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Abstract

Automating semantic matching of attributes for the purpose of information inte-
gration is challenging, and the dynamics of the Web further exacerbate this problem.
Believing that many facets of metadata can contribute to a resolution, we present a
framework for multifaceted exploitation of metadata in which we gather information
about potential matches from various facets of metadata and combine this information
to generate and place confidence values on potential attribute matches. To make the
framework apply in the highly dynamic Web environment, we base our process largely
on machine learning. Experiments we have conducted are encouraging, showing that
when the combination of facets converges as expected, the results are highly reliable.

1 Introduction

In this short paper, we focus on the long-standing and challenging problem of attribute
matching [LNE89] for the purpose of information integration. To address this problem,
researchers have used a variety of techniques including the use of data values [LC94, CRL98],
data-dictionary information [CRL98], structural properties [PSU98], ontologies [FPNB99],
synonyms and other terminological relationships found in dictionaries and thesauri [HR90,
BCV99, CA97], and various combinations of these techniques [KS96, KS98, CAFP98]. These
are the kinds of facets of metadata we wish to exploit, all of which may contribute to the
resolution of attribute-matching issues. Although we probably have some idea about what
metadata is most useful and in what combination and under what circumstances we should
use this metadata, we probably do not know with certainty. Thus, rather than try to
encode algorithms over the metadata ourselves, we largely use machine learning to develop
the algorithms. This approach also has the advantage of being flexible in the presence of
changing dynamics, which are so common on the Web.
As in [BE01], we assume that we wish to integrate data from multiple populated source

schemes into a target scheme, where all schemes are described using the same conceptual
model [EKW92]. Ultimately, however, we can and do consider our sources to be Web
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repositories, which we reverse engineer into source schemes by the data-extraction pro-
cesses we have defined for semistructured and unstructured Web pages [ECJ+99], by the
database reverse-engineering process we have defined, which works for Web tables and re-
lational databases [EX97], and by the Web form data-extraction process we are develop-
ing [Yau01]. Moreover, using standard representational transformations among conceptual-
model schemes, we can transform the conceptual-model instance of any particular wrap-
per into a conceptual-model instance required by our technology, and thus we can make
use of any developed wrapper technology (e.g. [AK97, GLdSRN00, HGMN+97] and many
more—see the bibliography in [ECJ+99]). In addition to these assumptions for sources, we
assume that target schemes are augmented with a variety of both application-independent
and application-specific ontological information. For this short paper the augmentations we
discuss are WordNet [Mil95, Fel98], which is application independent, sample data, which is
application specific, and regular-expression recognizers, which are partly application specific
and partly application independent.
Our contribution in this paper is the following framework which we propose as a way to

discover which attributes in a source scheme S directly match with which attributes in a
target scheme T .1

1. For each individual, independent facet, find potential attribute matches between the
m attributes in S and the n attributes in T . Provide confidence measures between
0 (lowest confidence) and 1 (highest confidence) for each potential match. Section 2
explains how we generate matching rules over independent facets.

2. Using the confidence measures from (1), combine the measures for each potential match
into a unified measure of match confidence. The result is an m × n matrix M of
confidence measures. Section 3 explains how we combine confidence measures.

3. Iterate over M using a best-first match constrained by an injective assignment algo-
rithm until all matches whose confidence measures exceed a threshold t are settled.
Section 3 also explains how we settle attribute matches.

We illustrate our framework using car advertisements, which are plentiful on the Web,
appearing in a variety of unstructured and structured forms. In Section 4 we report on the
results obtained from this application, and in Section 5 we make concluding remarks.

2 Individual Facet Matching

In our framework we consider each individual facet separately. For each facet we obtain a
vector of measures for the features of interest and then apply machine learning over this
feature vector to generate a decision rule and a measure of confidence for each generated
decision. We use C4.5 [Qui93] as our decision-rule and confidence-measure generator.
So far we have investigated three facets: (1) terminological relationships (e.g. synonyms,

word senses, and hypernym groupings), (2) data-value characteristics (e.g. average values,

1In future work we intend to expand this framework to indirect matches in which target object and
relationship sets match with virtual source object and relationship sets formed by queries over source model
instances as set forth in [BE01], but we focus here only on direct attribute matches.
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variances, string lengths), and (3) target-specific, regular-expression matches (i.e. whether
expected strings appear in the data). We explain the details of these facets in the subsections
below. We leave for future work the investigation of additional facets (e.g. data-dictionary
descriptors, structural constraints, and scheme characteristics).

