query effectively, we measure the ratio of the number of correct queries submitted to the number of queries that should have been submitted (a recall ratio), and we measure the ratio of the number of correct system queries submitted to the number of correct queries submitted plus the number of incorrectly submitted queries (a precision ratio).

To know if the post-processing phase is done properly, we measure the ratio of the number of correct records our system returned to the number of correct records our system should have returned (a recall ratio), and we measure the ratio of the number of correctly returned records to the number of correctly returned records plus the number of incorrectly returned records (a precision ratio).

We can also have an overall efficiency measurement by averaging the three recall measurements and the three precision measurements obtained as explained above.

IV.
Contribution to Computer Science

This research makes two contributions to the field of computer science. First, it enhances the effectiveness of the data-extraction process by interacting with form interfaces and retrieving data from Web documents behind the forms according user queries. Second, it presents another technique in addition to [RGa01] for enabling current crawlers the ability to crawl Web pages “hidden” behind Web forms.

V.
Delimitations of the Thesis

· We will not provide for standard input queries such as SQL.

· We will not allow users to specify their own forms [Emb89].

· We realize that we could recode our system to be more efficient (e.g., to not load to database with tuples returned by form processing). However, this extra coding work is not essential to show proof of concept.

· We will not build a processor to automatically produce application specific forms because this is not the focus of our research. We will build any application ontologies we need by hand. Several application ontologies already exist [Deg02], and experience indicates that we can build any we need in a few dozen people hours [ECJ+99]. Further, other research [LDE+02] focuses on semi-automatically building application ontologies.

VI.
Thesis Outline

1. Introduction and Related Work (8 pages)

2. Input Resources (4 pages)

2.1 Ontologies

2.2 User Queries

2.3 Site Forms

3. Methodology (20 pages)

3.1 Input Analysis

3.1.1 User Query Acquisition

3.1.2 Site Form Analysis

3.1.3 Form Field Entries

3.1.4 Form Submission

3.2 Output Analysis

4. Experimental Results, and Analysis (10 pages)

5. Conclusions, Limitations, and Future Work (4 pages)

VII.
Thesis Schedule

A tentative schedule of this thesis is as follows:

Literature Search and Reading
January – August, 2002

Chapter 2

September – October, 2002

Chapter 3

October – December, 2002

Chapter 1

December, 2002 – January, 2003

Chapters 4 & 5

January – March, 2003

Thesis Revision and Defense
 April 2003

VIII.
Bibliography

[Deg02]
Brigham Young University Data Extraction Group Homepage. http://www.deg.byu.edu.

This site has a demo that is used to extract unstructured data from Web pages. We will use this system as the foundation for processing ontologies and extracting semi-structured information returned from Web form submissions.
[DEW96]
Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. “A Scalable Comparison-Shopping Agent for the World-Wide Web,” In Proceedings of the First International Conference on Autonomous Agents, Marina del Rey, California, USA, February 5-8, 1997, pp. 39-48.

This paper describes a fully-implemented, domain-independent, comparason-shopping agent – ShopBot. Given the homepages of several online stores, ShopBot autonomously learns how to shop at those vendors.

[ECJ+99]
David W. Embley, Douglas M. Campbell, Yuan S. Jiang, Stephen W. Liddle, Yiu-Kai Ng, Dallan Quass, and Randy D. Smith. “Conceptual-Model-Based Data Extraction from Multiple-Record Web Pages,” In Data & Knowledge Engineering, Volume 31, Number 3, November, 1999, pp.227-251.

This paper introduces a conceptual-modeling approach to extract and structure data automatically. This approach is based on an ontology, a conceptual model instance that describes the data of interest, including relationships, lexical appearance, and context keywords. By parsing the ontology, the system can automatically produce database schema and recognizers for constants and keywords, and then invoke routines to recognize the extract data from unstructured documents and structure it according to the generated database schema. It is the foundation paper of our extraction work of [Deg02].
[EJN99]
David W. Embley, Yuan S. Jiang, Yiu-Kai Ng. “Record-Boundary Discovery in Web Documents,” In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, May 31 – June 3, 1999, pp. 467-478.

This paper describes a heuristic approach to discovering record boundaries in Web documents. It makes it possible to separate the records stored in Web pages that have multiple records.

[EJX01]
David W. Embley, David Jackman, and Li Xu. “Multifaceted Exploitation of Metadata for Attribute Match Discovery in Information Integration,” In Proceedings of WIIW01, Rio de Janeiro, Brazil, April 9-11, 2001, pp. 110-117.

This paper presents a framework for multifaceted exploitation of metadata in which they gather information about potential matches from various facets of metadata and combine this information to generate and place confidence values on potential attribute matches. The process is based largely on machine learning technique. The schema matching techniques presented in this paper should help us match user-query attributes with Web-form attributes.

