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ABSTRACT

QUERY REWRITING FOR

EXTRACTING DATA BEHIND HTML FORMS

Xueqi Chen
Department of Computer Science

Master of Science

Much of the information on the Web is stored in specialized searchable databases
and can only be accessed by interacting with aform or a series of forms. Asaresult,
enabling automated agents and Web crawlers to interact with form-based interfaces
designed primarily for humansis of great value. Thisthesis describes a system that can
fill out Web forms automatically according to a given user query against agloba schema
for an application domain and, to the extent possible, extract just the relevant data behind
these Web forms. Experimental results on two application domains show that the

approach is reasonable for HTML forms.
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Chapter 1

INTRODUCTION

1.1  Problem and Related Work

With the enormous amount of information being put on the Internet, databases,
which can be accessed by interacting with aform or a series of forms, become a useful
and common data management tool for Internet information and service providers. Web
forms and dynamically generated pages are helpful to users because users can often get
exactly the information they want. It istedious, however, for usersto visit dozens of sites
for the same application and fill out different forms provided by each site. Asaresult,
enabling automated agents and Web crawlers to interact with form-based interfaces
designed primarily for humansis of great value.

To the best of our knowledge, no other existing form-extraction system considers
al the issues mentioned above. The existing BY U form extraction system [LES+02,
Yau01l], afully automated system, triesto extract all the information from one Web site
(behind one Web form), regardless of what a user wants. The Hidden Web Exposer
(HIWE) system [RaG00, RaG01], extends crawlers by giving them the capability to fill
out Web forms automatically. HIWE, however, must start with a user-specified list of
sources for a particular task, it tends to retrieve all the information behind the sources,
and human-assistance is critical to ensure that the Exposer issues queries that are relevant
to the particular task. Microsoft’s Passport and Wallet system [Mic03] encrypts auser’s

personal information and then automatically fills out Web forms with the user-provided



information whenever it is applicable, but the system makes no attempt to retrieve
information behind those forms. The commercial system ShopBot [DEW96] is a generdl
purpose mechanism for comparison shopping. Itsform filling process is an automatic but
simple process. ShopBot fills each form using a set of domain-specific heuristic rules
provided in adomain description. The domain description contains regular expressions
encoding synonyms for each attribute. If the regular expression matches the text
preceding afield, then the system associates that attribute with the field; if there are
multiple matches, the first one listed on the domain description is used; if a match fails,

thefield is left blank.

1.2  Proposed Solution

There are significant technical challenges in automating the form filling process.
First, an automated agent must understand a user’ s needs by interpreting the user’ s input
or query. Second, an automated agent must understand Web forms, which provide for
site queries, and map the user’ s query to asite query. Thisis challenging because
different Web forms, even for the same application, provide different ways to query their
databases.

Figures 1, 2 and 3 show three different Web forms for the same application, used-
car searching, from three different information providers. In Figure 1, Year, Make,
Model, Color, and Price are the fields on which auser can query. Figure 2 asksfor Zip
Code, Make, and New or Pre-owned. In Figure 3, auser must provide values for location

(Zip Code and Distance), but Price, Make, Model, Year, and Key Word are optional fields.



World Wide Wheels

The Hottest Automotive 8pot on the Netl

Year: 1906 »| tq | 2005 »
Nake: — All Makes — w

Nodel : All_bodels

Color: .—AII Colars

W
Price: 40 ¥ tg 'no limit
= $e.500
Begin Search $5.000
$10.000
$15.000

By using this service, you accept the term 20,000 Agresment.

Privacy Staten $30.000
$50.000
no limit

Figure 1: Web Formfor Car Advertisement Search at

http://wwwheel s.com/cfapps/searchindex.htm, December, 2003.

Instant Vehicle Search!

1, Mew @ pre-owned @

2, EIF‘ ._.|:|l:|E -

M Selectabdake

Figure 2: Web Formfor Car Advertisement Search at http://deal ernet.com/, February,

2004.



B ads4eanntes

Search Auto Ads:

Zip Code: ]

Distance: EEMHES v'

Price: | Any Price v

Gbie
$6.000 and under
£0.001 -$10.000

$10,001 - $15.000
$16.001 - 20,000
$20.007 and owver

Make:

Model:

Year:

Key Word: !

Search Database

Figure 3: Web Formfor Car Advertisement Search at

http://www.ads4autos.com/autos/index.cfm, December, 2003.

In addition, information providers can choose to represent their forms using different
combinations of radio buttons, checkboxes, selection lists, and text boxes. All of these
cause problemsin matching a user’s query to asite query.

Since Web forms are designed in avariety of ways, handling all kinds of Web forms
according to user queries by one automated agent is challenging. Although seemingly
simple, direct matches between user-query fields and form fields can be challenging
because synonymy and polysemy may make the matching nontrivial. Moreover,
problems arise when user queries do not match with form fields. Mismatches occur in

the following ways:



(1) Fields specified in auser query are not contained in aWeb form, but are in the
returned information.

(2) Fields specified in auser query are not contained in aWeb form, and are not in the
returned information.

(3) Fields required by aWeb form are not provided in a user query, but agenera default
value, such as“All” or “Any”, is provided by the Web form.

(4) Fields required by aWeb form are not provided in auser query, and the default value
provided by the Web form is specific, not “All” or “Any”.