2.1 Terminological Relationships

One facet of metadata that usually gives humans a clue about which attributes to match
are the meanings of the attribute names. To match attribute names, we need a dictionary
or thesaurus. WordNet [Mil95, Fel98] is a readily available lexical reference system that
organizes English nouns, verbs, adjectives, and adverbs into synonym sets, each representing
one underlying lexical concept. Other researchers have also suggested using WordNet to
match attributes (e.g. [BCV99, CA99]), but have given few, if any, details.
Initially we investigated the possibility of using all available features of WordNet in an

attempt to match an attribute A of a source scheme with an attribute B of a target scheme.
The C4.5-generated decision tree, however, was not intuitive.2 We therefore introduced some
bias by selecting only those features we believed would contribute to a human’s decision to
declare a potential attribute match, namely (f0) same word (1 if A = B and 0 otherwise),
(f1) synonym (1 if “yes” and 0 if “no”), (f2) sum of the distances of A and B to a common
hypernym (“is kind of”) root, (f3) the number of different common hypernym roots of A and
B, and (f4) the sum of the number of senses of A and B. For our training data we used 222
positive and 227 negative A-B pairs selected from attribute names found in database schemes
readily available to us along with synonym names found in dictionaries. Figure 1(a) shows
the resulting decision tree. Surprisingly, neither f0 (same word) nor f1 (synonym) became
part of the decision rule. Feature f3 dominates—when WordNet cannot find a common
hypernym root, the words are not related. After f3, f2 makes the most difference—if two
words are closely related to the same hypernym root, they are a good potential match. (Note
that f2 covers f0 and f1 because both identical words and direct synonyms have zero distance
to a common root; this helps mitigate the surprise about f0 and f1.) Lastly, if the number
of senses is too high (f4 > 11), a pair of words tends to match almost randomly; thus the
C4.5-generated rule rejects these pairs and accepts fewer senses only if pairs are reasonably
close (f2 <= 5) to a common root. The parenthetical numbers (x/y) following “YES” and
“NO” for a decision-tree leaf L give the total number of training instances x classified for L
and the number of incorrect training instances y classified for L.
Figure 1(b) shows a confidence-value matrix generated by the decision rule in Figure 1(a)

for a sample application. The attributes on the top are source attributes taken from a Web
table (www.swapaleas.com, November 2000).3 The attributes on the left are target attributes
taken from our standard car-ads data-extraction ontology (www.deg.byu.edu). For a “YES”
leaf L, C4.5 computes confidence factors by the formula (x−y)/x where x is the total number
of training instances classified for L and y is the number of incorrect training instances

2An advantage of decision-tree learners over other machine learning (such as neural nets) is that they
generate results whose reasonableness can be validated by a human.

3When attribute names were abbreviations, we expanded them so that WordNet could recognize them.
We also selected nouns from phrase names. In future work, we intend to automate abbreviation expansion
using dictionaries and noun selection using simple natural-language-processing techniques.
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f3 <= 0: NO (222.0/26.0)
f3 > 0
| f2 <= 2: YES (181.0/3.0)
| f2 > 2
| | f4 <= 11
| | | f2 <= 5: YES (15.0/5.0)
| | | f2 > 5: NO (14.0/6.0)
| | f4 > 11: NO (17.0/2.0)

(a) WordNet Rule

Car Y ear Make Model Style Payment
Car .98 .11 .11 .11 .12 .11

Y ear .11 .98 .11 .11 .11 .11
Make .11 .11 .98 .98 .98 .11
Model .11 .11 .98 .98 .98 .11

