
A Composite Approach to Automating Direct

and Indirect Schema Mappings ∗

Li Xu
Department of Computer Science

University of Arizona South
lxu@email.arizona.edu

David W. Embley
Department of Computer Science

Brigham Young University
embley@cs.byu.edu

Abstract

Automating schema mapping is challenging. Previous approaches to automating schema
mapping focus mainly on computing direct matches between two schemas. Schemas, however,
rarely match directly. Thus, to complete the task of schema mapping, we must also compute
indirect matches. In this paper, we present a composite approach for generating a source-to-
target mapping that contains both direct and many indirect matches between a source schema
and a target schema. Recognizing expected-data values associated with schema elements and
applying schema-structure heuristics are the key ideas needed to compute indirect matches.
Experiments we have conducted over several real-world application domains show encouraging
results, yielding about 90% precision and recall measures for both direct and indirect matches.

1 Introduction

In this paper, we focus on the long-standing and challenging problem of automating schema map-

ping [RB01]. Schema mapping is a key operation for many applications including data integra-

tion, schema integration, message mapping in E-commerce, and semantic query processing [RB01].

Schema mapping takes two schemas as input and produces as output a semantic correspondence

between the schema elements in the two input schemas [RB01]. In this paper, we assume that we

wish to map schema elements from a source schema into a target schema. In its simplest form, the

semantic correspondence is a set of direct element matches each of which binds a source schema

element to a target schema element if the two schema elements are semantically equivalent. To

date, most research [BCV99, BM01, BM02, DDH01, DMDH02, DR02, EJX01, HC03, KN03, LC00,

MBR01, MGMR02, MZ98, PTU00] has focused on computing direct element matches. Such sim-

plicity, however, is rarely sufficient, and researchers have thus proposed the use of queries over source

schemas to form virtual elements to bind with target schema elements [BE03, DLD+04, MHH00].

In this more complicated form, the semantic correspondence is a set of indirect element matches
∗This material is based upon work supported by the National Science Foundation under grant IIS-0083127.

1

each of which binds a virtual source schema element to a target schema element through appropriate

manipulation operations over a source schema.

We assume that all source and target schemas are described using rooted conceptual-model

graphs (a conceptual generalization of XML). Element nodes either have associated data values or

associated object identifiers. We augment schemas with a variety of ontological information. For

this paper the augmentations we discuss are WordNet [Mil95], sample data, and regular-expression

recognizers. For each application domain, we construct a lightweight domain ontology [ECJ+99],

which declares regular-expression recognizers for concepts as well as relationships among concepts.

We use the regular-expression recognizers to discover both direct and indirect matches between

two arbitrary schemas. Based on the graph structure and these augmentations, we exploit a broad

set of techniques together in a composite approach to settle direct and indirect element matches

between a source schema and a target schema. As will be seen, regular-expression recognition and

schema structure are the key ways to detect indirect element matches.

In this paper, we offer the following contributions: (1) a composite approach to automate

identification of many indirect element matches between a source schema S and a target schema

T as well as direct element matches, (2) an extension of relational algebra to express source-to-

target mappings, and (3) experimental results of our implementation to show that our solution

performs as well as (indeed better than) other approaches for direct matches and also performs

exceptionally well for the indirect matches with which we work. We present the details of our

contribution as follows. Section 2 explains the internal representation of input target and source

schemas and needed algebra expressions for schema mappings. Section 3 describes a set of basic

matching techniques to find potential element matches between elements in S and elements in T ,

and to provide confidence measures between 0 (lowest confidence) and 1 (highest confidence) for

each potential match. In Section 4, we explain how to combine the confidences output from multiple

basic matching techniques in our composite approach by applying a structure-matching technique.

Section 5 presents a mapping algorithm to settle direct and indirect matches in a source-to-target

mapping between S and T . Section 6 gives experimental results to demonstrate the success of our

approach. In Section 7 we review related work, and in Section 8 we summarize, consider future

work, and draw conclusions.

2

2 Internal Representation for Schema Mapping

In this paper, we use a conceptual-modeling language OSM-L [Emb98, LEW00] to describe both

source and target schemas, and an extension of the relational algebra to describe views over sources

from which we create source-to-target mappings.

2.1 Target and Source Schemas

We use rooted graphs to represent both the target schema and the source schemas as conceptual-

model specifications. Each conceptual schema has an object/relationship-model instance that de-

scribes sets of objects, sets of relationships among objects, and constraints over object and rela-

tionship sets. In each conceptual schema H, we let OH denote the set of object sets and RH denote

the set of relationship sets in H. An object set contains either data values or object identifiers,

which we respectively call a lexical object set or a nonlexical object set. A relationship set contains

tuples of objects representing relationships connecting object sets. The root node is a designated

object of primary interest. Figure 1, for example, shows two schema graphs. In a schema graph

we denote lexical object sets as dashed boxes, nonlexical object sets as solid boxes, functional

relationship sets as lines with an arrow from domain object set to range object set, and nonfunc-

tional relationship sets as lines without arrowheads. For either a target or a source schema, we use

an object/relationship-model instance to represent schema-level information in our approach for

schema mapping.

An optional component of a conceptual schema is a set of data frames, each of which describes

the data of a lexical object set. A data frame is like a type which describes data instances, but can

be much more expressive. A data-frame description can be as simple as a list of potential values

for an object set and can be as complex as a regular-expression specification that represents values

for the object set. For target and source schemas in this paper, data frames are lists of actual or

sample values.

2.2 Source-to-Target Mappings

For any schema H, which is either a source schema or a target schema, we let ΣH denote the union

of OH and RH in H. Our solution allows a variety of source derived data, including missing gener-

alizations and specializations, merged and split values, transformation of attributes with Boolean

3

MLS
location_description

address

agent
basic_features

location

name

fax

phone_day

phone_evening

category
beds

baths

SQFT

(a) Schema 1

House

Square_feet

Agent
Name

Fax

Phone

Address

Street City

State

Bathrooms

Bedrooms

Golf_course

Water_front

MLS

Style

(b) Schema 2

Figure 1: Conceptual-model graphs for Schema 1 and Schema 2

4

indicators into values and vice versa, lexicalization of object identifiers and vice versa, and schema

paths as relationships. Therefore, our solution “extends” the source schema elements in ΣH to

include view schema elements, each of which we call a virtual object or relationship set. We let

VH denote the extension of ΣH with derived, virtual object and relationship sets. In this paper, a

schema element of H is a member of VH and a virtual element of H is a member of VH − ΣH .

We consider a source-to-target mapping between a source schema S and a target schema T as

a function fST . The domain of fST is VS , and the range of fST is ΣT . Thus we can denote a

source-to-target mapping as a function fST (VS) → ΣT . Intuitively, a source-to-target mapping Mi

represents inter-schema correspondences between a source schema Si and a target schema T . If

we let Schema 1 in Figure 1(a) be the target and let Schema 2 in Figure 1(b) be the source, for

example, a source-to-target mapping between the two schemas includes a semantic correspondence

that declares that the lexical object set Bedrooms in the source semantically corresponds to the

lexical object set beds in the target. If we let Schema 1 be the source and Schema 2 be the target,

a source-to-target mapping declares that the union of the two sets of values in phone day and

phone evening in the source corresponds to the values for Phone in the target.

We represent semantic correspondences between a source schema S and a target schema T as a

set of mapping elements. A mapping element is either a direct match which binds a schema element

in ΣS (⊆ VS) to a schema element in ΣT , or an indirect match which binds a virtual schema element

in VS to a target schema element in ΣT through an appropriate mapping expression over ΣS . A

mapping expression specifies how to derive a virtual element through manipulation operations over

a source schema. We denote a mapping element by t ∼ s ⇐ θs(ΣS), where θs(ΣS) is a mapping

expression that derives a source element s in VS , and t is a target schema element in ΣT . Note that

the mapping expression may be degenerate so that t ∼ s is possible. Thus, as a formal definition,

we say that the mapping element t ∼ s ⇐ θs(ΣS) is a direct match if the mapping expression is

degenerate (i.e. t ∼ s) and is otherwise an indirect match.

2.3 The Algebra for Source-to-Target Mappings

Each object and each relationship set (including derived object and relationship sets) in the target

and source schemas are respectively single-attribute or multiple-attribute relations. Thus relational

algebra applies directly to the object and relationship sets in a source or target schema. The

5

standard operations, however, are not enough to capture the operations required to express all the

needed source-to-target mappings. Thus we extend the relational algebra.

To motivate our use of standard and extended operators, we list the following types of indirect

matches we must face in creating virtual, derived object and relationship sets over source schemas.

• Superset and Subset Values. The object sets, phone day and phone evening in Schema 1 of

Figure 1(a) are both subsets of Phone values in Schema 2 of Figure 1(b), and the relationship

sets agent—phone day and agent—phone evening in Schema 1 are both specializations of

Agent—Phone value pairs in Schema 2. Thus, if Schema 2 is the target, we need the union

of the values in phone day and phone evening and the union of the relationships in agent—

phone day and agent—phone evening in Schema 1; and if Schema 1 is the target, we should

use Selection to find a way to separate the day phones from the evening phones and separate

the relationships between agents and day phones from those between agents and evening

phones.

• Merged and Split Values. The object sets, Street, City, and State are separate in Schema 2

and merged as address of house or location of agent in Schema 1. Thus we need to split the

values if Schema 2 is the target and merge the values if Schema 1 is the target.

• Object-Set Name as Value. In Schema 2 the features Water front and Golf course are

object-set names rather than values. The Boolean values “Yes” and “No” associated with

them are not the values but indicate whether the values Water front and Golf course should

be included as description values for location description of house in Schema 1. Thus we

need to distribute the object-set names as values for location description if Schema 1 is the

target and make Boolean values for Water front and Golf course based on the values for

location description if Schema 2 is the target.

• Lexicalization and Non-Lexicalization. In Schema 2, the object identifiers in the object set

House represent the house-property objects. One object identifier in House corresponds to

one and only one MLS number in the object set MLS. Hence, the nonlexical object set

House in Schema 2 potentially matches with the object set MLS in Schema 1. Therefore,

we need to lexicalize the object identifiers in House with MLS numbers in Schema 2 if

6

Schema 1 is the target and compute virtual house-property object identifiers based on the

MLS numbers in Schema 1 if Schema 2 is the target.

• Path as Relationship Set. The path MLS—basic features—beds in Schema 1 semantically

corresponds to the path MLS—House—Bedrooms in Schema 2. Thus, if Schema 1 is the

target, we need derive two virtual relationship sets corresponding to the target relationship

sets MLS—basic features and basic features—beds; and if Schema 2 is the target, we need

derive two virtual relationship sets corresponding to the target relationship sets House—MLS

and House—Bedrooms.

Currently, we use the following operations over source schema elements to represent mapping

expressions of indirect matches related to the above types we discussed. In the notation, a relation

r has a set of attributes, which correspond to the names of lexical or nonlexical object sets; attr(r)

denotes the set of attributes in r; and |r| denotes the number of tuples in r. For nonstandard

operators, we provide examples to illustrate how to apply the operators over source relations.

• Standard Operators. Selection σ, Union ∪, Natural Join �, Projection π, and Rename ρ.

• Composition λ. The λ operator has the form λ(A1,...,An),Ar where each Ai, 1 ≤ i ≤ n, is either

an attribute of r or a string, and A is a new attribute. Applying this operation forms a new

relation r′, where attr(r′) = attr(r) ∪ {A} and |r′| = |r|. The value of A for tuple t of row l

in r′ is the concatenation, in the order specified, of the strings among the Ai’s and the string

values for attributes among the Ai’s for tuple t′ of row l in r.

Let r be the following relation, where attr(r) = {House, Street, City, State}.

House Street City State
h1 339 Wymt Dr Provo Utah
h2 15 S 900 E Provo Utah
h3 75 Tiger Ln Orem Utah

Applying the operation λ(Street,“, ”,City,“, ”,State),Addressr yields a new relation r′, where attr(r′)

= {House, Street, City, State, Address}.

House Street City State Address
h1 339 Wymt Dr Provo Utah 339 Wymt Dr, Provo, Utah
h2 15 S 900 E Provo Utah 15 S 900 E, Provo, Utah
h3 75 Tiger Ln Orem Utah 75 Tiger Ln, Orem, Utah

7

• Decomposition γ. The γ operator has the form γR
A,A′r where A is an attribute of r, and A′ is

a new attribute whose values are obtained from A values by applying a routine R. Typically,

R extracts a substring from a given string to form part of a decomposition1. Repeated

application of γ allows us to completely decompose a string. Applying this operation forms

a new relation r′, where attr(r′) = attr(r)∪{A′} and |r′| = |r|. The value of A′ for tuple t of

row l in r′ is obtained by applying the routine R to the value of A for tuple t′ of row l in r.

Let r be the following relation, where attr(r) = {House, Address}.

House Address
h1 Provo, Utah
h2 339 Wymt Dr, Provo, Utah
h3 75 Tiger Ln, Orem, Utah

Applying the operation γR
Address,Streetr, where R is a routine that obtains values of Street

from values of Address, yields a new relation r1, where attr(r1) =

{House, Address, Street}.