(5) Values specified in auser query do not match with values provided in aWeb form,
which leads to the problem that the desired information cannot be retrieved using a
single form query.

To illustrate these problems, consider the three example formsin Figures 1, 2, and 3
and the user query, “Find green cars that cost no more than $9,000.”

The Web form in Figure 1 illustrates Problems 3 and 5. Thisform illustrates
Problem 3 because for all fields other than Color and Price, which are specified in the
guery, general values are provided. Thisform aso illustrates Problem 5 because, for
Price, “$9,000” is not an option for an upper bound value. Thus, our system needsto
choose “$10,000” as the upper bound value when filling out the form. The system then
needs proper post processing to filter out cars that cost more than $9,000 from the
resulting records. Figure 4 shows the partial results after filling out the form in Figure 1
with Color="Green” and Price = “$0" to “$10,000” and submitting the query. Sincethe
second car in Figure 4 costs more than $9,000, the system removes this record from the

output in its post processing phase.



2000 BUICE REGAL LS SEDAN
GREEN 6 CYLINDER GASOLINE

89, 251mi. 4 SPEED AUTONATIC
WITH OVEREDEI 4 Photos! * Has
Warranty! * This late model
four door wvehicle includes
Power Steering, Power Brakes,
Power Door Locks, Power
Bindows, AN/FEI Stereo Radio,
Cassette Player, Premium
Sound System, Trip Odometer,
Tachometer, Alr Conditioning,
and Tilt Steering %8, 595
Stock No. P167T3A SUBURBAN
BUICK CO. [Nore Detaill

2000 BUICE LESABRE CUSTON GREEN w/ BEIGE int.
6 CYLINDEE &7, 254mi. AUTO power
windows, locks, mirrors, driver seat kevless
entry rear window defogger am/fm c¢d afc alloy
wheels $9, 998 Stock No. 440621 RUB CHEVROLET
BUICK OLDSEOBILE [Nore Detaill

2000 BUICE CENTURY GREEN 6

AT THNER AT Ca4 a1 WA

Figure 4: Partial Retrieved Data from http://wwwheel s.com/cfapps/searchindex.htm,

December, 2003.

The formin Figure 2 illustrates Problems 1 and 4 mentioned above. Thereisno field
about car color, nor about car price in the form, but from the partial retrieved data
presented in Figure 5, we notice that both the price and the color information are
provided. Thisdemonstrates Problem 1. Thereis, however, no general value provided

for Make, so we must search for both “New” cars and “Pre-owned” cars from Zip Code



20171 with all Make values, one Make at atime. This shows Problem 4 listed above.
With proper post-processing, we can give a precise and complete set of data to the user.
Theformin Figure 3 illustrates Problems 2 and 5. It illustrates Problem 2 since it
has no fields for a user to specify car color in the form, and no information about color is
provided in the returned information, either. Thisform leads to Problem 5 because it has
apricefield, but the field is designed in away that a user must fill out the form twicein
order to get al carsthat cost no more than $9,000. Figure 6ais the retrieved data after
submitting the query “Zip Code= ‘20171, Distance="100 miles’, Priceis between
‘$5,001 and $10,000'”, and Figure 6b isthe retrieved data after submitting the query “Zip
Code= ‘20171, Distance="100 miles', Priceis‘$5,000 and Under’”. We should then
combine the results from the two submissions and apply post processing in order to get a

more precise answer to the user query.

B Mehicle mm Location Distance J
|:| u 1993 Ford Explorer ﬁ F2.095 110,455 Black Chantilly, WA 3
=] 8 1998 Ford Econoline (@ $9.995 51972  White Chantilly, WA 3
|:| u 2000 Ford F-250 Series ﬁ 22995 117425 Red Chantilly, WA 3
1 U 2001 Faord Explorer Spo... %] F16,995 GRETE  Blac Chantilly, WA 3
El u 2000 Faord Explorer i F16,995 G7.0492  Burgund...  Chantilly, WA 3
™ u 1998 Ford Escort (G F10995 132,380 Green Chantilly, WA =)
|:| u 2000 Ford Mustang ﬁ Fr.o9s 55,742 White Chantilly, WA 3
"] i 20033 Ford Escape %] 18,558 Blue Hermdon, Wa 4
] u 1993 Ford Escort $4295 67,917 Burgand... Fairfax WA G
=] 8 1338 Ford Windstar F16,795 12244  Green Fairfas, WA G
E] u 1996 Faord Taums F2.995 4765 White Fairfaxm, W G
1 u 1396 Ford Windstar F12.695  47.030  Green Fairfax. W G

Figure 5: Partial Retrieved Data from http://deal ernet.com/, February, 2004.




Your search brought back 2 results,
Showing 1 ta 2
ﬂ= Photo %= New Ad

this ad

this ad

Mustang GT FOR SALE $£6,500.00

Year: 1994 Make: Ford Model: Mustang
Ad #: 10459 City: Arnold State: MD

Condition: Good
Distance: 49.0 miles

Posted: December 17, 2003
Figure 6a: Partial Retrieved Data for Cars Cost between $5,001 and $10,000 from

http://www.ads4autos.com/autos/index.cfm, February, 2004.

Your search brought back 1 results,
Showing 1 to 1
ﬂ= Phota “= Mew Ad

'r. ————

, this ad

Figure 6b: Partial Retrieved Data for Cars Cost $5,000 and Under from

http://www.ads4autos.com/autos/index.cfm, February, 2004.