Mileage .11 .11 .11 .11 .11 .11
Phone .43 .11 .11 .11 .43 .11
Price .11 .11 .11 .11 .12 .98

Feature .11 .11 .67 .12 .12 .11

(b) WordNet Matrix

Figure 1: Generated WordNet Rule and Confidence-Value Matrix

Car Y ear Make Model Style Payment
Car N/A N/A N/A N/A N/A N/A

Y ear N/A .98 0 0 0 0
Make N/A 0 .97 .83 0 0
Model N/A 0 1 1 0 0

Mileage N/A 0 0 0 0 .97
Phone N/A 0 0 0 0 0
Price N/A 0 0 0 0 .14

F eature N/A 0 .05 .92 0 0

(a) Value Characteristics

Car Y ear Make Model Style Payment
Car N/A N/A N/A N/A N/A N/A

Y ear N/A 1 0 .04 0 .49
Make N/A 0 1 0 0 0
Model N/A 0 0 .87 .13 .01

Mileage N/A 0 0 0 0 0
Phone N/A 0 0 0 0 0
Price N/A 0 0 0 0 0

F eature N/A 0 0 .01 .99 0

(b) Expected Values

Figure 2: Confidence-Value Matrices

classified for L.4 For a “NO” leaf, the confidence factor is 1 − ((x − y)/x), which converts
“NO’s” into “YES’s” with inverted confidence values. Observe that the confidence is high
for the matches {Car, Car}, {Year, Year}, {Make, Make}, and {Model, Model}, as it should
be. The confidence, however, is also high for {Make, Model}, {Make, Style}, and {Model,
Style}, which are synonyms in some contexts, although not in car ads. Also, the confidence
of {Price, Payment} is high, but “Price” is the selling price of a car, which should not match
“Payment,” the monthly payment of the lease. As we shall see, other facets are needed to
sort out these differences.

2.2 Data-Value Characteristics

Another facet of metadata that usually gives humans a clue about which attributes to match
is whether two sets of data, in some sense, have similar value characteristics. Previous
work in [LC94] shows that this facet can successfully help match attributes by consider-
ing such characteristics as means and variances of numerical data and string-lengths and
alphabetic/non-alphabetic ratios of alphanumeric data. We used the same features as in
[LC94], but generated a C4.5 decision rule rather than a neural-net decision rule.
We trained the C4.5 decision-rule generator for our car-ads application using data from

twenty-nine different car-ad Web sites scattered throughout the US. We generated two de-
cisions trees, one for numeric data and one for alphanumeric data. Lacking space, we do

4We set the C4.5 parameter for rule-instance classification to 10 so that leaves with too few classifications
would not have unsuitably high confidence factors.
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not give the generated decision trees, which are similar in form to the decision tree in Fig-
ure 1(a) except that the alphanumeric decision tree is much larger. We do, however, give in
Figure 2(a) the confidence-value matrix for our sample car-ads test case. In Figure 2(a) the
“Car” attribute is a nonlexical attribute whose values are OID’s, making them inapplicable
for value analysis. Observe that years, makes, and models, which should match all have high
confidence values. Observe, however, that the makes, models, and features all tend to look
alike according to the value characteristics measured and that mileages and payments also
look alike. These need to be further sorted out using other facets. Interestingly, prices and
payments do not have similar value characteristics; this is because their means are vastly
different.

2.3 Expected Data Values

Yet another facet of metadata that usually gives humans a clue about which attributes to
match is the presence of expected data values. As explained in [BE01], we can associate with
each attribute A in the target scheme a regular expression that matches values expected
to appear for a source attribute B that matches A. Then, using techniques described in
[ECJ+99], we can extract values from the sources and categorize them with respect to the
attributes in the target, and thus match source and target attributes.
Instead of using C4.5 to generate a decision rule for expected data values, we directly

generated confidence factors as follows. We applied the regular expression for each target
attribute A against the set of values for each source attribute B and found the percentage
of B values that matched (or included at least some match). Then, for each A-B pair, we
simply let this percentage value be the confidence value. Figure 2(b) shows the matrix for
our sample car-ads test case. Observe that years, makes, and models consistently include
expected values, as expected. Further, makes, models, and styles do not get mixed up when
we consider specific expected values—“Ford” is a make, not a model or a style; “Cavalier” is
a model, not a make or a style; and “Sedan” is a style, not a make or a model. Interestingly,
features and styles match—this is because features include styles in our car-ads ontology.