House Address Street
h1 Provo, Utah
h2 339 Wymt Dr, Provo, Utah 339 Wymt Dr
h3 75 Tiger Ln, Orem, Utah 75 Tiger Ln

Similarly, applying the operation γR′
Address,Cityr, where R′ is a routine that obtains values of

City from values of Address, yields a new relation r2, where attr(r2) = {House, Address, City}.

House Address City
h1 Provo, Utah Provo
h2 339 Wymt Dr, Provo, Utah Provo
h3 75 Tiger Ln, Orem, Utah Orem

• Boolean β. The β operator has the form βY,N
A,A′r, where Y and N are two constants representing

Y es and No values in r, A is an attribute of r that has only Y or N values, and A′ is a new

attribute. The β operator requires the precondition (attr(r) − {A}) → {A}. Applying this

operation forms a new relation r′, where attr(r′) = (attr(r)−{A})∪{A′} and |r′| = |σA=Y r|.
The value of A′ for tuple t in r′ is the literal string A if and only if there exists a tuple t′ in

r such that t′[attr(r) − {A}] = t[attr(r)− {A}] and t′[A] is a Y value.

Let r be the following relation, where attr(r) = {House, Water Front}.
1A human expert is responsible to determine the routine R, which is domain dependent but is able to be applied

across applications in the same domain.

8

House Water Front
h1 Yes
h2 No
h3 Yes

Applying the operation β“Y es”,“No”
Water Front,Lot Descriptionr yields a new relation r′, where attr(r′) =

{House, Lot Description}.

House Lot Description
h1 Water Front
h3 Water Front

• DeBoolean β. The β operator has the form βY,N
A,A′r, where Y and N are two constants

representing Y es and No values, A is an attribute of r, and A′ is a new attribute. Applying

this operation forms a new relation r′, where attr(r′) = (attr(r) − {A}) ∪ {A′} and |r′| =

|πattr(r)−{A}r|. The value of A′ for tuple t in r′ is Y if and only if there exists a tuple t′ in r

such that t′[attr(r) − {A}] = t[attr(r) − {A}] and t′[A] is the literal string A′, or is N if and

only if there does not exist a tuple t′ in r such that t′[attr(r) − {A}] = t[attr(r) − {A}] and

t′[A] is the literal string A′.

Let r be the following relation, where attr(r) = {House, Lot Description}.

House Lot Description
h1 Water Front
h1 Golf Course
h1 Mountain View
h2 Water Front
h3 Golf Course

Applying the operation β“Y es”,“No”
Lot Description,Water Frontr yields a new relation r′, where attr(r′) =

{House, Water Front}.

House Water Front
h1 Yes
h2 Yes
h3 No

Similarly, applying the operation β“x”,“”
Lot Description,Golf Courser yields a new relation r′′, where

attr(r′′) = {House, Golf Course}.

House Golf Course
h1 x
h2
h3 x

9

• Skolemization ϕ. The ϕ operator has the form ϕfA
(r), where fA is a skolem function, and

A is a new attribute. Applying this operation forms a new relation r′, where attr(r′) =

attr(r)∪ {A} and |r′| = |r|. The value of A for tuple t of row l in r′ is a functional term that

computes a value by applying the skolem function fA over tuple t′ of row l in r.
Let r be the following relation, where attr(r) = {House}.

House
h1
h2
h3

Applying the operation ϕfBasic F eatures
r yields a new relation r′, where attr(r′) = {House,Basic

Features}.

House Basic Features
h1 fBasic Features(h1)
h2 fBasic Features(h2)
h3 fBasic Features(h3)

3 Matching Techniques

In this section we explain our three basic techniques to compare schema elements for schema

mapping: (1) terminological relationships (e.g., synonyms and hypernyms), (2) data-value charac-

teristics (e.g., string lengths and alphanumeric ratios), and (3) domain-specific, regular-expression

matches (i.e. the appearance of expected strings). For the first two techniques we obtain vectors

of measures for the features of interest and then apply machine learning over these feature vectors

to generate a decision rule and a measure of confidence for each generated decision. We use C4.5

[Qui93] as our decision-rule and confidence-measure generator. For the third technique, we analyze

data values based on domain ontologies to compute confidences and discover indirect matches as

well as direct matches. The higher confidence values assigned by the techniques for a pair of schema

elements, the more confident we have that the two elements are matchable.

3.1 Terminological Relationships

To match names of schema elements, we use WordNet [Fel98, Mil95], which organizes English words

into synonym and hypernym sets. Other researchers have also suggested using WordNet to match

attributes (e.g., [BCV99, CA99]), but have given few, if any, details.

10

f3 <= 0: NO (222.0/26.0)
f3 > 0
| f2 <= 2: YES (181.0/3.0)
| f2 > 2
| | f4 <= 11
| | | f2 <= 5: YES (15.0/5.0)
| | | f2 > 5: NO (14.0/6.0)
| | f4 > 11: NO (17.0/2.0)

Figure 2: Generated WordNet rule by applying the C4.5 algorithm

Initially we investigated the possibility of using 27 available features of WordNet in an attempt

to match a token A appearing in the name of a source schema element s with a token B appearing

in the name of a target schema element t. The C4.5-generated decision tree, however, was not

intuitive.2 We therefore introduced some bias by selecting only those features we believed would

contribute to a human’s decision to declare a potential attribute match, namely (f0) same word (1

if A = B and 0 otherwise), (f1) synonym (1 if “yes” and 0 if “no”), (f2) sum of the distances of A

and B to a common hypernym (“is kind of”) root (if A and B have no common hypernym root, the

distance is defined as a maximum number in the algorithm), (f3) the number of different common

hypernym roots of A and B, and (f4) the sum of the number of word senses of A and B. For

our training data we used 222 positive and 227 negative A-B pairs selected from attribute names

found in database schemas, which were readily available to us, along with synonym names found

in dictionaries. Figure 2 shows the resulting decision tree. Surprisingly, neither f0 (same word) nor

f1 (synonym) became part of the decision rule. Feature f3 dominates—when WordNet cannot find

a common hypernym root, the words are not related. After f3, f2 makes the most difference—if

two words are closely related to the same hypernym root, they are a good potential match. (Note

that f2 covers f0 and f1 because both identical words and direct synonyms have zero distance to

a common root; this helps mitigate the surprise about f0 and f1.) Lastly, if the number of senses

is too high (f4 > 11), a pair of words tends to match almost randomly; thus the C4.5-generated

rule rejects these pairs and accepts fewer senses only if pairs are reasonably close (f2 <= 5) to a

common root.

The parenthetical numbers (x/y) following “YES” and “NO” for a decision-tree leaf L give the
2An advantage of decision-tree learners over other machine learning (such as neural nets) is that they generate

results whose reasonableness can be validated by a human.

11

MLS bath. bed. cat. SQ. loc. basic agent fax ph. ph. name loc. addr.
desc. feat. day even.

House 0.11 0.12 0.12 0.11 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.98 0.12 0.11
Bathrooms 0.11 0.98 0.98 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Bedrooms 0.11 0.98 0.98 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

MLS 0.98 0.11 0.11 0.11 0.11 0.43 0.11 0.11 0.11 0.11 0.11 0.43 0.11 0.43
Square feet 0.11 0.11 0.11 0.11 0.98 0.11 0.11 0.11 0.43 0.27 0.27 0.12 0.11 0.11

Water front 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.12 0.11 0.12
Golf course 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Address 0.43 0.11 0.11 0.11 0.11 0.98 0.12 0.11 0.11 0.11 0.11 0.12 0.11 0.98
Agent 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.98 0.11 0.11 0.11 0.11 0.11 0.11

F ax 0.11 0.11 0.11 0.11 0.43 0.11 0.11 0.11 0.98 0.67 0.67 0.11 0.11 0.11
Phone 0.11 0.11 0.11 0.11 0.43 0.11 0.11 0.11 0.67 0.98 0.98 0.98 0.11 0.11
Name 0.43 0.11 0.11 0.11 0.12 0.43 0.11 0.11 0.11 0.98 0.98 0.98 0.11 0.12
Street 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.98 0.11 0.43 0.11 0.11
State 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.11
City 0.11 0.11 0.11 0.11 0.67 0.11 0.11 0.11 0.11 0.11 0.11 0.43 0.11 0.11

Style 0.11 0.11 0.11 0.98 0.43 0.98 0.12 0.11 0.43 0.43 0.43 0.11 0.11 0.98

Figure 3: WordNet confidence-value matrix

total number of training instances x classified for L and the number of incorrect training instances

y classified for L. Based on the trained decision rule in Figure 2, we compute a confidence value,

denoted conf1(s, t), where s is a source schema element and t is a target schema element. However,

we want the feature f0 (same word) to dominate the others and assign a perfect confidence value (1.0)

for two tokens if f0 holds. When schema element names contain abbreviations, acronyms, or domain

jargon, we rewrite them as ordinary natural-language words so that WordNet can recognize them.3

If the names of both s and t are single-word tokens, the computation conf1(s, t) is straightforward

based on the decision rule when f0 does not hold. For a “YES” leaf L, we compute confidence factors

by the formula (x-y)/x where x is the total number of training instances classified for L and y is

the number of incorrect training instances classified for L. For a “NO” leaf, the confidence factor

is 1-(x-y)/x, which converts “NO’s” into “YES’s” with inverted confidence values. If a schema

element name is a phrase instead of a single-word token, we select nouns from the phrase. Then if

either s or t has a name consisting of multiple nouns, we use an injective, greedy match algorithm

to locate the potential matching nouns between the name phrases of s and t. The algorithm takes

the best matching pair of words and then eliminates the matched words from the name phrases in

s and t before selecting the next best pair, and so forth. We compute conf1(s, t) as the average

of the confidence values collected from the potential matching tokens obtained from the injective,

greedy algorithm.

Assume that Schema 1 in Figure 1(a) is a source schema, and Schema 2 in Figure 1(b) is a target

schema. Figure 3 shows a confidence-value matrix generated by the decision rule in Figure 2 for the

target and source schemas. The schema elements along the top are source schema elements taken
3We currently do this rewriting manually, but it is possible to use dictionaries to do this semiautomatically.

12

from Schema 1.4 The schema elements on the left are target schema elements taken from Schema

2. Observe, for example, that the confidence values conf1(agent,Agent), conf1(beds,Bedrooms),

conf1(baths,Bathrooms), conf1(phone day, Phone), and conf1(phone evening, Phone) are high

as they should be. Observe, however, that the two confidence values conf1(location description,

Golf course) and conf1(location description,Water front) are low, even though “Golf course”

and “Water front” around a house property are two kinds of “location description”; and the con-

fidences conf1(category, Style), conf1(location description, Style), conf1(address, Style) are high

based on the WordNet hierarchical structure, even though the object sets do not semantically cor-

respond with each other. As we shall see, however, other techniques can sort out and eliminate

these anomalies.

3.2 Data-Value Characteristics

Previous work in [LC00] shows that characteristics among data values can successfully help match

elements by considering such characteristics as string-lengths and alphabetic/non-alphabetic ratios

of alphanumeric data and means and variances of numerical data. We use features similar to those

in [LC00] calculated from sample data associated with object sets in a wide variety of applications,

but generate a C4.5 decision rule rather than a neural-net decision rule. Based on the decision rule,

which turns out to be lengthy but has a form similar to the decision tree in Figure 2, we generate a

confidence value, denoted conf2(s, t), for each element pair (s, t) of schema elements that has data

values available.

Figure 4 shows a confidence-value matrix generated by the decision rule using data values

associated with Schema 1 in Figure 1(a) as a source schema and Schema 2 in Figure 1(b) as

a target schema. Note that in Figure 4 there are several nonlexical object sets whose values are

object identifiers in Schema 1 and Schema 2. An NA in the matrix denotes that the object identifiers

associated with either the source object set in a column or the target object set in a row are not

applicable for value analysis. Observe that the confidence values such as conf2(beds,Bedrooms),

conf2(baths,Bathrooms), conf2(phone day, Phone), and conf2(fax, Fax) are high, as expected.

Observe, however, several high confidence values produced are not correct. For example, Fax in

the target and phone day in the source tend to look alike according to the value characteristics
4In order to fit the table in the page, we use abbreviations for schema-element names in the source.

13

MLS bath. bed. cat. SQ. loc. basic agent fax ph. ph. name loc. addr.
desc. feat. day even.

House NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Bathrooms 0.33 0.86 0.33 0.08 0.86 0.08 NA NA 0.33 0.33 0.33 0.08 0.33 0.33
Bedrooms 0.33 0.31 0.86 0.08 0.33 0.08 NA NA 0.33 0.31 0.31 0.08 0.33 0.33

MLS 0.86 0.67 0.31 0.08 0.33 0.08 NA NA 0.33 0.67 0.67 0.08 0.33 0.33
Square feet 0.33 0.86 0.33 0.08 0.86 0.08 NA NA 0.91 0.33 0.33 0.08 0.33 0.33

Water front 0.08 0.05 0.05 0.33 0.05 0.33 NA NA 0.05 0.08 0.08 0.33 0.08 0.08
Golf course 0.08 0.05 0.05 0.33 0.05 0.33 NA NA 0.05 0.08 0.08 0.33 0.08 0.08

Address NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Agent NA NA NA NA NA NA NA NA NA NA NA NA NA NA

F ax 0.91 0.33 0.33 0.08 0.91 0.08 NA NA 0.86 0.86 0.86 0.08 0.33 0.33
Phone 0.31 0.33 0.33 0.08 0.91 0.08 NA NA 0.86 0.86 0.86 0.08 0.33 0.33
Name 0.08 0.08 0.08 0.86 0.08 0.86 NA NA 0.08 0.1 0.1 0.86 0.1 0.1
Street 0.91 0.33 0.33 0.91 0.33 0.1 NA NA 0.86 0.86 0.86 0.91 0.31 0.91
State 0.08 0.05 0.05 0.33 0.05 0.33 NA NA 0.05 0.08 0.08 0.33 0.08 0.08
City 0.08 0.08 0.08 0.91 0.08 0.33 NA NA 0.08 0.1 0.1 0.33 0.08 0.08

Style 0.91 0.08 0.08 0.67 0.08 0.67 NA NA 0.08 0.08 0.08 0.86 0.08 0.08

Figure 4: Value-characteristics confidence-value matrix

measured, an incorrect match which needs other techniques to find the difference. Interestingly, the

house location description in location description, the category in category, and the house address

in address of the source schema do not have high similar value characteristics with style values in

Style of the target schema. This is because either their string length ratios or their alpha/non-alpha

ratios are vastly different, as they should be.

3.3 Expected Data Values

Whether expected values appear in a set of data provides yet another a clue to which elements

match. For a specific application domain, we can specify lightweight a domain ontology [ECJ+99],

which includes a set of concepts and relationships among the concepts, and associates with each

concept a set of regular expressions that matches values and keywords expected to appear for the

concept. Then using techniques described in [ECJ+99], we can extract values from sets of data

associated with source and target elements and categorize their data-value patterns based on the

regular expressions declared for domain concepts. The derived data-value patterns and the declared

relationship sets among concepts in the domain ontology can help discover both direct and indirect

matches for schema elements. Figure 5 shows the regular expressions using the Perl syntax we

specified for two concepts in a lightweight domain ontology for a real-estate domain.5

We declare the concepts and relationship sets in our lightweight domain ontology independently

of any target and source schemas. We call the ontology lightweight for three reasons. (1) We neither

require nor expect that the knowledge declared in the domain ontology to be complete for the

domain. (2) The objective of the regular expressions declaring expected values for domain concepts
5[Hew00] provided a user-friendly tool to create the regular-expression specifications.

14

View matches [15] case insensitive
constant

{ extract “\bmountain\sview\b”; },
{ extract “\bocean\sview\b”; },
{ extract “\briver\sview\b”; },
{ extract “\bbay\sview\b”; },
{ extract “\bharbor\sview\b”; },
{ extract “\bwater\sview\b”; },
{ extract “\bpanoramic\sview\b”; },
{ extract “\bcity\slight(s)?\b”; },
{ extract “\bcity\sview\b”; },
{ extract “\bvalley\sview\b”; },
{ extract “\bgardon\sview\b”; },
{ extract “\bpool\sview\b”; },
{ extract “\bgolf\s*course\sview\b”; },
{ extract “\bcoastline\sview\b”; },

...
{ extract “\bgreenbelt\sview\b”; };

keyword
“\bview(s)?\b”;

End;
Phone matches [15] case insensitive

constant
{ extract “\b\d{3}-\d{4}\b”; }, – nnn-nnnn
{ extract “\b\(\d{3}\)\s*\d{3}-\d{4}\b”; }, – (nnn) nnn-nnnn
{ extract “\b\d{3}-\d{3}-\d{4}\b”; }, – nnn-nnn-nnnn
{ extract “\b\d{3}\\\d{3}-\d{4}\b”; }, –nnn\nnn-nnnn
{ extract “\b1-\d{3}-\d{3}-\d{4}\b”; }; – 1-nnn-nnn-nnnn

Keyword
“\bcall\b;

End;

Figure 5: Example of regular expressions specified for concepts in the lightweight domain ontology

15

Address

Street

City

State

(a) Address

Phone

Day Phone

Evening Phone

Home Phone

Office Phone

Cell Phone

(b) Phone

Lot Feature

View

Water Front

Golf Course

Wooded

Cul-de-sac

Fenced Yard

Lot Size

...

(c) Lot Feature

Figure 6: Application domain ontology (partial)

is to discover corresponding concepts, not to extract items of interest [ECJ+99]. Thus, they need

not be as exact or as comprehensive as regular expressions for data-extraction ontologies [ECJ+99].

(3) Because they are usually small and because we can often reuse many regular expressions for

data items such as date, time, and currency which cross domains, it often only takes on the order

of a day or so 6 to construct a new domain ontology.

Figure 6 shows three components in our real-estate domain ontology, which we used to automate

matching of the two schemas in Figure 1 and also for matching real-world schemas in the real-

estate domain in general. The three components include an address component specifying Address

6We asked 24 students who have taken CS652, the extraction and integration course at BYU, to report the number
of hours it took them to create extraction ontologies for a new domain. Projects included, for example, pharmacuetical
drugs, jewelry, TV’s, and camp grounds, etc. All reported taking somewhere in the neighborhood of about two dozen
hours or less.

16

as potentially consisting of State, City, and Street;7 a phone component specifying Phone as a

possible superset of Day Phone, Evening Phone, Home Phone, Office Phone, and Cell Phone;8

and a lot-feature component specifying Lot Feature as a possible superset of V iew and Lot Size

values and individual values Water Front, Golf Course, etc.9 Behind a dashed box (or individual

value), a regular-expression recognizer [ECJ+99] describes the expected-data values for a potential

domain concept. The ontology explicitly declares that (1) the expected values in Address match

with a concatenation of the expected values for Street, City and State; (2) the set of values

associated with Phone is a superset of the values in Day Phone, Evening Phone, Home Phone,

Office Phone, and Cell Phone; and (3) the set of values associated with Lot Feature is a superset

of the values associated with the set of V iew values, the set of Lot Size values, the singleton-sets

including Water Front, Golf Course, Wooded, Fenced Y ard, Cul − de − sac, etc.

Provided with the domain ontology just described and a set of data values for elements in

Schema 1 in Figure 1(a) and Schema 2 in Figure 1(b), we can discover indirect matches as follows.

(We first introduce the idea with examples and then more formally explain how this works in

general.)

1. Merged and Split Values. Based on the Address declared in the ontology in Figure 6, the

recognition-of-expected-values technique [ECJ+99] can help detect that (1) the values of

address in Schema 1 of Figure 1(a) match with the ontology concept Address, and (2) the

values of Street, City, and State in Schema 2 of Figure 1(b) match with the ontology con-

cepts Street, City, and State respectively. Thus, if Schema 1 is the source and Schema 2 is

the target, we can use Decomposition over address in the source to derive three virtual object

sets such that the three virtual object sets match with Street, City, and State respectively

in the target. If we let Schema 2 be the source and Schema 1 be the target, based on the

same information, we can identify an indirect match that declares a virtual object set derived

by applying the Composition operation over the source to merge values in Street, City, and

State to directly match with address in the target.10

7Filled-in (black) triangles denote aggregation (“part-of” relationships).
8Open (white) triangles denote generalization/specialization (“ISA” supersets and subsets).
9Large black dots denote individual objects or values.

10When applying the manipulation operations over sources in data-integration applications, the data-integration
system requires routines to merged/split values so that correctly retrieving data from sources.

17

2. Superset and Subset Values. Based on the specification of the regular expression for Phone,

the schema elements phone day and phone evening in Schema 1 of Figure 1(a) match with the

concepts Day Phone and Evening Phone respectively, and Phone in Schema 2 of Figure 1(b)

also matches with the concept Phone. Phone in the ontology explicitly declares that its set

of expected values is a superset of the expected values of Day Phone and Evening Phone.

Thus we are able to identify the indirect matching schema elements between Phone in Schema

2 and phone day and phone evening in Schema 1. If Schema 1 is the source and Schema

2 is the target, we can apply a Union operation over Schema 1 to derive a virtual element

Phone′, which can directly match with Phone in Schema 2. If Schema 2 is the source and

Schema 1 is the target, we may be able to recognize keywords such as day-time, day, work

phone, evening, and home associated with each listed phone in the source. If so, we can use

a Selection operator to sort out which phones belong in which specialization (if not, a human

expert may not be able to sort these out either).

3. Object-Set Name as Value. Because regular-expression recognizers can recognize schema el-

ement names as well as values, the recognizer for Lot Feature recognizes names such as

Water front and Golf course in Schema 2 of Figure 1(b) as values. Moreover, the recog-

nizer for Lot Feature can also recognize data values associated with location description in

Schema 1 of Figure 1(a) such as “Mountain View”, “City Overlook”, and “Water-Front Prop-

erty”. Thus, when Schema 1 is the source and Schema 2 is the target, whenever we match

a target-object-set name with a source location description value, we can declare “Yes” as

the value for the matching target concept. If, on the other hand, Schema 2 is the source

and Schema 1 is the target, we can declare that the object-set name should be a value for

location description for each “Yes” associated with the matching source element.

We now more formally describe these three types of indirect matches. Let ci be a domain

concept, such as Street, and consider a concatenation of concepts such as Address components.

Suppose the regular expression for concept ci matches the first part of a value v for a schema

element and the regular expression for concept cj matches the last part of v, then we say that the

concatenation ci ◦cj matches v. In general, we may have a set of concatenated concepts Cs match a

source element s and a set of concatenated concepts Ct match a target element t. For each concept

18

in Cs or in Ct, we have an associated hit ratio. Hit ratios give the percentage of s or t values

that match (or are included in at least some match) with the values of the concepts in Cs or Ct

respectively. We also have a hit ratio hs associated with Cs that gives the percentage of s values

that match the concatenation of concepts in Cs, and a hit ratio ht associated with Ct that gives

the percentage of t values that match the concatenation of concepts in Ct. To obtain hit ratios

for Boolean fields recognized as object-set names, we distribute the object-set names over all the

Boolean fields that have “Yes” values.

We decide if s matches with t directly or indirectly by comparing Cs and Ct if the hit ratios hs

and ht are above an accepted threshold. If Cs equals Ct, we declare a direct match (s, t). Otherwise,

if Cs ⊃ Ct (Cs ⊂ Ct), we derive an indirect match (s, t) through a Decomposition (Composition)

operation. If both Cs and Ct contain one individual concept cs and ct respectively, and if the values

of concept cs (ct) are declared as a subset of the values of concept ct (cs), we derive an indirect match

(s, t) through a Union (Selection) operation. When we have object-set names as values, distribution

of the name over the Boolean value fields converts these schema elements into standard schema

elements with conventional value-populated fields. Thus no additional comparisons are needed to

detect direct and indirect matches when object-set names are values. We must, however, remember

the Boolean conversion for both source and target schemas to correctly derive indirect matches.

We compute the confidence value for a mapping (s, t), which we denoted as conf3(s, t), as

follows. If we can declare a direct match or derive an indirect match through manipulating Union,

Selection, Composition, Decomposition, Boolean, and DeBoolean operators for (s, t), we output the

highest confidence value 1.0 for conf3(s, t). Otherwise, we construct two vectors vs and vt whose

coefficients are hit ratios associated with concepts in Cs and Ct. To take the partial similarity

between vs and vt into account, we calculate a VSM [BYRN99] cosine measure cos(vs, vt) between

vs and vt, and let conf3(s, t) be (cos(vs, vt) × (hs + ht)/2).

Figure 7 shows the matrix containing confidence values computed based on expected-data values

using Schema 1 in Figure 1(a) as a source schema and Schema 2 in Figure 1(b) as a target schema.

Observe that the technique correctly identifies the indirect matches between location description in

the source and Golf course and Water front in the target, between phone day and phone evening

in the source and Phone in the target, and between address and location in the source and

Street, City, and State in the target. Once again note that the object identifiers associated with

19

MLS bath. bed. cat. SQ. loc. basic agent fax ph. ph. name loc. addr.
desc. feat. day even.

House NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Bathrooms 0.0 NA NA NA 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0
Bedrooms 0.0 NA NA NA 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0

MLS 1.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0
Square feet 0.0 0.0 0.0 0.0 1.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0

Water front 0.0 0.0 0.0 0.0 0.0 1.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0
Golf course 0.0 0.0 0.0 0.0 0.0 1.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0

Address NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Agent NA NA NA NA NA NA NA NA NA NA NA NA NA NA

F ax 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 1.0 0.0 0.0 0.0 0.0 0.0
Phone 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 1.0 1.0 0.0 0.0 0.0
Name 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 1.0 0.0 0.0
Street 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 1.0 1.0
State 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 1.0 1.0
City 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 1.0 1.0

Style 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0

Figure 7: Expected-data-values confidence-value matrix

nonlexical object sets in both target and source schemas are inapplicable for the expected-data-

values analysis. Furthermore, for this example, we did not include the specifications for expected-

data values of “bedrooms” and “bathrooms” in our lightweight ontology. The values for Bedrooms

and Bathrooms in the target and the values for beds and baths in the source do not match any

concept in the domain ontology. If one set of data values corresponds to the expected-data values

specified for a concept and another set of data values does not correspond to any concept in the

ontology, the confidence is 0.0. For example, the confidence conf3(baths, Phone) is 0.0 because the

values for Phone in the target correspond to the concept Phone in the ontology, but the values for

baths in the source do not. If neither values of a pair corresponds to any concept specification in

the ontology,11 the entry is NA. For example, the NA for the pair (baths, Bathrooms) denotes that

the data values for neither baths in the source nor Bathrooms in the target match any concept in

the lightweight real-estate domain ontology. If the domain ontology are not complete with respect

to an application, our approach needs other matching techniques to discover matches that are not

discovered through comparing expected-data values.