To solve al the problems mentioned above, we have produced a prototype system
designed to fill out Web forms automatically according to agiven user query against a
global schema. To the extent possible, the system extracts just the relevant data behind
Web forms. We have implemented the system as atool/demo using the Java
programming language and Java Servlets technology. We use MySQL as our database
management system.

Our prototype system has two central parts, the Input Analyzer and the Output
Analyzer. Our Input Analyzer interacts with the user to get aquery and aWeb site URL
with asearch form for the chosen domain. Then, it parses the site form, fillsin the site
form according to the user query, and retrieves relevant Web pages. These Web
documents, along with a database schema for the selected domain, are then sent to the
Output Analyzer. The Output Analyzer resolves all remaining issues. It retrieves Web
data contained in multiple pages using “next” or “more” links, extracts data from all
retrieved Web pages and populates our database, removes duplicate and extraneous

records, and displays the final results to the user.

1.3 ThesisOverview
We give the details of our solution in the chapters that follow. In Chapter 2, we
explain the processes of the Input Analyzer. In Chapter 3, we describe the processes of

the Output Anayzer. In Chapter 4, we analyze experimental results and discuss the



advantages and disadvantages of our system. Finally, we conclude with summary

remarks in Chapter 5, and we mention limitations and possible future work.
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Chapter 2

INPUT ANALYZER
Our system starts with aform that allows a user to choose an application from a
list. Figure7istheforminterface. The system obtainsthe user’s selection from the

form and sends the extraction ontology of the selected domain to our Input Analyzer.

Step 1: Choose an Application

Uzed Car L

Continue >

Figure 7: System Starting Page.

The Input Analyzer then parses the extraction ontology (Section 2.1), collects data
from the user query (Section 2.2), matches the fields in the user query to thefieldsina
given site form (Section 2.3), generates a set of one or more queries, and submits the set

for processing at the form’s site (Section 2.4).

2.1  Extraction Ontology Parsing

An extraction ontology is a conceptual-model instance that serves as a wrapper
for anarrow domain of interest such as car ads. The conceptua-model instance consists
of two components: (1) an object/relationship-model instance that describes sets of

objects, sets of relationships among objects, and constraints over object and relationship

11



sets, and (2) for each object set, a data frame that defines the potential contents of an
object set. A dataframe for an object set defines the lexical appearance of constant
objects for the object set and appropriate keywords that are likely to appear in a
document when objects in the object set are mentioned.

Figure 8 isapartia extraction ontology for car ads. An object set in an
application ontology represents a set of objects which may either be lexical or nonlexical.
Dataframes with declarations for constants that can potentially populate the object set
represent lexical object sets, and data frames without constant declarations represent
nonlexical object sets. Year in Figure 8, for example, isalexical object set whose
character representations have a maximum length of 4 characters. Make, Model, Mileage,
Price, and PhoneNr are the remaining lexical object setsin our partial car-ads application
ontology; Car isthe only nonlexical object set.

We describetheconst ant lexica objects and the keywor dsfor an object set
by regular expressions using Perl-like syntax. In Figure 8, for example, the constants for
Mileage are 1-3 digit integers followed by “k” or “K” (plus other possibilities), and the
keywords are “miles’, “mi”, “mi.”, and “mileage’. When applied to atextual document,
the extract clause in a data frame causes a string matching aregular expression to be
extracted, but only if the cont ext clause aso matches the string and its surrounding
characters. A substi t ut e clauselets us alter the extracted string before we storeit in
an intermediate file. One of the nonlexical object sets must be designated as the object
set of interest, e.g., Car for the car-ads ontology, as indicated by the notation “[->

object]” in thefirst linein Figure 8.

12



Car [-=> ohject]:

Car [0:1] has Make [1:7%]:
Make matches [10]
constant { extract "‘bhacuraib": },
end;
Car [0:1] has Model [1:%*]:
Model matches [25]
constant { extract "\hZ_3CLWb": },
end;
Car [0:1] has Tear [1l:*]:
Tear matches [4]
constant { extract "\ d{Z}":
context "{[*wirdl ) [4-81nd[™ vdRE]"
substitute "' -= "19"; },

end;
Car [0:1] has Mileage [1:*];
Mileage matches [£]
constant { extract "\b[1-2]1%4{0,E}k"; substitute " [RK]" -= "000"; 1},
keyword "‘\bmiles‘b", "‘bmi.", "‘bmivb", "‘bmileageib";
end;
Car [0:1] has Price [l:*]:
Price matches [8]
constant { extract "[1-9]%d{3, 8} (Ws* (-t |tolisF) [1-2]10dA{3, E}";
context "WF[l-31%d {3 SriisTih-+ltol eI [l-2]0d{3 5}"7},
end;
Car [0:1] has Coleor [1l:%];
Color matches [Z0]
constant { extract "‘bacuatstwetallichb"; },
end;
Car [0:1] has Transmission [1:*]:
Transmission matches [Z0]
constant { extract "(L|&)vs*spdib"; },
end;
Car [0:*] has Accessories [1l:*];
Aocezsories matches [20]
constant { extract "‘broofistrackib"; }.
end;
Car [0:1] has Engine Characteristics [1:*];
Engine Characteristics matches [10]
constant { extract "‘bv-T{&181": },
end;
Car [0:1] has Style [1:%];
Style matches [Z0]
constant { extract "\b4\s*dioo)irib"; }.
end;
PhonelNr [l:*] i= for Car [0:1];
PhonelNyr matcheszs [14]
constant { extract "[l1-3]Wvd{zZ}-[1-3]vd{Z}-d{4}";
context "(hb|["hvdl [1-91hd{2-[1-3]vd{2-hdA{4} oAl lsi": b,
end;
PhonelNr [0:1] hasz Extension [1:%*];
Extension matches [3]
constant { extract "hd{l,4}";
context "i{xlexth . hWs+ivd{l,. 4} vb"; };
keyword "‘bextib";
end;