3 Combining Facets and Settling Matches

Although we would like to study more sophisticated combinations in the future, including
the possibility of using machine learning to provide an appropriate decision rule, we currently
use a simple average over the confidence values for each attribute pair. Figure 3(a) shows
the resulting combined matrix for our sample car-ads application.
We settle matching pairs by the algorithm in Figure 4, which is greedy (selects the highest

confidence value first) and is an injective assignment algorithm (allows at most one match
for any row or column). When we run this algorithm on the matrix in Figure 3(a) with
a threshold value of 0.50, we obtain the final matrix in Figure 3(b). Observe that even
though “Make-Model” pairs have values exceeding the threshold, the injective assignment
constraint eliminates these matches because they are precluded by the “Make-Make” and
“Model-Model” matches. Thus, the final matching pairs are {Car, Car}, {Year, Year},
{Make, Make}, and {Model, Model}, as they should be.
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Car Y ear Make Model Style Payment
Car .98 .11 .11 .11 .12 .11

Y ear .11 .99 .04 .05 .04 .20
Make .11 .04 .99 .60 .33 .04
Model .11 .04 .66 .95 .37 .04

Mileage .11 .04 .04 .04 .04 .36
Phone .43 .04 .04 .04 .14 .04
Price .11 .04 .04 .04 .04 .38

F eature .11 .04 .24 .35 .37 .04

(a) Combined Matrix

Car Y ear Make Model Style Payment
Car 1 0 0 0 0 0

Y ear 0 1 0 0 0 0
Make 0 0 1 0 0 0
Model 0 0 0 1 0 0

Mileage 0 0 0 0 .04 .36
Phone 0 0 0 0 .14 .04
Price 0 0 0 0 .04 .38

F eature 0 0 0 0 .37 .04

(b) Final Matrix

Figure 3: Initial and Final Confidence-Value Matrix with Settled Matches

Input: a matrix M of confidence values, and a threshold T.

Output: a set of matching attribute pairs.

While there is an unsettled confidence value in M greater than T

Find the largest unsettled confidence value V in M;

Settle V by setting it to 1;

Mark V as being settled;

For each unsettled confidence value W in the rows and columns of V

Settle W by setting it to 0;

Mark W as being settled;

Output the settled attribute pairs whose value is 1;

Figure 4: Attribute-Match Settling Algorithm

4 Experimental Results

In addition to our sample application presented here, we applied our method to six other
car-ads tables found on the Web and obtained similar results. Over all test cases, the process
matched 100% (32 of 32) of the direct matches. There were 2 false matches among a potential
of 376 false matches—in one table “Feature” matched “Color,” and in another “Feature”
matched “Body Type.” In our car-ads ontology, both colors and body types are special kinds
of features, and thus the match was not entirely wrong—just not exact. In future work we
need to verify these results across different applications with more complex schemes, but the
results of these initial tests are indeed encouraging.
For comparison, we ran each individual facet matrix alone through the settling algorithm.

In these tests, the settling process found only 90% of the direct matches (30 of 32 for Word-
Net, 21 of 25 applicable matches for value characteristics, and 23 of 25 applicable matches
for expected values). The settling process also found 18 false matches (4 for WordNet, 8 for
value characteristics, and 6 for expected values). These results suggest that the multifaceted
approach proposed here is likely to be better than any single-faceted approach.

5 Concluding Remarks

We presented a framework for discovering direct matches between sets of source and target
attributes. In the framework multiple facets each individually contribute in a combined way
to produce a final set of matches. The results are encouraging and show that the multifaceted
approach to exploiting metadata for attribute matching has promise.