4 Structure Matching

The three matching techniques including the terminological relationships in Section 3.1, the value

characteristics in Section 3.2, and the expected-data values in Section 3.3 compare only object

sets between a source schema and a target schema. In addition to object-set matches, structure

matching applies to schema structural properties to resolve relationship-set matches between two

schemas. The object-set matches themselves are not enough to provide access paths for retrieving
11We are not able to compare the expected-data values without the help of the domain ontology.

20

data from the source. For example, assume that we let Schema 1 of Figure 1(a) be a target schema

and Schema 2 of Figure 1(b) be a source schema. Based on the terminological relationships,

value characteristics, and expected-data values, we obtain object-set matches such as the match

between MLS and MLS and the match between Bedrooms and beds. Without relationship-set

matches, however, it may be impossible to correctly answer a user query such as “Find houses

with 4 bedrooms” because the query requires the system to match the semantically equivalent

relationships in the source with the relationships between MLS and beds in the target.

In a source-to-target mapping, a mapping element t ∼ s ⇐ θs(ΣS) is either an object-set match

or a relationship-set match. Since the mapping element declares that a source schema element s,

which is either an element in the source or a view over the source, is semantically equivalent to a

target element t, we can access the data of s through the target element t. Intuitively, a source-

to-target mapping between a source schema and a target schema describes all the needed access

paths to retrieve data facts from the source for matching target elements.

When comparing structural properties of a target schema and a source schema, we apply a

top-down strategy. At the top level, we compute semantic correspondences between abstract com-

ponents of the target and source schemas. Each of the components for all schemas is composed of

a set of object sets and relationship sets among the object sets. The structure-matching technique

determines the composition of abstract components for target and source schemas based on schema

structural constraints and available confidence values for potential object-set matches from the

terminological relationship sets, the value characteristics, and the expected-data values. Then, at

the bottom level, with the guide of compatible components between the target and source schemas,

we compute the finer-level correspondences between object and relationship sets.

Abstract components in target and source schemas make use of equivalence classes of object

sets [Emb98]. Based on the relationship-set constraints in a conceptual schema H, we partition the

object sets of H into equivalence classes in which the objects of the object sets of an equivalence

class are in a one-to-one correspondence. Let X and Y be subsets of the object sets in H, and let

F be a set of functional dependencies over H as denoted by the functional edges in H. The two

subsets X and Y are equivalent if X → Y ∈ F+ and Y → X ∈ F+. If X → Y and Y → X,

we write X ↔ Y . The relation ↔ over subsets of the set of object sets OH is an equivalence

relation because the relation is reflexive, symmetric, and transitive. For any equivalence relation

21

formed from the relation ↔, we can form a set of pairwise nonintersecting sets of object sets, where

each set of object sets determines every other set functionally. An equivalence class is trivial if it

only contains a single object set. Otherwise, the equivalence class is nontrivial. In Schema 2 of

Figure 1(b), one non-trivial equivalence class is {House, MLS}. The other equivalence classes in

Schema 2 and all the equivalence classes in Schema 1 are trivial.

We further analyze equivalence classes in a conceptual schema H and divide them into a set of

representative equivalence classes, which we denote as ER
H , and a set of nonrepresentative equiv-

alence classes. Intuitively, the set of representative equivalence classes of a conceptual schema H

consists of those equivalence classes that are most important and informative for H. Formally,

e ∈ ER
H is a representative equivalence class if and only if (1) the equivalence class e is nontrivial,

or (2) the object set in e determines other set of object sets in H. In Figure 1, the representative

equivalence classes in Schema 1 of Figure 1(a) are {MLS}, {agent}, and {basic features} and the

representative equivalence classes in Schema 2 of Figure 1(b) are {House, MLS}, {Agent}, and

{Address}.
In addition to representative equivalence classes, the structure-matching technique makes use

of one other notion, “context” of equivalence classes. By taking relationship sets around a repre-

sentative equivalence class e into account, we cluster a set of object sets and relationship sets with

a representative equivalence class as an abstract component in the schema. We call this component

the context for the representative equivalence class e, which we denote as Conte. The context Conte

for a representative equivalence class e consists a set of object sets, which we denote as ContOe , and

a set of relationship sets, which we denote as ContRe , among the object sets in ContOe .

We create the context in two phases. In the first phase, we construct a context beginning with

each representative equivalence class e as follows.12 (1) Include all object sets in the functional clo-

sure h+ of any element h of e. (2) Include all object sets adjacent to object sets in h+ except object

sets that are members of some other representative equivalence class. (3) Include all relationship

sets that connect the included object sets. Figure 8 shows the construction after the first phase. In

Figure 8, the representative equivalence-class elements are shaded and each enclosed area includes
12Context can be defined in different ways. Believing that all object sets immediately adjacent to a schema element

x are relevant, we chose to include them in our context. In addition, similar to the idea of giving higher weights to
functionally dependent information in measuring closeness [CAFP98], we also chose to include object sets functionally
dependent on x as well as their immediately adjacent object sets (unless we encounter a representative equivalence
class.

22

MLS
location_description

address

agent
basic_features

location

name

fax

phone_day

phone_evening

category
beds

baths

SQFT

(a) Schema 1

House

Square_feet

Agent

Name

Fax

Phone
Address

Street City

State

Bathrooms

Bedrooms

Golf_course

Water_front

MLS

Style

(b) Schema 2

Figure 8: Context of construction for Schema 1 and Schema 2 after the first phase

23

Input: a representative equivalence class e in a schema H .
Output: a context Conte of e.

Include all the object sets in e into a set ContOe
for each equivalence class e′ connected by e

if e′ is non-representative
Include the object set in e′ into ContOe

else if e′ is not compatible and e → e′

Include the object sets in the context of e′ into ContOe
Collect relationship sets among ContOe in H into a set ContRe
Output the union of ContOe and ContRe as Conte

Figure 9: Context construction for representative equivalence classes

the object and relationship sets of the context for a representative equivalence class after the first

phase. Consider, as an example, the first-phase construction of the context for MLS in Figure 8(a).

The representative equivalence class e is {MLS}. The closure MLS+ includes all the object sets

in Figure 1(a) except location description and fax. Since both location description and fax,

however, are adjacent to object sets included in MLS+, we also include both location description

and fax in the first phase of construction of the context for MLS.

After the first phase of context construction for representative equivalence classes in target

and source schemas, we compare the representative equivalence classes as well as their contexts.

Between two schemas, we decide on a set of compatible representative equivalence classes, each of

which is determined according to available confidence values for two compared representative equiv-

alence classes as well as their respective contexts. In Figure 8, we determine that the representative

equivalence class {House, MLS} is compatible with the representative equivalence class {MLS}
and likewise that {Agent} is compatible with {agent} because both the object sets and the contexts

of the equivalence classes are largely matchable. Then, in the second phase of context construction

for representative equivalence classes, we use the algorithm in Figure 9 to further construct the con-

texts for compatible representative equivalence classes in the target and source schemas. Figure 10

shows the new contexts for representative equivalence classes of schemas in Figure 1. Note that

the contexts for the compatible representative equivalence classes {MLS} and {House, MLS} are

smaller than their contexts in Figure 8 after the first phase. Essentially, the second phase separates

the contexts of the elements into different contexts. This reduces the context scopes for represen-

tative equivalence classes and thus limits the search of finer-level correspondences to appropriate,

smaller search spaces.

24

MLS
location_description

address

agent
basic_features

location

name

fax

phone_day

phone_evening

category
beds

baths

SQFT

(a) Schema 1

House

Square_feet

AgentName

Fax

Phone

Street City

State

Bathrooms

Bedrooms

Golf_course

Water_front

MLS

Style

Address

(b) Schema 2

Figure 10: Context of construction for Schema 1 and Schema 2 after the second phase

25

The structure-matching technique discovers object-set matches as well as most relationship-set

matches between contexts of compatible representative equivalence classes. We base our approach to

structure matching for both direct and indirect matches on four intuitive ideas, which we illustrate

using Schemas 1 and 2 in Figure 10.

1. Nonlexical object sets. Two nonlexical object sets match if their element names match and

they are in contexts of compatible equivalent classes—the lexical object sets around them

describe matchable data in the two schemas. A nonlexical object set has only object iden-

tifiers in a target or source schema. The object identifiers themselves do not describe the

objects in the nonlexical object set. Instead, the values of object sets around the nonlexi-

cal object set describe nonlexical objects. The context analysis provides a limited scope for

selecting the lexical object sets around the nonlexical object sets. In Figure 10, both agent

in Schema 1 and Agent in Schema 2 represent the agent object for a house. The confidence

conf1(agent, Agent), computed based on terminological relationships between the two names,

declares that Agent of Schema 2 matches agent of Schema 1 in Figure 10. The data associ-

ated with the adjacent location, name, fax, phone day, and phone evening together describe

objects of agent in Schema 1. Similarly, the data associated with the adjacent Name, Fax,

and Phone as well as the adjacent Street, City, State around the object Address together

describe objects of Agent in Schema 2. By taking the adjacent lexical object sets into account,

agent of Schema 1 does match with Agent of Schema 2.

2. Equivalence classes. The equivalence class {House, MLS} of Schema 2 matches the equiv-

alence class {MLS} of Schema 1. With respect to the equivalence classes, we can identify

a match between the two MLS object sets and we can see the matchable lexical object sets

that are closely related as already discussed in the above paragraph for nonlexical object-set

matches. Assuming that Schema 1 is a source schema and Schema 2 is a target schema, we

can create a virtual nonlexical object set House′ whose object identifiers are in a one-to-one

correspondence with the values for MLS in Schema 1. The virtual nonlexical object set

House′ matches with House in Schema 2. Assuming, on the other hand, that Schema 2 is a

source schema and Schema 1 is a target schema, we can simply match the MLS object sets

directly.

26

3. Lexical object sets. Closely related sets of objects and values supply additional constraints for

matching lexical object sets. In Figure 10(a), address and location denote house and agent

locations respectively. Based on an analysis of the contexts for the two schemas, Figure 10(a)

shows that the object set location is in the context for {agent} and address is in the context of

{MLS}. Thus, even though both address and location describe addresses, we distinguish the

semantic correspondences in Figure 10(b) for location and address by considering contexts.

In Figure 10(b), the Address objects are in both the context for {House, MLS} and for

{Agent}. With the compatibility between {House, MLS} and {MLS}, given that the values

for Street, City, and State describe addresses in Figure 10(b), we can decide that there exists

an indirect match between the addresses in the context of {MLS} in Figure 10(a) and the

addresses in the context of {House, MLS} in Figure 10(b). Similarly, we can decide the

other indirect match between the addresses in the context of {agent} in Figure 10(a) and the

addresses in the context of {Agent} in Figure 10(b).

4. Relationship sets. Each relationship set, which is either in the source or in the target, is a

graph, whose nodes and edges represent object sets and connections among the object sets

respectively. A source relationship set rs, which could be a virtual element, matches with

a target relationship set rt if and only if the two relationship sets rs and rt are isomorphic,

i.e. a mapping function fr from rs to rt exists such that there is an object set fr(ors) with

constraint c connected by rt if and only if there is an object set ors with constraint c con-

nected by rs. Thus the requirement for relationship-set matches falls into two categories: (1)

type requirements to satisfy node matching, and (2) constraint requirements to satisfy edge

isomorphism. The type requirement between two nodes ors and ort is satisfied if and only

if there exists an object-set match ort ∼ ors ⇐ θors
(ΣS). To check constraint compatibility

between two connections, [BE03] proposed four cases, which guide users’ involvements for

schema mapping operations while translating source data into the target. We adopt these

same four cases for our work as follows. (1) The constraints on rs and rt are equivalent.

Since this case satisfies the isomorphism constraints, nothing further need be done. (2) The

constraints of rs imply the constraints of rt but not vice versa. In this case, since the re-

lationships for rs already necessarily satisfy the constraints of the target relationship set rt,

27

there is nothing further we need to do. (3) The constraints of rt imply the constraints of rs

but not vice versa. In this case, we need to further transform rs using Selection to restrict

rs to r′s so that r′s contains only relationships that satisfy the constraints of rt. As a default,

we can select relationships from rs in an arbitrary order and keep only those that satisfy

the constraints of rt; otherwise a DBA must specify the selection criteria.13 (4) Neither the

constraints of rt imply the constraints of rs nor vice versa. This is a combination of (2) and

(3) and thus, since there is nothing to do for (2), we can transform rs as explained in (3).