Figure 8: Partial Car-Ads Ontology.
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We denote arelationship set by a name that includes its object-set names (e.g.,
Car has Year and PhoneNr isfor Car in Figure 8). The min:max pairsin the
rel ationship-set name are participation constraints. Min designates the minimum number
of times an object in the object set can participate in the relationship set, and max
designates the maximum number of times an object can participate, with * designating
arbitrarily many. The participation constraint on Car for Car has Make, for instance,
specifiesthat a car need not have alisted make and can have at most one make listed, and
that there is no specified maximum number of cars that can belong to the same make.

By parsing the ontology, our system obtains a set of object sets, relationship sets,
constraints, a set of constant/keyword matching rules, and a database scheme. The
system uses the object and relationship sets to acquire a user query; it uses the
constant/keyword matching rules to match fieldsin auser’s query to fields in asite form,
and it sends the database scheme to the Output Analyzer so that it can be populated with

output values.

2.2  User Query Acquisition

Our prototype system provides a user-friendly interface for users to enter their
queries’. In order to make the interface user-friendly and make query specification easy
to understand for our system, we construct an intermediate application-specific form with
the lexical object sets of the corresponding application ontology. Figure 9 isasample

intermediate form for the car-ads application. In the intermediate form, our system

! There are other ways to obtain a user’s query, which may be more conducive to real-world usage. Our
prototype system, however, provides what we need for experimenting with automated form filling.

14



provides the user with alist of fields from which to choose. For fields for which the user
can specify ranges, which we call “range fields,” our system allows the user to select the
type of input — exact value, range values, minimum value, or maximum value.

After the user selects the desired fields and range types, our system provides afinad
search form to the user. This search form includes fields selected by the user aswell as
default fields including Zip Code, Search Range, and Site URL2 Figure 10 shows a
sample search form after a user chooses Make, Year with type minimum value, and Price
with type range value. Once a user enters a query, our system can parse the query and
store each attribute-value pair for later use.

Step 2: Choose fields

%)

Nalke

©}

Nodel
O Year (Exact Value) O Year (Range: from Low to High) O Year (=) O Year (=)

O

Nileage (Exact Value) | O Mileage (Range: from Low to High) | © MNileage (>=) O MNileage (<=)
Price (Exact Value) O Price (Range: from Low to High) O Price (»=) ) Price (<=)

Color

o0

Transmission

O

O

Engine

O

Styvle

[ Continue >> ] [Clear]

Figure 9: Sample Intermediate Form for Car-Ads.

2 Although Zip Code and Search Range should normally be specified for a car-ads application, the
specification of a Ste URL isfor experimenting with our system. There are other ways to specify URLs
over which the system can operate. In general, the system is designed to work on multiple URLs so that a
user fillsin asingle query form to query many different sitesall having different forms.

15



Step 3: Fill Out the Search Form

Flease put exactly one value in each filed

Lip

Search Range <=
Hake

Tear >=

Price

Site URL

from:

miles

to:

Figure 10: Sample Search Form for Car-Ads with User Selected Fields.

23  SiteForm Analysis

We assume that the given HTML page has aform that appliesto our chosen

application. In the case when more than one form is on the page, we consider only the

largest form—the one with the largest number of characters between the open and closing

f or mtags. We then parseits content into aDOM tree.

Form designers create many fieldswith i nput tags. For example:

<i nput type="text" size="10" name="zip" maxlength="5" val ue="">

They usesel ect andt ext ar ea to create other fields. An exampleis:

<sel ect nane=

<opti
<opti
<opti
<opt i
<opt i
<opti
</ sel ect >

on
on
on
on
on
on

"radi us"
val ue="
val ue="
val ue="
val ue="
val ue="
val ue="

>

10">10 m | es</opti on>

30">30 mi | es</option>

60" >60 mi | es</opti on>

100" sel ected>100 m | es</opti on>
250" >250 mi |l es</option>

500" >500 m | es</ opti on>

16



Although there are many attributes for thei nput tag, we are only interested in the

t ype, nane, and val ue attributes. After parsingthei nput tag, we store thefield
name, field type, and field value for fields with typet ext , hi dden, checkbox,

radi o, and subm t. For thet ext ar ea tag, we store the field name with field type

t ext ar ea. Forthesel ect tag, we analyze the content between the opening and
closing tags to extract and store the field name, the option values (values inside the

opt i on tags), and the displayed values (values displayed in the selection list on the Web

page).

24  SiteForm Submission
Our system fillsin the site form by generating a query or a set of queries
according to the user query and the site form. The form filling process consists of three

parts: 1) field name recognition, 2) field value matching, and 3) query generation.