6



References

[AK97] N. Ashish and C. Knoblock. Wrapper generation for semi-structured internet
sources. SIGMOD Record, 26(4):8–15, December 1997.

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources. SIGMOD Record, 28(1):54–59, March 1999.

[BE01] J. Biskup and D.W. Embley. Extracting information from heterogeneous in-
formation sources using ontologically specified target views. (submitted for
publication – see http://www.deg.byu.edu/papers), 2001.

[CA97] S. Castano and V. De Antonellis. Semantic dictionary design for database
interoperability. In Proceedings of 1997 IEEE International Conference on
Data Engineering (ICDE’97), pages 43–54, Birmingham, United Kingdom,
April 1997.

[CA99] S. Castano and V.D. Antonellis. ARTEMIS: Analysis and reconciliation tool
environment for multiple information sources. In Proceedings of the Convegno
Nazionale Sistemi di Basi di Dati Evolute (SEBD’99), pages 341–356, Como,
Italy, June 1999.

[CAFP98] S. Castano, V. De Antonellis, M.G. Fugini, and B Pernici. Conceptual schema
analysis: Techniques and applications. ACM Transactions on Database Sys-
tems, 23(3):286–333, September 1998.

[CRL98] E.H.C. Chua, R.H.L.Chiang, and E-P. Lim. Instance-based attribute identi-
fication in database integration. In Proceedings of the 8th Workshop on In-
formation Technologies and Systems (WITS’98), Helsinki, Finland, December
1998.

[ECJ+99] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K.
Ng, and R.D. Smith. Conceptual-model-based data extraction from multiple-
record Web pages. Data & Knowledge Engineering, 31(3):227–251, November
1999.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Anal-
ysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey,
1992.

[EX97] D.W. Embley and M. Xu. Relational database reverse engineering: A model-
centric, transformational, interactive approach formalized in model theory. In
DEXA’97 Workshop Proceedings, pages 372–377, Toulouse, France, September
1997. IEEE Computer Society Press.

[Fel98] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, Massachussets, 1998.

7



[FPNB99] J. Fowler, B. Perry, M. Nodine, and B. Bargmeyer. Agent-based semantic
interoperability in InfoSleuth. SIGMOD Record, 28(1):60–67, March 1999.

[GLdSRN00] P.B. Golgher, A.H.F. Laender, A.S. da Silva, and Ribeiro-Neto. An example-
based environment for wrapper generation. In S.W. Liddle, H.C. Mayr, and
B. Thalheim, editors, Proceedings of the 2nd International Conference on the
World-Wide Web and Conceptual Modeling, Lecture Notes in Computer Sci-
ence, 1921, pages 152–164, Salt Lake City, Utah, October 2000.

[HGMN+97] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, and
V. Vassalos. Template-based wrappers in the TSIMMIS system. In Pro-
ceedings of 1997 ACM SIGMOD International Conference on Management
of Data, pages 532–535, Tucson, Arizona, May 1997.

[HR90] S. Hayne and S. Ram. Multi-user view integration system (MUVIS): An expert
system for view integration. In Proceedings of the 6th International Conference
on Data Engineering, pages 402–409, February 1990.

[KS96] V. Kashyap and A. Sheth. Semantic and schematic similarities between
database objects: A context-based approach. The VLDB Journal, 5:276–304,
1996.

[KS98] V. Kashyap and A. Sheth. Semantic heterogeneity in global information sys-
tems: The role of metadata, context and ontologies. In M. Papazoglou and
G. Schlageter, editors, Cooperative Information Systems: Current Trends and
Directions, pages 139–178, 1998.

[LC94] W.-S. Li and C. Clifton. Semantic integration in heterogeneous databases using
neural networks. In Proceedings of the 20th Very Large Data Base Conference,
Santiago, Chile, 1994.

[LNE89] J. Larson, S. Navathe, and R. Elmasri. A theory of attribute equivalence
in databases with application to schema integration. IEEE Transactions on
Software Engineering, 15(4), 1989.

[Mil95] G.A. Miller. WordNet: A lexical database for English. Communications of the
ACM, 38(11):39–41, November 1995.
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