Since our approach for schema mapping allows derived data in source schemas, an exhaustive

search for relationship-set matches between ΣT and VS , where T is a target schema and S is

a source schema, would have exponential time complexity. To avoid generating a large number

of views over a source schema, we restrict the search space for view generation. Our structure

matching technique first discovers semantic correspondences between object sets. Then, with the

guide of object-set correspondences, it discovers relationship-set matches. Intuitively, we want to

use the type requirements for relationship-set matches to trigger derivations of virtual elements

over the source within a subset of a context, where the subset consists of a set of object sets and a

set of relationship sets among the object sets. The selection of the object sets is based on object-set

matches and context restrictions. For example, let Schema 1 in Figure 10(a) be a target schema

and Schema 2 in Figure 10(b) be a source schema, and assume that we discover that the objects in

Agent in the context of {Agent} corresponds with the objects in agent in the context of {agent}
and that the values for Street, City, and State of objects Address in the context of {Agent} in

Schema 2 semantically corresponds to location in the context of {agent} in Schema 1. To obtain

the semantic correspondence of the relationship set agent—location in Schema 1, with the available

semantic correspondences between object sets in the contexts of {agent} and {Agent}, we derive

views over Agent—Address, Address—Street, Address—City, and Address—State in the source

in order to form a virtual relationship set that matches agent—location in the target.
13See [BE03] for a detailed explanation of possibilities.

28

5 Mapping Algorithm

We have implemented an algorithm using our matching techniques that produces both direct and

indirect matches between a source schema S and a target schema T . To illustrate our algorithm,

we use our running example in Figure 1, and let Schema 1 be a source schema S and let Schema 2

be a target schema T .

Step 1: Compute conf measures between S and T . For each pair of schema elements (s, t), which

are either both lexical object sets or both nonlexical object sets, the algorithm computes a confidence

value, conf(s, t), as a combination of the output confidence values of the three nonstructural

matching techniques as described in Section 3. We compute conf(s, t) using the following formula:

conf(s, t) =

⎧⎪⎨
⎪⎩

conf1(s, t) , if s and t are nonlexical object sets
1.0 , if conf3(s, t) = 1.0 and s and t are lexical object sets
ws(conf1(s, t)) + wv(conf v(s, t)) , otherwise

In this formula, ws and wv are experimentally determined weights.14 When the confidence value

conf3(s, t) = 1.0, we let conf3 dominate and assign conf(s, t) as 1.0. The motivation for letting

conf3(s, t) dominate is that when expected values appear in both source and target schema ele-

ments and they both match well with the values we expect, this is a strong indication that the

elements should match (either directly or indirectly). Since the lightweight domain ontologies are

not guaranteed to be complete (and may even have some inaccuracies) for a particular application

domain, the confidence values obtained from the other techniques can complement and compensate

for the inadequacies of the domain knowledge. This motivates the third part of the computation for

conf(s, t), where conf v(s, t) either equals (conf2(s, t)+ conf3(s, t))/2 if both the confidence values

from data-value characteristics and expected-data values are available or equals conf2(s, t) if we

cannot obtain conf3(s, t) because of the incompleteness of domain ontologies15 . Figure 11 shows

the matrix that contains the combined confidence values obtained at the end of this step. An NA

in the matrix denotes that we do not apply any confidence value between a lexical object set and

a nonlexical object set in our approach for schema mapping.
14The two parameters ws, which weights schema element names, and wv, which weights schema element values,

are domain dependent. Using a heuristic guide, however, we can determine the two parameters based on schemas
and available data even without experimental evidence. If the schema element names are informative and the data
is not self descriptive, we assign ws as 0.8 and wv as 0.2. On the other hand, if the schema element names are not
informative and the data is semantically rich, we assign ws as 0.2 and wv as 0.8. For all other cases, we assign both
ws and wv as 0.5.

15A weight could be assigned with each confidence value from a matching technique by a human expert. The
assignment, however, requires expert knowledge on domains as well as the techniques.

29

MLS bath. bed. cat. SQ. loc. basic agent fax ph. ph. name loc. addr.
desc. feat. day even.

House NA NA NA NA NA NA 0.11 0.11 NA NA NA NA NA NA
Bathrooms 0.14 0.92 0.66 0.09 0.27 0.07 NA NA 0.14 0.14 0.14 0.07 0.14 0.14
Bedrooms 0.14 0.65 0.92 0.09 0.14 0.07 NA NA 0.14 0.13 0.13 0.07 0.14 0.14

MLS 1.0 0.22 0.13 0.07 0.14 0.23 NA NA 0.14 0.22 0.22 0.23 0.14 0.3
SquareF eet 0.14 0.27 0.14 0.07 1.0 0.07 NA NA 0.44 0.22 0.22 0.08 0.14 0.14

WaterF ront 0.07 0.07 0.07 0.14 0.07 1.0 NA NA 0.07 0.07 0.07 0.14 0.07 0.08
Golfcourse 0.07 0.07 0.07 0.14 0.07 1.0 NA NA 0.07 0.07 0.07 0.14 0.07 0.07

Address NA NA NA NA NA NA 0.12 0.11 NA NA NA NA NA NA
Agent NA NA NA NA NA NA 0.11 0.98 NA NA NA NA NA NA

F ax 0.28 0.14 0.14 0.07 0.44 0.07 NA NA 1.0 0.55 0.55 0.07 0.14 0.14
Phone 0.13 0.14 0.14 0.07 0.44 0.07 NA NA 0.55 1.0 1.0 0.51 0.14 0.14
Name 0.23 0.07 0.07 0.27 0.08 0.43 NA NA 0.07 0.52 0.52 1.0 0.08 0.09
Street 0.28 0.14 0.14 0.28 0.14 0.08 NA NA 0.27 0.71 0.27 0.44 1.0 1.0
State 0.07 0.07 0.07 0.14 0.07 0.14 NA NA 0.07 0.07 0.07 0.14 1.0 1.0
City 0.07 0.07 0.07 0.28 0.35 0.14 NA NA 0.07 0.08 0.08 0.3 1.0 1.0

Style 0.28 0.07 0.07 0.66 0.23 0.66 NA NA 0.23 0.23 0.23 0.27 0.07 0.51

Figure 11: Combined confidence-value matrix

Step 2: Analyze equivalence classes and their semantic correspondences between S and T . Based

on functional relationship sets, we identify two sets of equivalence classes, ES in S and ET in T . We

next distinguish the representative equivalence classes in S and T as described in Section 4. Figure 8

shows these contexts after the first phase of context construction for representative equivalence

classes of the schemas in Figure 1.

When comparing two representative equivalence classes eS ∈ ES and eT ∈ ET for the second

phase of context construction, we take three factors into account: (1) the set of combined confidence

measures {conf(s, t)|s ∈ eS , t ∈ eT }, (2) an importance similarity measure simimportance(eS , eT),

and (3) a vicinity similarity measure simvicinity(eS , eT). We can declare a compatible pair of repre-

sentative equivalence classes, which we denote as (eT ∼ eS), if (1) one confidence value conf(s′, t′) ∈
{conf(s, t)|s ∈ eS , t ∈ eT } is high, and (2) both the importance similarity simimportance(eS , eT)

and the vicinity similarity measure simvicinity(eS , eT) are high. The latter two measures together

represent the similarity between contexts of eS and eT which we obtain after the first phase of

context construction as discussed in Section 4. Given an experimentally determined threshold,

thconf ,16 we calculate simvicinity(eS , eT) and simimportance(eS , eT) based on the following formu-

las. In the formulas, ConteS
(ConteT

) denotes the set of object and relationship sets for the context

of eS (eT) and ContOeS
(ContOeT

) denotes just the set of object sets in ConteS
(ConteT

).

simvicinity(eS , eT) = max(
|{x|x∈ContOeS

∧∃y∈ContOeT
(conf(x,y)>thconf)}|

|ContOeS
| ,

|{x|x∈ContOeT
∧∃y∈ContOeS

(conf(y,x)>thconf)}|
|ContOeT

|)

16For any application domain, the computed confidence values tend to converge to a specific high measure for
element matches between two schemas. Thus we use a cross-application threshold value.

30

simimportance(eS , eT) = 1.0 − ||ConteS
|

|ΣS | − |ConteT
|

|ΣT | |

Intuitively, simvicinity measures the similarity of the vicinity surrounding eS and the vicinity sur-

rounding eT , and simimportance measures the similarity of the “importance” of eS and the “impor-

tance” of eT where we measure the “importance” of an equivalence class e by counting the number

of schema elements in the first-phase context of e. When the number of schema elements is largely

different, [MBR01] reports that it is difficult to determine the similarity based only on the singular

measure, simvicinity. Thus, we add simimportance, which is based on a conceptual-analysis technique

discussed in [CAFP98] to help measure the context similarity from an additional perspective.

The comparison between equivalence classes in the target T and the source S provides the

“guess” about semantic correspondences. Thus, by using the algorithm in Figure 9, we proceed

with the second phase of context construction for representative equivalence classes in S and T .

Figure 10 shows the modified contexts for representative equivalence classes in our running example.

At this point, we are finished with the top-level comparison between S and T . We are now

ready to detect the object and relationship-set matches at the bottom-level.

Step 3: Discover object- and relationship-set matches. For each matching pair (eT ∼ eS), which

represents two compatible representative equivalence classes determined in Step 2, we use the

combined confidence values between object sets to determine semantic correspondences between

object sets. Figure 12 and Figure 13 show the confidence-value matrixes we base to discover

object-set matches between the contexts for ({MLS} ∼ {House,MLS}) and ({agent} ∼ {Agent})
respectively. We first discover object-set matches between ContOeS

and ContOeT
that hold with the

highest confidence value (conf = 1.0). For all remaining unsettled object sets in ContOeS
and

ContOeT
, we find a best possible match using an injective-match settling algorithm so long as the

confidence of the match is above the threshold, thconf . As an example, after we obtain semantic

correspondences between object sets within the contexts of {MLS} and {House,MLS} based on

the perfect confidence values, we can further settle another two object-set matches by applying the

injective-matching settling algorithm based on the high confidence values conf(beds,Bedrooms)

and conf(baths,Bathrooms), which are above the threshold value thconf = 0.8.

For each of the object-set semantic correspondence, we keep the manipulation operations ob-

31

MLS baths beds category SQF T loc. desc. basic feat. address
House NA NA NA NA NA NA 0.11 NA

Bathrooms 0.14 0.92 0.66 0.09 0.27 0.07 NA 0.14
Bedrooms 0.14 0.65 0.92 0.09 0.14 0.07 NA 0.14

MLS 1.0 0.22 0.13 0.07 0.14 0.23 NA 0.3
Square feet 0.14 0.27 0.14 0.07 1.0 0.07 NA 0.14

Water front 0.07 0.07 0.07 0.14 0.07 1.0 NA 0.08
Golf course 0.07 0.07 0.07 0.14 0.07 1.0 NA 0.07

Address NA NA NA NA NA NA 0.12 NA
Street 0.28 0.14 0.14 0.28 0.14 0.08 NA 1.0
State 0.07 0.07 0.07 0.14 0.07 0.14 NA 1.0
City 0.07 0.07 0.07 0.28 0.35 0.14 NA 1.0

Style 0.28 0.07 0.07 0.66 0.23 0.66 NA 0.51

Figure 12: Confidence-value matrix between contexts for {MLS} ∼ {House,MLS}

agent fax phone day phone evening name location
Address 0.11 NA NA NA NA NA

Agent 0.98 NA NA NA NA NA
F ax NA 1.0 0.55 0.55 0.07 0.14

Phone NA 0.55 1.0 1.0 0.51 0.14
Name NA 0.07 0.52 0.52 1.0 0.08
Street NA 0.27 0.71 0.27 0.44 1.0
State NA 0.07 0.07 0.07 0.14 1.0
City NA 0.07 0.08 0.08 0.3 1.0

Figure 13: Confidence-value matrix between contexts for {agent} ∼ {Agent}

tained by determining the expected-data-values patterns, which are required to transform source

elements into virtual source object sets that directly match with target object sets. For exam-

ple, we keep the Decomposition operations identified by the expected-data-values patterns between

location in Schema 1 and Street, City, and State in Schema 2. We will use these operations to

specify mapping expressions for indirect matches in Steps 3 and 4.

With the available semantic correspondences between object sets in S and T , we further discover

matches between relationship sets. We limit the recognition of most relationship-set matches within

the contexts of compatible representative equivalence classes between S and T . However, for

relationship sets that go between the contexts of compatible representative equivalence classes, we

identify semantic correspondences globally without the limitation of contexts. The recognition of a

relationship-set match starts by locating a relationship set rt in T . Then, based on the object sets

Ort connected by rt, we can locate a set of object sets that correspond to Ort in S, from which we

either locate or derive a relationship set rs that corresponds to rt.

More particularly, between the contexts of two compatible representative equivalence classes, eT

in the target T and eS in the source S, we first recognize semantic correspondences for relationship

sets that connect object sets in eT with relationship sets in or views over the context ConteS
of eS .

As an example, given ({House,MLS} ∼ {MLS}), we start processing the relationship set House—

MLS in the context of {House,MLS} in the target. To obtain its corresponding relationship set

32

in the source, we use a Skolemization operator to derive a virtual relationship set House′—MLS

in the context {MLS}. We next recognize semantic correspondences for target relationship sets

each of which connects at least one object set that is in ContOeT
but not in eT with relationship

sets in or views over ConteS
. For example, to match with the target relationship set House—

Bedrooms in the context of {House, MLS}, which connects one object set Bedrooms that is not

in {House, MLS}, we use the Join and Projection operators to derive a virtual relationship set

House′—beds over the context of {MLS} in the source.