24.1 Form Field Recognition

Because site forms vary from site to site, even for the same application domain,
site form field recognition is difficult. Because of the way we allow a user to specify a
guery, field name recognition is essentially a problem of matching the fields in the site
form to object setsin our extraction ontology.

Wefirst group al r adi o fieldsand checkbox fields that have the same value
for the nane attribute and consider each group asonefield. Then, for fields with values
provided, i.e., sel ect fieldsand grouped r adi o fieldsand checkbox fields, we

apply our constant/keyword matching rules to determine the field names. If more than
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50% of the valuesin afield belong to the same object set, we conclude that the field
corresponds to that object set. For all i nput fields of type “text” and all t ext ar ea
fieldsin the site form, we compare the field-tag names to the object-set names using
similarity measures from zero (least similar) to one (most similar), and we choose the
object set with the highest similarity as long as the similarity is above a certain match
threshold.

When the field tag names and the object set names are exactly the same, we
assign aoneto the similarity measure and conclude that there is a match between the two
fields. Otherwise, we calculate the similarity between the two strings that represent the
names of the object set and the field using heuristics based on WordNet [Mil95, Fel98].
WordNet is areadily available lexical reference system that organizes English nouns,
verbs, adjectives, and adverbs into synonym sets, each representing one underlying
lexical concept. We use the C4.5 decision tree learning algorithm [Qui93] to generate a
set of rules based on features we believe would contribute to a human’s decision to
declare a potential attribute match from WordNet, namely (f0) sameword (1 if A =B and
0 otherwise), (f1) synonym (1 if “yes” and O if “no”), (f2) sum of the distances of A and
B to acommon hypernym (“is kind of") root, (f3) the number of different common
hypernym roots of A and B, and (f4) the sum of the number of senses of A and B. We
calculate the similarity between an object-set name and a field name based on the set of
rules generated by the C4.5 decision tree. If the similarity between the object-set name
and the field name reaches a certain threshold, we match the two.

If thereis still no match, we calculate the similarity between an object-set name

and afield name by a combination of four character-based string matching techniques.
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First, we apply standard information-retrieval-style stemming to get aroot for each name
[Por80]. Then, we combine variations of the Levenshtein edit distance [Lev65], soundex
[HD80], and longest common subsequence algorithms to generate a similarity value.

The Levenshtein edit-distance algorithm cal culates the number of characters that
need to be added, deleted, or changed to transform one string into another. To convert
edit distance to a similarity measure, we first normalize the edit distance by dividing it by
the length of the object-set name and cap the result at one. Next, we subtract from one

since smaller edit distance denoted more similar strings:

edit _dist(name,, name, )

sim,_, =1- min
L . length(name, )

The soundex algorithm was devel oped for automatically recognizing alternate
spellings of the same surname in genealogy applications. The agorithm generates a four-
character code for a string according to the following rules: 1) Thefirst character in the
code isthefirst letter of the string, and 2) the remaining charactersin the code correspond
to the next three letters of the string, excluding A, E, I, O, U, H, W, and Y. Thelettersare
divided into six groups of |etters that are considered similar, and all the letters in agroup
generate the same code (i.e., M and N both generate code 5). Soundex codes are
generally compared with an al-or nothing matching approach, but we find this to be too
restrictive. For example, Phone and PhoneNumber have codes P500 and P555,
respectively, so the typical matching approach yields zero percent similarity. Instead of
all-or-nothing matching, we base our similarity measure on the length of the common

prefix for the two four-character codes, so Phone and PhoneNumber have 50% similarity.
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Since any two soundex codes have a common prefix length from zero to four,
multiplying by 0.25 yields a similarity between zero and one:

Sim,,..« = common__ prefix__length(soundex(name,, ), soundex(name, )) * 0.25

The longest common subsequence (LCS) algorithm finds the length of the longest
(not necessarily contiguous) sequence of characters that appears in both strings. Asfor
edit distance, we normalize the LCS length by dividing by the length of the object-set
name to get a similarity measure between zero and one. We find LCS to be more useful
than longest common substring, which does not allow for non-contiguous sequences;
however, for strings containing common letters, it is possible to recognize completely
unrelated sequences. For example, BusinessEmail has an LCS length of 5 with both
Email and SzeArea. Our solution isto penalize characters skipped by the LCSin one
string or the other by subtracting the number of skipped characters from the LCS length,
and we use O for negative result, so when compared with BusinessEmail, Email still has a
LCS length of five because O character is skipped, while SzeArea has an LCS length of

zero because 7 characters are skipped:

LCS_ len(name,

S 1

namey ) -

. min(skipped _ chars(LCS(name,,, name, )), LCS _ len(name_,, name,; ))
SmLCS =

length(name,, )

To calculate the combined similarity between an object-set name and afield

name, we combine the similarities from the Levenshtein edit distance, soundex, and LCS
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calculations. We use aweighted average, giving each of the three components a weight

in the combined similarity:

sm,,, = (sim,, * weight,, ) + (SiMg,4 * Weight ) +(sim ¢ * weight, )

soundex

24.2 Form FieldsMatching

Because fields in asite form do not always match exactly with fields in a user
query, we treat different cases in different ways. In this process, we offer solutions to
Case 0, which is the direct match between user-query fields and site-form fields and two
of the fiveissuesraised in the Chapter 1 (Cases 3 and 4). We also offer apartia solution
to Case 5 and leave Cases 1 and 2 and the other part of Case 5 to the Output Analyzer.
Case 0: Fields specified in user query have a direct match in asite form, both by field

name and by field value (or values). For example, a user searches for cars around

acertain Zip Code, and Zip Code isafield of typet ext inthe site query.