[Emb89]
David W. Embley. “NFQL: the natural forms query language,” In Proceeding of the ACM Transactions on Database Systems, Vol. 14, No. 2, June, 1989, pp. 168-211.

This paper discusses the NFQL data language, which is a way of organizing the human-database interface by means of filling ordinary forms. An extension to our work could allow users to submit NFQL forms as queries, which could free users from having to know the structure of input ontologies.

[ETL02]
David W. Embley, Cui Tao, and Stephen W. Liddle. “Automatically Extracting Ontologically Specified Data from HTML Tables with Unknown Structure,” In Proceeding of the 21st International Conference on Conceptual Modeling (ER 2002), (to appear) Tampere, Finland, October 7-11, 2002.

This paper proposes a solution to table understanding based on document-independent extraction ontologies. The solution entails elements of table understanding, data integration, and wrapper creation. Table understanding allows users to recognize attributes and values, pair attributes with values, and for records. Data-integration techniques allow users to match source records with a target schema. Ontologically specified wrappers allow users to extract data from source records into a target schema. This paper is a useful resources for extracting data stored in HTML tables. We plan to use code from this project to help with our post-processing when the result returned is a table.

[LDE+02]
Deryle Lonsdale, Yihong Ding, David W. Embley, and Alan Melby. “Peppering Knowledge Sources with SALT: Boosting Conceptual Content for Ontology Generation,” In Processing of the Eighteenth National Conference on Artificial Intelligence (to appear), Edmonton, Alberta, Canada, July, 28, 2002.

This paper describes work done to explore the common ground between two different ongoing research projects: the standardization of lexical and terminological resources, and the use of conceptual ontologies for information extraction and data integration. Specifically, this paper explores improving the generation of extraction ontologies through use of a comprehensive terminology database that has been represented in a standardized format for easy tool-based implementation.

[LYE01]
Stephen W. Liddle, Sai Ho Yau, and David W. Embley. “On the Automatic Extraction of Data from the Hidden Web,” In Proceedings of the International Workshop on Data Semantics in Web Information Systems (DASWIS-2001), Yokohama, Japan, November 27-30, 2001.

This paper presents a method for automatically filling in forms to retrieve the associated dynamically generated pages. Automated agents can use this approach to systematically access portions of the “hidden Web”. We plan to use code from this project to retrieve data from filled in forms and to remove duplicates arising from multiple submissions.

[Mic02]
Microsoft Passport and Wallet Services. http://memberservices.passport.com.

This site is the official site of Microsoft .NET Passport. Microsoft’s Passport and Wallet system encrypts a user’s personal information and then automatically fills out Web forms with the user-provided information whenever it is applicable, but the system makes no attempt to retrieve information behind those forms.

 [RGa00]
Sriram Raghavan and Hector Garcia-Molina. “Crawling the Hidden Web,” Technical Report 2000-36, Department of Computer Science, Stanford University, Stanford, California, December 2000.

This paper provides a framework for addressing the problem of extracting content from Web pages “hidden” behind search forms. It describes the architecture of HiWE, a tack-specific hidden Web crawler built at Stanford, and presents a number of novel techniques that went into its design and implementation. The problem solved by this process is similar, but it does not consider user queries.

[RGa01]
Sriram Raghavan and Hector Garcia-Molina. “Crawling the Hidden Web,” In Proceedings of the 27th VLDB Conference, Rome, Italy, September 11-14, 2001, pp. 129-138.

The shorter version of [RaG00], which was published.

[Yau01]
Sai Ho Yau. “ Automating the Extraction of Data Behind Web Forms,” Master’s Thesis, Department of Computer Science, Brigham Young University, Provo, Utah, 2001.

This paper presents a system that automatically extracts data behind a Web form. The system fills in HTML forms automatically, retrieves all the data behind the Web form, and eliminates error pages and duplicated records. It is a useful resource for the post-processing described in our research.

IX.
Artifacts

We will implement the proposed algorithm as a tool/demo in the Java programming language. The application will be used to automatically fill in Web forms according to given user queries, extract features, remove duplicates and irrelevant records, and display the results.
X.
 Signatures

This proposal, by Xueqi Chen, is accepted in its present form by the Department of Computer Science of Brigham Young University as satisfying the proposal requirement for the degree of Master of Science.

Date

Date

Date

Date

David W. Embley, Committee Chairman

Stephen W. Liddle, Committee Member

Robert P. Burton, Committee Member

David W. Embley, Graduate Coordinator

Retrieved Page(s)

Application Ontology

User Query

Site Form

Input Analyzer

Output Analyzer

Extracted Information

� See delimitations.

PAGE
19