After discovering relationship-set matches within contexts of compatible representative equiv-

alence classes, we discover the semantic correspondences for target relationship sets that contains

relationships connecting objects in different contexts of matching representative equivalence classes.

In our running example, House—Agent is such a relationship set in the target connecting object

sets in the contexts of {House, MLS} and {Agent} in Figure 10(b). With the available object-set

correspondence between House′ and House and the correspondence between agent and Agent, we

derive a virtual relationship set House′—agent in the source that corresponds House—Agent in

the target.

We now give all the derivation of all virtual object and relationship sets obtained in Step 3 for

our running example. In the derivation, the assignment arrow (⇐) in each step denotes a virtual

element on the left derived by applying the algebra expression on the right.

1. Derivation of virtual object and relationship sets in the context of {MLS}.

House′—MLS ⇐ ϕfHouse′ (MLS)
House′ ⇐ πHouse′(House′—MLS)
House′—Address1′ ⇐ ϕfAddress1′ (House′)
Address1′ ⇐ πAddress1′(House′—Address1′)
Address1′—address ⇐ πAddress1′,address(MLS—House′ � House′—Address1′ � MLS—address)
House′—baths ⇐ πHouse′,baths(MLS—basic features � basic features—baths � House′—MLS)
House′—beds ⇐ πHouse′,beds(MLS—basic features � basic features—beds � House′—MLS)
House′—SQFT ⇐ πHouse′,SQF T (MLS—basic features � basic features—SQFT � House′—MLS)
House′—location description ⇐ πHouse′,location description(MLS—location description � House′—MLS)

These derivations are based on correspondences determined by using the confidence-value

matrix in Figure 12 between object sets in the context of {MLS} and object sets in the con-

text of {House,MLS}. The structure-matching technique decides that the values for MLS,

baths, beds, SQFT in the context of {MLS} of Figure 10(a) directly correspond to the

values for MLS, Bathrooms, Bedrooms, Square feet in the context of {House, MLS}

33

of Figure 10(b) respectively. Based on the available object-set correspondences, the al-

gorithm derives House′—MLS, House′, House′—baths, House′—beds, House′—SQFT .

In addition to the direct object-set matches, the algorithm determines that the values for

location description in the source are generalizations of the lot description implied in the

values for Water front and Golf course in the target. Thus, the algorithm derives House′—

location description based on this indirect match as well as the newly obtained object-set

match between House′ and House. Moreover, since the values for Street, City, and State in

the target are split values for values of address in the source, the algorithm also derives

House—Address1′, Address1′, and Address1′—address.

2. Derivation of virtual object and relationship sets in the context of {agent}.
agent—Address2′⇐ ϕfAddress2′ (agent)
Address2′ ⇐ πAddress2′(agent—Address2′)
Address2′—location ⇐ πAddress2′,location(agent—Address2′ � agent—location)
agent—′fax ⇐ σkey(agent)(agent—fax)

Based on the confidence-value matrix in Figure 13, the structure-matching technique decides

that the objects for agent in the source directly correspond to the objects for Agent in the

target and that the values for location in the source indirectly correspond to the values for

Street, City, and State, in the target. With these object-set correspondences, the algorithm

derives the virtual elements agent—Address2, Address2′ and Address2′—location. In ad-

dition to the correspondence between agent and Agent, the algorithm also determines the

correspondence between fax and Fax because conf(fax, Fax) = 1.0 in Figure 13. How-

ever, the relationships in Agent—Fax in the target are only a subset of the relationships

in agent—fax in the source because the functional dependency Agent → Fax in the target

more tightly constrains the relationship set than does the many-many relationship set in the

source. As a default, we transform agent—fax with the Selection operator σkey(agent) which

selects as many relationships as possible while maintaining the property that agent is a key

in the new relationship set and thus ensures that the FD agent → fax holds. To allow for an

alternate to the default, the system alerts the DBA to the constraint violation and lets the

DBA specify a different selection condition, if desired.

3. Derivation of a virtual relationship set between the contexts of {MLS} and {agent}.
House′—agent ⇐ πHouse′,agent(House′—MLS � MLS—agent)

34

Note that even though the view derivation happens beyond the limitation of contexts of

compatible representative equivalence classes, we still can constrict the search spaces by using

available object- and relationship-set matches obtained within the two contexts.

Figure 14 shows the virtual object and relationship sets obtained when detecting relationship-

set matches in Step 3. The dashed lines represent virtual relationship sets, and the shaded boxes

represent virtual object sets.

Step 4: Specify mapping expressions for object- and relationship-set matches. For direct matches,

the specification of mapping expressions for mapping elements is straightforward. However, the

specification of mapping expressions for indirect matches is nontrivial. Within this step, we use a

bottom-up strategy to derive mapping expressions for indirect matches. At the bottom level, we

derive virtual elements based on instance-level information for indirect matches discovered in Step

3. Then, at the top level, we derive virtual elements based on schema-level information. We discuss

the two levels as follows.

1. Instance-level derivations. The derivation of virtual object and relationship sets by applying

instance-level information depends on manipulation operations output from the matching

technique while searching for expected-data values as described in Section 3. Figure 15 shows

the virtual object and relationship sets derived after applying the instance-level information

for our running example. Here, again, shaded boxes represent virtual object sets, and dashed

lines denote virtual relationship sets.

• Derivation of virtual object and relationship sets in the context of {MLS}.
House′—Golf course′ ⇐ β“Y es”,“No”

location description,Golf course′(House′—location description)

Golf course′ ⇐ πGolf course′(House—Golf course′)
House′—Water front′ ⇐ β“Y es”,“No”

location description,Water front′(House′—location description)

Water front′ ⇐ πWater front′(House—Water front′)

Address1′—Street1′ ⇐ πAddress1′,Street1′(γ
Raddress

Street1′
address,Street1′(Address1′—address))

Street1′ ⇐ πStreet1′(Address1′—Street1′)

Address1′—City1′ ⇐ πAddress1′,City1′(γ
Raddress

City1′
address,City1′(Address1′—address))

City1′ ⇐ πCity1′(Address1′—City1′)

Address1′—State1′ ⇐ πAddress1′,State1′(γ
Raddress

State1′
address,State1′(Address1′—address))

State1′ ⇐ πState1′(Address1′—State1′)

The DeBoolean operators make new virtual relationship sets such that the values in the

formed virtual relationship sets use Boolean indicators “Yes”/“No” as values. The three

35

MLS

location_description

address basic_features

category

beds
baths

SQFT

House'Address1'

(a) In the Context of {MLS}

agent
location

name

fax

phone_day

phone_evening

Address2'

(b) In the Context of {Agent}

MLS

agent

House'

(c) Inter Relationship Sets between
the contexts of {Agent} and {MLS}

Figure 14: Discovering object and relationship-set matches

36

location_description

address
basic_features

category

beds
baths

SQFT

House'Address1'

Street1'

City1'

State1'

Golf_course'

Water_front'

MLS

(a) In the context of {MLS}

location

name

fax

phone_day

phone_evening

Address2'

Street2'

City2'

State2'

Phone'

agent

(b) In the context of {Agent}

Figure 15: Derived virtual object and relationship sets based on expected-data values

37

Decomposition operators use routines Raddress
Street1′ , Raddress

City1′ , and Raddress
State1′ to decompose the

string values for address as values for the new virtual object sets Street1′, City1′, and

State1′.
• Derivation of virtual object and relationship sets in the context of {agent}.

Address2′—Street2′ ⇐ πAddress2′,Street2′(γ
Rlocation

Street2′
location,Street2′(Address2′—location))

Street2′ ⇐ πStreet2′(Address2′—Street2′)

Address2′—City2′ ⇐ πAddress2′,City2′(γ
Rlocation

City2′
location,City2′(Address2′—location))

City2′ ⇐ πCity2′(Address2′—City2′)

Address2′—State2′ ⇐ πAddress2′,State2′(γ
Rlocation

State2′
location,State2′(Address2′—location))

State2′ ⇐ πState2′(Address2′—State2′)
agent—Phone′ ⇐ ρphone day←Phone′(agent—phone day)

∪ρphone evening←Phone′ (agent—phone evening)
Phone′ ⇐ πPhone′(agent—Phone′)

The three Decomposition operators make virtual relationship sets based on routines

Rlocation
Street2′ , Rlocation

City2′ , and Rlocation
State2′ , which decompose the string values for location as

values for the new virtual object sets Street2′, City2′, and State2′. Indeed, the three

routines used here are the same as those used to extract values for Street1′, City1′,

and State1′ in the context of {MLS}. The agent’s Phone′ values are a union of the

phone day and phone evening values.

• Derivation of virtual object and relationship sets between the contexts of {MLS} and

{agent}. The indirect match between House′—agent in the source and House—Agent

in the target does not depend on any manipulation operation derived by applying

expected-data values. Thus we do not need to to derive virtual elements between the

contexts of {MLS} and {agent}.

2. Schema-level derivations. The matching techniques apply source and target schema structural

characteristics to derive virtual object and relationship sets beyond the constraints of contexts.

Basically, we collect matches that occur in different context pairs. For example, both objects

in Address1′ in the context of {MLS} and objects in Address2′ in the context of {agent}
in the source correspond to objects in Address in the target, which is in both the context of

{House, MLS} and {Agent}. In a source-to-target mapping, between S and T , however, a

target element t ∈ ΣT corresponds to at most one source element s ∈ VS . Thus we use Union

or Selection operations to force the one-to-one relationship sets between source elements in

38

VS and target elements in ΣT .

• Derivation of virtual object sets for indirect object-set matches.

Address′ ⇐ ρAddress1′←Address′Address1′ ∪ ρAddress2′←Address′Address2′

Street′ ⇐ ρStreet1′←Street′Street1′ ∪ ρStreet2′←Street′Street2′

City′ ⇐ ρCity1′←City′City1′ ∪ ρCity2′←City′City2′

State′ ⇐ ρState1′←State′State1′ ∪ ρState2′←State′State2′

It is an object-identity problem to merge any objects in Address1′ and Address2′ as

objects in Address′. Recognizing object identity is beyond the scope of this paper, we

thus assume that we have a resolution or that duplicates do not matter. If the Selection

operator is needed (Selection is not needed when Schema 2 is the target, as we currently

are assuming), we may be able to recognize keywords for values in an object set to sort

out the specializations. If not, a human expert may not be able to sort these out either.

• Derivation of virtual relationship sets for indirect relationship-set matches.

Address′—Street′ ⇐ ρAddress1′←Address′,Street1′←Street′Address1′—Street1
∪ ρAddress2′←Address′,Street2′←Street′Address2′—Street2′

Address′—City′ ⇐ ρAddress1′←Address′,City1′←City′Address1′—City1
∪ ρAddress2′←Address′,City2′←City′Address2′—City2′

Address′—State′ ⇐ ρAddress1′←Address′,State1′←State′Address1′—State1
∪ ρAddress2′←Address′,State2′←State′Address2′—State2′

agent—′Phone′ ⇐ σkey(agent)(agent—Phone′)

The last derivation forces the participation constraint of agent in the relationship set

agent—′Phone′ to match with the functional constraint of Agent in the relationship set

Agent—Phone.

Figure 16 shows the source elements, which are object- and relationship-sets outside of the

enclosed area, in the source-to-target mapping between S and T of our running example. The

open white triangle denotes generalization/specialization. We use this notation to illustrate

that the objects in Address′ are union of the objects in Address1′ and Address2′. Note that

the object set Address in the target directly matches the virtual object set Address′ in the

source. The relationship sets House—Address and Agent—Address in the target, however,

match with House′—Address1′ and agent—Address2′ respectively. Thus both the object

set Address′ and the relationship sets House′—Address1′ and agent—Address2′ are in the

source-to-target mapping but neither Address1′ nor Address2′ is in the mapping.

39

MLS

beds

baths

SQFT

House'

Address'

Street'

City'

State'

Golf_course'

Water_front'

agent

name
fax

Phone'

Address1'

Address2'

Figure 16: Source elements in the source-to-target mapping between Schema 1 (source) and Schema
2 (target)

40

Step 5: Output a source-to-target mapping. All the derivation in Step 3 and 4 generates the

virtual object and relationship sets for the source-to-target mapping for our running example. At

this point, there is a one-to-one mapping between source and target object and relationship sets.

Thus, for example, Address′ maps Address, House′—Address1′ maps to House—Address, and

agent—′fax maps to Agent—Fax.

6 Experimental Results

We evaluate the performance of our approach based on three measures: precision, recall and the

F-measure, a standard measure for recall and precision together [BYRN99]. Given (1) the number

of direct and indirect matches N determined by a human expert, (2) the number of correct direct

and indirect matches C selected by our process described in this paper and (3) the number of

incorrect matches I selected by our process, we compute the recall ratio as R = C/N , the precision

ratio as P = C/(C + I), and the F-measure as F = 2/(1/R + 1/P). We report all these values as

percentages.