Solution: We simply pair and store the user-provided value with the Zip Code attribute.

Case 3: Fidldsrequired by a site form are not provided in auser query, but a general
default value, such as“All”, “Any”, “Don’t care”, etc. is provided by the site form.
For example, a user does not specify any particular Make of cars of interest, and
Makeisafieldwithasel ect taginasiteform with alist of option values

including ageneral default value as a selected default value.
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Solution: We find the general display value and pair and store the corresponding option

value with the field name.

Case 4. Fields that appear in asite form are not provided in a user query, and the default

value provided by the site form is specific, not “All”, “Any”, “Don’t care”, etc..

For example, a user does not specify any particular Make of cars of interest, and

Makeisafieldwithasel ect taginasiteform with alist of option values.

Unfortunately, no general value is provided in the option list.

Solution: We pair and store the field name with each of the option values provided for

the fields by the site form. Later in the submission process, we submit the form

once for each name/value pair.

Case 5: Values specified in auser query do not match with values provided in a site form.

For example, a user searches the form in Figure 3 for “cars that cost no more than

$9,000.” The HTML source code for the field Priceis asfollows:

<sel ect nane="

<option

<option

<option

<option

<option

<option
</ sel ect >

nyprice" size=1>

val ue="">Any Price

val ue="5000">$5, 000 and under
val ue="10000">$5, 001 - $10, 000
val ue="15000">$10, 001 - $15, 000
val ue="20000">$15, 001 - $20, 000
val ue="20001">%$20, 001 and over

Solution: This case happens only for range fields. As human beings, we know that we

should find the least number of ranges that cover the user’s request. For our

example, we should submit the form for “ $5,000 and under” and “$5,001 -

$10,000". For our system, however, the process is not as direct as for a human.

The next severa pages explain the details for the solution.
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Figures 1, 3 and 11 show the three common range structures we can find for range
fieldsin siteforms. The Pricefieldsin Figure 1 show one kind of range structure (Type
1). Inthisform, Priceisactually represented by two form fields, the lower bound value
field and the upper bound valuefield. In this structure, both lower bound and upper
bound values are provided explicitly, but they are independent of each other. A user can
choose one of the values from the lower bound value set, and choose any value in the
upper bound value set to construct arange. The Pricefield in Figure 3 isadifferent kind
of range structure (Type 2). It provides both lower and upper boundary values explicitly
inonefield. That is, each boundary value in the structure is paired with another value.
When a user selects one value for the field, both the lower bound and the upper bound
values are specified. In Figure 11, the Distance field is athird kind range field (Type 3).
It provides one set of boundary values explicitly and implicit indicates the other boundary
value. When parsing fields like this one, our system determines whether the explicit
values are lower bound values or upper bound values and then assigns an appropriate
opposite bound which is a default value supplied by a dataframe. As human beings, we
can tell directly from looking at the boundary values provided in the selection list
whether the values are upper bound or lower bound values, but for our system, thisis not
obvious.

Even though range fields can be presented in the three different ways mentioned
above, they are ultimately the same since they all have both lower bound values and
upper bound values. Thus, our system justifies all range fields so that each field contains

one set of lower bound values and one set of upper bound values explicitly.
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Search Auto Ads:

Zip Code:

Distance: | 25 Miles

Price: |

50 Miles

Make: [100 tiles
300 Miles
Model: oy pjiles
Fegional
Mational

Year:

Key Word:

search Database

Figure 11: Web Form for Car Advertisement Search at

http://www.ads4autos.com/autos/index.cfm, December, 2003.

For Type 1 fields such as the Price fieldsin Figure 1, our system creates two lists,
an ordered lower bound value list and an ordered upper bound value list, and sets aflag
(Paired) to “false” to indicate that the two ordered value lists are independent of each
other. During this process, if our system sees keywords such as“any”, “dl”, “don’t care”,
etc., it setsthe value to a default boundary value supplied by adataframe. (All data
framesin our system that can participate in ranges aways have a default minimum and
maximum value.) The following two ordered lists are results from the process:

Lower value list: [0, 1, 5000, 10000, 15000, 20000, 30000];

Upper value list: [2500, 5000, 10000, 15000, 20000, 30000, 50000, 999999].

The “999999” isthe default upper bound in the Price data frame, which has been

substituted for “no limit” in Figure 1. The lower bound value set is fully specified (why
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the site designersincluded both “0” and “1” aslower boundsis not clear, but that’s the
way the site for Figure 1 was coded).

For Type 2 fields such as the Price field in Figure 3, our system separates the two
values from each option in the list, puts the first value in an ordered lower bound value
list and the second value in an ordered upper bound value list, and sets aflag (Paired) to
“true” to indicate that each value in this structure is paired with a corresponding value in
the opposite boundary list. Our system also replaces keywords found in the option values
with corresponding default boundary values specified in adataframe. The following two
ordered lists are results from the process:

Lower valuellist: [0, 0, 5001, 10001, 15001, 20001];

Upper value list: [999999, 5000, 10000, 15000, 20000, 999999];

Thefirst “0” in the lower bound list isfor “Any Price” in Figure 3, and the second is for
“and under.” Theinitia “999999” in the upper bound list isfor “Any Price”, and the
second isfor “and over”. Thus, the pair for “Any Price”, for example, is*0-999999".