We tested the approach proposed here using the running example in our paper and also on sev-

eral real-world schemas in three different application domains.17 In our experiments, we evaluated

the contribution of different techniques and different combinations of techniques. We always used

both structure and terminological relationships because given any two schemas, these techniques

always apply even when no data is available. Thus we tested our approach with four runs on each

source-target pair. In the first run, we considered only terminological relationships and structure.

In the second run, we added data-value characteristics. In the third run, we replaced data-value

characteristics with expected-data values, and in the fourth run we used all techniques together.

6.1 Running Examples

We applied the mapping algorithm explained in Section 5 to the schemas in Figure 1 populated

(by hand) with actual data we found in some real-estate sites on the Web. First we let Schema

1 in Figure 1(a) be the source and Schema 2 in Figure 1(b) be the target. Then we reversed the

schemas and let Schema 2 be the source and Schema 1 be the target.

Table 1 shows a summary of the results for each run in the first test where we let Schema
17We manually constructed the input for all applications in the representation required by the algorithm.

41

Run Nr. Number of Number Number Recall Precision F-Measure
Matches (N) Correct (C) Incorrect (I) % % %

1 (WS) 30 18 3 60% 86% 71%
2 (WCS) 30 18 1 60% 95% 73%
3 (WES) 30 30 0 100% 100% 100%
4 (WCES) 30 30 0 100% 100% 100%

W = Terminological Relationships using WordNet
C = Data-Value Characteristics
E = Expected Data Values
S = Structure

Table 1: Results for running example: source-Schema 1, target-Schema 2

1 be the source and Schema 2 be the target. In the first run for the first test, the algorithm

discovered eight direct matches correctly, but it also misclassified the source object set address

(meaning house address) and the virtual relationship set house′—address by matching them with

the target schema element Style (meaning “apartment” or “townhouse”) and House—Style. Also,

the algorithm picked up a direct match between phone day and Phone but lost the correspondence

between phone evening and Phone. In the first run, the algorithm successfully discovered 10

of the 22 indirect matches. For example, by using the Skolemization operator, the algorithm

matches the object identifiers for a virtual nonlexical House′ based on the values in MLS with

object identifiers in House. The mapping algorithm also correctly matches relationship sets, such

as House—Square feet, House—Bathrooms, and House—Bedrooms, in the target with virtual

relationship sets derived in the source based on Join and Projection operations. Especially, the

algorithm uses the Skolemization operator two times to compute virtual objects in Address1′ and

Address2′ that match with objects in Address in the target, and correctly output a Union operation

to union the two sets of object identifiers in a new virtual object set Address′ that directly matches

with Address. In the second run, by adding the analysis of data-value characteristics, the two

incorrect matches between address and Style and between house′—address and House—Style

discovered based on terminological relationships disappeared, but the algorithm generated no more

indirect matches than in the first run. In both the third and fourth runs, the algorithm successfully

discovered all direct and indirect matches. Note that we correctly generated a Selection operator to

select the right subsets of location description (meaning “view,” etc.) in Schema 1 for Water Front

and Golf Course, and discarded the remaining values, which were inapplicable for Schema 2. The

42

Selection operator sorted out values based on the expected-data values specified in the lightweight

domain ontologies.

Run Nr. Number of Number Number Recall Precision F-Measure
Matches (N) Correct (C) Incorrect (I) % % %

1 (WS) 25 15 3 60% 83% 70%
2 (WCS) 25 15 1 60% 94% 73%
3 (WES) 25 25 0 100% 100% 100%
4 (WCES) 25 25 0 100% 100% 100%

W = Terminological Relationships using WordNet
C = Data-Value Characteristics
E = Expected Data Values
S = Structure

Table 2: Results for running example: source-Schema 2, target-Schema 1

The result of the second test on our running example, in which we switched the schemas and let

Schema 2 be the source schema and Schema 1 be the target schema, gave the results in Table 2. In

the first run for the second test, the algorithm correctly discovered eight direct and seven of 17 in-

direct matches, but it also misclassified Style and House—Style by matching them with the target

object set address and a virtual relationship set house′—address. Because our approach used an

injective-matching settling algorithm to obtain direct matches, the algorithm matched Phone in the

source with phone day in the target but did not discover that the phones in phone evening are also

a subset of values in Phone. In the second run, by adding the analysis of data-value characteristics,

the incorrect matches between Style and address and between MLS—Style, which is a virtual

relationship set, and MLS—address output based on terminological relationships disappeared. In

both the third and fourth runs, the algorithm successfully discovered all direct and indirect matches.

Especially noteworthy, we observed that our approach correctly discovered context-dependent in-

direct matches such as the semantic correspondence between address in the target and Street,

City, and State in the target and appropriately produced operations consisting of a combination

of Composition, Join, Projection, and Selection. The Selection operator sorted out the addresses

composed from Street, City, and State based on the two relationship sets House—Address and

Agent—Location in Schema 2. Moreover, we correctly generated a Selection operator to specialize

the Phone value in Schema 2. The value transformation for Selection depends on keywords such

as day-time, day, work phone, evening, and home associated with listed phone numbers. If the

43

keywords are not available, however, the Selection operator fails to sort out the Phone values.18

6.2 Real-World Examples

We considered three real-world application domains: Course Schedule, Faculty, and Real Estate to

evaluate our approach. We used a data set downloaded from the homepage of a schema-matching

approach [DDH01], Learning Source Descriptions (LSD), for these three domains, and we faithfully

translated the schemas from DTDs used by LSD to rooted conceptual-model graphs. Table 3

shows the characteristics of the source schemas. The table shows the number of object sets and

relationship sets (Number of ObjSets and Number of RelSets), the maximum depth of the DTD

trees. The rightmost column shows the percentage of object and relationship sets in a source schema

that have either direct or indirect matches with other source schemas. The percentages show that

the source schemas for Course Schedule and Faculty are relatively highly matchable; the source

schemas for Real Estate, however, are not.

Domain Number of Number of Number of Depth Matchable
Sources ObjSets RelSets %

Course Schedule 5 15 - 19 14 - 18 1 - 4 62 - 93 %
Faculty 5 14 13 3 100%
Real Estate 5 34 - 88 33 - 86 1 - 4 17 - 73%

Table 3: Domains and schemas for real-world examples

For testing these real-world domains, we decided to let any one of the schema graphs for a

domain be the target and let any other schema graph for the same domain be the source. We

decided not to test any single schema as both a target and a source. Since for each domain there

were five schemas, we tested each domain 20 times. Altogether we tested 60 target-source pairs.

For each target-source pair, we made four runs, the same four (WS, WCS, WES, and WCES)

we made for our running example. Altogether we processed 240 runs. Table 4 shows as summary

of the results for the real-world data using all four techniques together.

In the Faculty domain, the five schemas applied are the same. The matching algorithm correctly

identified all matches. For all four runs on the Faculty domain every measure (recall, precision, F-

measure) was 100%. Since the five source schemas are the same, but the data instances collected for

each object set are vastly different, we assigned a higher weight for wS than wV so that schema-level
18Even humans could not sort out this anomaly without the help of keywords.

44

information would dominate.

In the Course Schedule domain, there were indirect relationship-set matches that required ma-

nipulations using Join, Skolemization, and Projection operators. For the Course Schedule domain,

the first and second run achieved above 90% and below 95% on all measures; and the third and

fourth run gave the results for Course Schedule as Table 4 shows. When using all four techniques,

the correctly recognized mapping elements included 382 of 407 direct and 72 of 83 indirect matches.

The incorrectly classified six mapping elements included four direct and two indirect matches. For

direct matches, the precision, recall, and F-measures achieved 99%, 94%, and 96%; for indirect

matches, the precision, recall, and F-measure achieved 98%, 88%, and 92%. Even when values for

lexical object sets were not available in the first run, since most of the indirect matches appeared

in this domain are largely dependent on schema-level information, the mapping algorithm correctly

identified 376 direct and 76 indirect matches for this domain.

Application Number of Number Number Recall Precision F-Measure
Matches (N) Correct (C) Incorrect (I) % % %

Course Schedule 490 454 6 93% 99% 96%
Faculty 540 540 0 100% 100% 100%
Real Estate 876 820 92 94% 90% 92%
All Applications 1906 1814 98 95% 95% 95%

Table 4: Results for real-world examples

The Real Estate domain exhibited several indirect object- and relationship-set matches. There

are four cases of Merged/Split Values, 48 cases of Subsets/Supersets, and 10 cases of Object-Set

Name as Value. The experiments showed that the application of expected-data values in the

third and fourth run greatly affected the performance. In the first run, the performance reached

73% recall, 67% precision, and an F-measure of 70%. In the second run, the use of data-value

characteristics improved the performance, but the measures were still below 80%. By applying

expected-data values in the last two runs, however, the performance improved dramatically. The

F-measures reached 91% in the third run and reached 92% by using all four techniques as Table 4

shows. The correctly classified 820 mapping elements included 417 of 453 direct matches and 403

of 423 indirect matches. The incorrectly classified 92 mapping elements included 24 direct and 68

indirect matches. Thus, for the direct matches, the precision, recall, and F-measure achieved 95%,

92%, and 93%; and for the indirect matches, the precision, recall, and F-measure achieved 86%,

45

95%, and 91%.

Our process successfully found all the indirect matches for Merged/Split Values and Object-Set

Name as Value. For Subsets/Supersets, our process correctly found all the indirect matches related

to 44 of 48 cases of Subsets/Supersets and incorrectly declared four extra Subsets/Supersets cases.

Of these eight, six of them were ambiguous, making it nearly impossible for a human to decide,

let alone a machine. In four cases there were various kinds of phones for firms, agents, contacts,

and phones with and without message features, and in another two cases there were various kinds

of descriptions and comments about a house written in free-form text. The two clearly incorrect

cases happened when the algorithm unioned (selected) office and cell phones and mapped them to

phones for a firm instead of just mapping office phones to firm phones and discarding cell phones,

which had no match at all in the other schema.

6.3 Discussion

The experimental results show that the combination of terminological relationships and structure

alone can produce fairly reasonable results if schemas are highly matchable and indirect matches

happen because of virtual elements derived for Path as Relationship Sets. Moreover, the results

show that by adding our technique of using expected-data values, the performances are dramat-

ically better even for domains, for example Real Estate, whose schemas are relatively complex.

Unexpectedly, the technique of using data-value characteristics did not help very much for these

application domains.19

Some element matches failed in our approach partly because they are potentially ambiguous,

and our assertions about what should and should not match are partly subjective.20 Even though

we tested our approach using the same test data set as in LSD [DDH01], the answer keys were

generated separately, and LSD focuses on computing direct object-set matches. Furthermore,

neither the experimental methodologies nor the performance measures used are the same. With this

understanding, we remark that they reported approximate accuracies of 70% for Course Schedule,

90% for Faculty, 70% and 80% for the two experiments they ran on the Real Estate domain. Thus,
19We, however, keep the technique in our approach because we believe that it is able to make contributions to

schema mapping based on the results of SEMINT [LC00]. Even though it did not help very much in the three
application domains presented in this paper, it did work well in another application domain when we tested the
approach in our early work [EJX01].

20It is not always easy to do ground-truthing [HKL+01].

46

although our raw performance numbers are an improvement over LSD [DDH01], we do not try to

draw any final conclusion.

One possible limitation to our approach is the need to construct a domain ontology for an

application domain. Currently, we manually construct these domain ontologies. As we explained

in Section 3, however, these domain ontologies are lightweight, are relatively easy to construct,

and need not be complete. Furthermore, because of the multiple techniques applied and various

kinds of information exploited, domain ontologies are not necessary as input for our approach. As

the experiments show, our approach achieved good performance for the domains Course Schedule

and Faculty without exploiting domain ontologies. The Real Estate domain, however, improved

about 20% in its F-measure by adding a domain ontology as input. 21 The dramatic increase

for the Real Estate domain appeared to have happened mainly because of two reasons: (1) many

jargon terms that name schema elements in the Real Estate domain are not rewritable in terms

understood by WordNet, and (2) the usage of value characteristics was unable to exploit statistical

features of values in the domain. Hence, rather than being totally dependent on domain ontologies,

our approach is flexible and is able to trade off the performance of various techniques to produce

source-to-target mappings.

Regarding the creation of domain ontologies for new domains, many values, such as dates,

times, and currency amounts are common across many application domains and can easily be

shared. Furthermore, it is possible to make use of learning techniques to collect a set of informative

and representative keywords for domain concepts in domain ontologies. Thus, without human

interaction except for some labeling, we can make use of many keywords taken from the data of

the domain itself and thus specify regular-expression recognizers for the domain concepts at least

in a semi-automatic way. Since domain ontologies appear to play an important role in indirect

matching, finding ways to semi-automatically generate them is a goal worthy of some additional

work.

The another problem of our current implementation is the use of thresholds. (Thresholds

often cause problems in experimental work.) The parameters and thresholds may work well across

applications, but we only know for certain that they work in the applications we present and analyze.
21The real-estate domain ontology is composed of about 50 concepts and 25 relationship sets. Most concepts have

about five regular expression rules with each of them. There are about 10 concepts that are relatively more complex,
each of which has about 10 regular expressions.

47

Tuning performance parameters, however, requires both expert knowledge of the techniques and

application domains. As [MBR01] points out, auto-tuning of parameters in schema mapping is an

open problem. In the future, we plan to add features to help users tune parameters in our mapping

approach.

7 Related Work

[RB01] provides a survey of several schema mapping systems. We do not repeat this work here, but

instead describe work related to our approach from two perspectives: (1) work on discovering direct

matches for schema elements, and (2) work on discovering indirect matches for schema elements.

Direct Matches. Most of the approaches [BCV99, BM02, DDH01, EJX01, HC03, LC00, MBR01,

MGMR02, MZ98, PTU00] to automating schema mapping focus only on generating direct matches

for schema elements.

• In some of our previous work [EJX01], we experimented using schema-level and instance-level

information to help identify direct matches. In this paper, we extend this work to generate

source-to-target mappings that contains both direct and indirect object- and relationship-set

matches.

• As in our approach, the LSD system [DDH01] and its extension GLUE [DMDH02] apply

a meta-learning strategy to compose several base matchers, which consider either data in-

stances, or schema information. LSD and GLUE largely exploit machine learning techniques.

There are two phases in each system: training and testing. In the training phase, the two sys-

tems require training data for each matchable element in a mediated schema for base matchers

and the meta matcher. For each different application, however, both base and meta learners

have to be supervised, and the supervisor must supply and mark training data to train the

learners. Our approach differs in the three ways. (1) We applied machine learning algorithms

only to terminological relationships and data-value characteristics. (2) Our system learned

a cross-application decision tree for all application domains based on a domain-independent

training set. Thus our system avoids the work of collecting and labeling training data for each

application in LSD and GLUE. (3) To combine techniques, we let structure features guide the

matching based on the results from multiple kinds of independent matches. When porting to

48

new application domains, we manually predefine domain ontologies, which can work for com-

putations of source-to-target mappings between source and target schemas within domains.

Especially, we can incrementally polish the domain ontologies for newly available schemas to

improve mapping performances. LSD and GLUE could improve their performance either by

marking a large amount of domain-dependent training data or by supervising the training

in a clever way using active-learning techniques. However, usually the sample data for each

matching element of the mediated schema in multiple learners is not easy to collect and is

tedious to label, and how to guide the learning in active learning for different learning models

is not trivial either. Active learning may need many labeled examples to “bootstrap” learners

so that it makes good estimates about which unlabeled examples are useful, and it also takes

much effort to choose initial training examples.

• COMA [DR02] is used as a framework to evaluate the effectiveness of different individual

matchers and their combinations. It also provides a matcher aiming at reusing results from

previous match operations. The results obtained by COMA show that combining matchers is

superior to using any individual matcher. This supports the composite methodology applied

in our approach.

• SEMINT [LC00] applies neural-network learning to automating schema mapping based on

instance contents. It is an element-level schema matcher because it only considers attribute

matching without taking the structure of schemas into account. It is flexible to port to

new application domains because of the application of learning-based techniques as in LSD.

However, SEMINT clusters attributes in one data source first, and then trains a classifier to

classify each attribute in another source into a cluster of attributes, not a single attribute, in

the first source. The tool reduces the search space for mapping elements although the result

search space is still huge and requires human interaction to resolve the correct matches.

• The structure matching algorithm in Cupid [MBR01] motivated our structure-matching tech-

nique. Cupid, however, does not properly handle two schemas that are largely different.

Moreover, Cupid matches two schemas using a bottom-up strategy. Our mapping algorithm

discovers direct and indirect matches using a top-down strategy.

49

• ARTEMIS [BCV99], DIKE [PTU00], and Cupid [MBR01] exploit auxiliary information such

as synonym dictionaries, thesauri, and glossaries. All their auxiliary information is schema-

level—it does not consider data instances. In our approach, the auxiliary information, in-

cluding data instances and domain ontologies, provides a more precise characterization of the

actual contents of schema elements. The imported dictionary we use, WordNet, is readily

available and no work is required to produce thesauri as in other approaches.

• [BM02] describes a system, called Automatch, that uses primarily Bayesian learning to acquire

probabilistic knowledge from training examples and stores the knowledge in an attribute

dictionary. The acquired knowledge is later exploited to compute mappings between two

schemas. Our mapping algorithm also applies learning techniques to acquire knowledge and

stores the knowledge in a knowledge base. The knowledge base as well as domain ontologies

later are exploited to compute source-to-target mappings. Our approach, however, is able to

compute indirect matches that are not considered in [BM02].

• [MGMR02], [KN03], and [HC03] apply statistical analysis techniques as well as graph match-

ing algorithms. None of the three approaches supports capturing indirect semantic correspon-

dences among attributes. However, the three techniques are complementary to the techniques

in our approach, and they could be applied as individual matching techniques in our extensible

framework.

Indirect Matches. Some work on indirect matches is starting to appear [BE03, DLD+04, MBR01,

MHH00, MWJ99], but researchers are only beginning to scratch the surface of the multitude of

problems.

• Both Cupid [MBR01] and SKAT [MWJ99] can generate global 1 : n indirect matches [RB01].

To illustrate what this means, if in Figure 1 we let Schema 1 be the source and Schema 2 be

the target, and if we make Address a lexical object set rather than a nonlexical object set and

discard Street, City, and State in Schema 2, Cupid can match both address and location

in the source directly with the modified Address in the target. Thus Cupid can generate

a global 1 : n indirect match through a Union operation. Our approach, however, can find

indirect matches for location and address in the source with Street, City, and State in the

50

target based on finding expected-data values and using the Decomposition operator as well

as the Union operator, something which is not considered in Cupid.

• The iMAP system described in [DLD+04] is similar to our composite approach. To the best

of our knowledge, it is the only other work like ours to automate computations of both direct

and indirect matches. iMAP and our work were developed independently. The techniques

applied and the knowledge exploited in their approach are complementary to those in our

approach.

• The Clio project [MHH00, MHH+01] is a system for managing and facilitating the com-

plex tasks of heterogeneous data transformation and integration. The objective of Clio is

to support the generation and management of schemas, correspondences between schemas,

and mappings (queries) between schemas. Clio has an extensive tool set to aid users semi-

automatically generate mappings. The system introduces an interactive mapping creation

paradigm based on value correspondence that shows how a value of a target schema element

can be created from a set of values of source elements. A DBA, however, is responsible for

inputting most of the value correspondences. Clio and our mapping techniques are indepen-

dently implemented and are complementary. Our mapping techniques could help Clio discover

both direct and indirect matches semi-automatically. On the other hand, our approach could

take advantage of the GUI provided by Clio such that a DBA can easily be involved in schema

mapping.

• [BE03] proposes a mapping generator to derive an injective target-to-source mapping includ-

ing indirect matches in the context of information integration. The mapping generator raises

specific issues for a user’s consideration. The mapping generator, however, has not been

implemented. Our work therefore builds on and is complementary to the work in [BE03].

8 Conclusions and Future Work

We presented a composite approach for automatically discovering both direct matches and many

indirect matches between sets of source and target schema elements. In our approach, multi-

ple techniques each contribute in a combined way to produce a final set of matches. Techniques

considered include terminological relationships, data-value characteristics, expected values, and

51

structural characteristics. We detected indirect element matches for Join, Projection, Selection,

Union, Skolemization, Composition, and Decomposition operations as well as Boolean and De-

Boolean conversions for Object-Set Names as Value. We base these operations and conversions

mainly on expected values and structural characteristics. Additional indirect matches, such as

arithmetic computations and value transformations, are for future work. We also plan to semi-

automatically construct domain ontologies used for expected values, automate domain-dependent

parameter tuning, and test our approach in a broader set of real-world applications. As always,

there is more work to do, but the results of our approach for both direct and indirect matching are

encouraging, yielding about 90% in both recall and precision.

9 Acknowledgements

This material is based upon work supported by the National Science Foundation under grant IIS-

0083127.

References

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistructured
and structured data sources. SIGMOD Record, 28(1):54–59, March 1999.

[BE03] J. Biskup and D.W. Embley. Extracting information from heterogeneous information
sources using ontologically specified target views. Information Systems, 28(3):169–212,
May 2003.

[BM01] J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual
databases. In Proceedings of the International Conference on Cooperative Informa-
tion Systems (CoopIS 2001), pages 108–122, Trento, Italy, 2001.

[BM02] J. Berlin and A. Motro. Database schema matching using machine learning with feature
selection. In Proceedings of the International Conference on Advanced Information
Systems Engineering (CAISE 2002), pages 452–466, Toronto Canada, 2002.

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley,
Menlo Park, California, 1999.

[CA99] S. Castano and V. De Antonellis. ARTEMIS: Analysis and reconciliation tool envi-
ronment for multiple information sources. In Proceedings of the Convegno Nazionale
Sistemi di Basi di Dati Evolute (SEBD’99), pages 341–356, Como, Italy, June 23–25
1999.

[CAFP98] S. Castano, V. De Antonellis, M.G. Fugini, and B Pernici. Conceptual schema analysis:
Techniques and applications. ACM Transactions on Database Systems, 23(3):286–333,
September 1998.

52

[DDH01] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. In Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data (SIGMOD’01), pages 509–520, Santa Barbara,
California, May 21–24 2001.

[DLD+04] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering
complex semantic matches between database schemas. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data (SIGMOD 2004),
pages 283–294, Paris, France, June 2004.

[DMDH02] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontolo-
gies on the semantic web. In The eleventh international World Wide Web conference,
Honolulu, Hawaii, May 2002.

[DR02] H. Do and E. Rahm. COMA - a system for flexible combination of schema match-
ing approaches. In Proceedings of the 28th International Conference on Very Large
Databases (VLDB), pages 610–621, Hong Kong, China, August 2002.

[ECJ+99] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,
and R.D. Smith. Conceptual-model-based data extraction from multiple-record Web
pages. Data & Knowledge Engineering, 31(3):227–251, November 1999.

[EJX01] D.W. Embley, D. Jackman, and L. Xu. Multifaceted exploitation of metadata for at-
tribute match discovery in information integration. In Proceedings of the International
Workshop on Information Integration on the Web (WIIW’01), pages 110–117, Rio de
Janeiro, Brazil, April 9–11 2001.

[Emb98] D.W. Embley. Object Database Development: Concepts and Principles. Addison-
Wesley, Reading, Massachusetts, 1998.

[Fel98] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, Cambridge,
Massachussets, 1998.

[HC03] B. He and K.C. Chang. Statistical schema matching across web query interfaces. In
Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD’03),
pages 217–228, San Diego, CA, June 9–12 2003.

[Hew00] K.A. Hewett. An integrated ontology development environment for data extraction.
Master’s thesis, Computer Science Department, Brigham Young University, April 2000.

[HKL+01] J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wilfong. Why table ground-truthing is
hard. In Proceedings of the Sixth International Conference on Document Analysis and
Recognition, pages 129–133, Seattle, Washington, September 10–13 2001.

[KN03] J. Kang and J.F. Naughton. On schema matching with opaque column names and
data values. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD 2003), pages 205–216, San Diego, CA, June 9–12 2003.

[LC00] W. Li and C. Clifton. SEMINT: A tool for identifying attribute correspondences
in heterogeneous databases using neural networks. Data & Knowledge Engineering,
33(1):49–84, April 2000.

53

[LEW00] S.W. Liddle, D.W. Embley, and S.N. Woodfield. An active, object-oriented, model-
equivalent programming language. In M.P. Papazoglou, S. Spaccapietra, and Z. Tari,
editors, Advances in Object-Oriented Data Modeling, pages 333–361. MIT Press, Cam-
bridge, Massachusetts, 2000.

[MBR01] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cu-
pid. In Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB’01), pages 49–58, Rome, Italy, September 11–14 2001.

[MGMR02] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In Proceedings of the 18th
international converence on data engineering(ICDE 2002), pages 117–128, San Jose,
CA, 2002.

[MHH00] R. Miller, L. Haas, and M.A. Hernandez. Schema mapping as query discovery. In
Proceedings of the 26th International Conference on Very Large Databases (VLDB’00),
pages 77–88, Cairo, Egypt, September 10–14 2000.

[MHH+01] R.J. Miller, M.A. Hernandez, L.M. Haas, L. Yan, C.T. Howard Ho, R. Fagin, and
L. Popa. The Clio project: Managing heterogeneity. ACM SIGMOD Record, 30(1):78–
83, March 2001.

[Mil95] G.A. Miller. WordNet: A lexical database for English. Communications of the ACM,
38(11):39–41, November 1995.

[MWJ99] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic integration of knowledge
sources. In Proceedings of the Second International Conference on Information Fusion
(FUSION 99), Sunnyvale, California, July 6–8 1999.

[MZ98] T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data trans-
lation. In Proceedings of the 24th International Conference on Very Large Data Bases
(VLDB-98), pages 122–133, New York City, New York, August 24–27 1998.

[PTU00] L. Palopoli, G. Teracina, and D. Ursino. The system DIKE: Towards the semi-
automatic synthesis of cooperative information systems and data warehouses. In Pro-
ceedings of ADBIS-DASFAA 2000, pages 108–117, Prague, Czech Republic, September
5–8 2000.

[Qui93] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,
California, 1993.

[RB01] E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching.
The VLDB Journal, 10(4):334–350, December 2001.

54