For Type 3 fields such as the Distance field in Figure 11, our system first parses
each option value to see if the option value isasingle number. If more than half of the
option values are single numbers, our system examines the list to determine whether the
option values contain the default lower bound value from the matching data frame. If so,
our system infers that the number values are lower bound values. Otherwise, our system
checks to see whether the option values are in ascending order or in descending order.

By design convention, when the values are in ascending order, the values are lower
bound values. When the values are in descending order, the values are upper bound

values. If most of the option values are not single numbers, our system looks for
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keywords in the option values. If more than 50% of the option values contain keywords
such as “or more”, “and above’, “or above’, “or newer”, “at most”, etc., our system
infers that the number values are lower bound values. If more than half of the option
values contains keywords such as “or less’, “and under”, “or under”, “or older”, “at
least”, etc., our system infers that the number values are upper bound values. If our
system infers that the value are upper (lower) bound values, it creates alower (upper)
bound value list of the same length with all default minimum (maximum) values. Our
system also sets a (Paired) flag to “true”. The following two ordered lists are results from
the process for the upper bound values in the Distance field in Figure 11:

Lower valuelist: [25, 25, 25, 25, 25, 25, 25];

Upper value list: [25, 50, 100, 300, 500, 500, 500].

Because the car-ads ontology does not have a data frame for Distance, the system creates
the lower value list with, 25, the smallest value given in thefield. The “Regional” and
“Nationa” values are both 500, the maximum value given in the field.

Our system always produces alower and an upper bound value for range fieldsin
auser query—either because both are given by the user or because one is given by the
user and the other is obtained using default values from a data frame. Thus for the query,
“cars that cost no more than $9,000,” we obtain “0” as the minimum value for Price.
Given alower and upper bound in agquery, the field-matching process for range fields
becomes simple: match lower to lower and upper to upper by finding the largest value in
the “minimum” ordered list that is less than or equal to the query’s low range value and
by finding the smallest value in the “maximum” ordered list that is greater than or equal

to the query’s high range value.
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We illustrate the matching process for the form in Figure 1 with the sample user
guery, “cars that cost no more than $9,000.” The HTML source for the two Price fields

isasfollows:

<sel ect name="PriceLow'>
<option val ue="0">%$0

<option val ue="1">$1

<option val ue="5000">$5, 000
<option val ue="10000">$10, 000
<option val ue="15000">$15, 000
<opti on val ue="20000">$20, 000
<option val ue="30000">$30, 000
</ sel ect >

<sel ect name="PriceHi gh">

<option val ue="2500">%$2, 500

<option val ue="5000">$5, 000

<option val ue="10000">$10, 000

<option val ue="15000">$15, 000

<opti on val ue="20000">$20, 000

<opti on val ue="30000">$30, 000

<option val ue="50000">$50, 000

<option value="no limt" SELECTED>no limt
</ sel ect >

After interpreting “no limit” in the HTML source code for “PriceHigh” as the default
upper bound value for Price, 999999, our system translates both the “PriceLow” and the
“PriceHigh” fields' displayed options to the following ordered lists, respectively:

Lower value set: [0, 1, 5000, 10000, 15000, 20000, 30000];

Upper value set: [2500, 5000, 10000, 15000, 20000, 30000, 50000, 999999].
When ahuman fillsin “<=9,000” for Price in the query, “0” for “PriceLow” and
“10000” for “PriceHigh” is selected. The system therefore sends the name/value pairs
(PriceLow, 0) and (PriceHigh, 10000) to the Web site in its form submissions.

In this example, the matching processis only partially complete because our
system chooses ranges broader than what the user wants. In the Output Anayzer, our

system filters out irrelevant returned records, i.e. cars with prices higher than $9,000.
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24.3 Form Query Generation

Once our system has Web form fields paired with values, it can “fill out” the form.
In the system, “fill out” the form means generate queries for the site form. Our system
selects one name/value pair from each form field, concatenates all selected pairs together,
and appends them to the URL constructed from the meta information of the page and the
act i on attribute of the f or mtag.

Using the form in Figure 12 as an example, the URL of the Web siteis:
http://ww. car buyer. com
and the source code for the target form is as follows:

<FORM ACTI ON=vehi cl es. ht i METHOD=PCOST>
<| NPUT TYPE=H DDEN NAME="s" VALUE="">
<I NPUT TYPE=HI DDEN NAME=t ype VALUE=1>

<SELECT mul tiple nane="nmakeid[]" size="6">
<OPTI ON val ue="-1">------ Al Mkes ------
<OPTI ON VALUE=1>Acur a
<OPTI ON VALUE=37>Al fa Roneo
<OPTI ON VALUE=32>AMC

<OPTI ON VALUE=63>[ Ot her ]
</ SELECT>

<SELECT nultiple name="state[]" size="4">
<OPTI ON val ue="-1">------ All Areas ------
<OPTI ON VALUE=AL>Al abana
<OPTI ON VALUE=AK>Al aska
<OPTI ON VALUE=AZ>Ari zona

</ SELECT>

<I NPUT TYPE=HI DDEN NAME=adv VALUE="">
</ FORM>

For our sample query, “Find green cars that cost no more than $9000,” our output

analyzer generates the following string:

htt p: //ww. car buyer. com vehi cl es. ht M ?s=&t ype=1&mrakei d[ ] =-

1&st at e[ ] =- 1&adv=

Figure 13 shows partial results for this query. In cases where more than one query can be

generated, we submit a query for the site form for every combinations of pairs for the
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form fields. We collect all Web pages obtained by the set of queries and send them to

our Output Analyzer, which we will explain in detail in Chapter 3.

akor " llroa

Make Location
—all Makes — —all Argas — A
Acura - Alahama -
Alta Fomeo Alaska
A Arizona v
Agton Martin
A -

= [ Search! ] I Feset ]
Advanced Search

Selact multiple makes/fareas with the
contral (Winl ar cormmand [Mac) key,

all fields are optional,

Figure 12: Web form for Car Advertisement Search at http://www.carbuyer.com/,

December, 2003.

make model vear [l mileage City state [0 price
Ford Taurus 1992 20000 MEwport news WA, £3000
Chrysler CIRCUS 1997 40000 BEMSONHURST MY £6000
Lincoln Town Car 1994 22800 laccksonville FL E6000
Mercury Phaeston 1956 92000 LaPinea OR £11000
Mercedes-Benz CLK-430 Designo Cab 2002 11000 Aiken sC £68500
Mercedes-Benz C280 SPORT EDITIOM 15999 89200 FLUSHIME MY £14995
Chevrolat Camaro 1967 -- Elk City Ok s
Acura 2.3 CL 1998 -- Sunnysude MY £6500
Hondza Gor Civic igg2 -- Brantwood Y E6200
Mitsubishi MIRAGE S 1995 B6258 QUEEMS WILLAGE MY £2500
Missar MlaxINA, 19589 65025 QUEENS WILLAGE NY £2500
Mercedes-Benz 19CE 2.3 1924 &£0100 Minneapclis M £5800
Tawmtks (=12 T 104c  14A902C funmmanec willana (AR FA0800

Figure 13: Partial Initial Results for “ Find Green Cars That Cost No More Than $9000”

at http://www.carbuyer.com, December, 2003.
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Chapter 3

OUTPUT ANALYZER

Our system stores the Web result pages the Input Analyzer collects and sends
them to the Output Analyzer. The Output Analyzer examines each page and extracts the
information relevant for the user query (Section 3.1). The Output Anayzer then filters
the extracted information with respect to the user query and displays the final resultsin
HTML format to the user (Section 3.2). At this point, the records displayed to the user

are, to the extent possible, just the data relevant to the user’ s origina query.

3.1 Form Results Processor

Sometimes, the results for one query comein a series of pages, but by submitting
the query, we can only retrieve the first page of the series. To obtain all results, our
system iteratively retrieves consecutive next pages. It may need to follow the value of the
hr ef attribute of an anchor node with the keyword “next” or “more” or a sequence of

consecutive numbers that appear as atext child node of the anchor node:
<a href=.>.next.</a>

or <a href=.>.nore.</a>

or <a href=.>..n.</a>,

where n represents a number. Or it may need to submit a form with the keyword “next”
or “more” appearing intheval ue attribute of ani nput nodewitht ype “submit” in

the form node:

<form.>»
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<i nput val ue=..next...type=submt ..>

or <form .>

<i nput val ue=..more...type=subnmit ..>

To get acomplete set of results, our system continues in this way until the last page of the
seriesis reached.

In the next step, the Output Analyzer takes one page at atime, runsit through a
record separator [EJN99, SIG01] and then through BY U Ontos [Deg04, ECJ+99], adata
extraction system, to populate a database. To extract information from Web pages using
Ontos requires recognition and delimitation of records. By “record”, we mean a group of
information relevant to some entity, e.g. an individual car ad in a car-ads application.
Our record separator captures the structure of apage asaDOM tree, locates the node
containing the records of interest, identifies candidate separator tags within the node,
selects a consensus separator tag, removes all other HTML tags, replaces the separator
tag with five pound signs, and outputs the modified pagein a“record file”. Given the
output from the record separator, the next step is to invoke Ontos, which is an ontology-
based data extraction engine devel oped by the Data Extraction Group in the Computer
Science department at Brigham Y oung University [Deg03]. For each document, Ontos
produces a data-record table containing a set of descriptor/string/position tuples for the
constants and keywords recognized in the record, resolves al conflicts found in the data-
record table, and constructs SQL i nsert statements for database tuples from the

modified data-record table. Figure 14 shows the database scheme produced by the
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ontology parser for the ontologiesin Figure 8. After the system processes all pages

obtained from the Web site, we obtain afully popul ated database.

create table Car |
Car integer,
Year warchar (4],
Make warchar (10),
Model warchar(25),
Mileage warchar (3],
Price warchar (8],
PhoneNr warchar(14),
Color warchar (20 ,
Transwmission varchar (20) ,;
EngineCharacteristics wvarchar (10) ,
Style wvarchar (20))
create table PhonelNr |
PhoneNr warchar (14),
Extension warchar (3)]
create table AcecessoriesCar |
hecessories warchar (200,
Car integer)

Figure 14: Car-ads Database Scheme.

3.2  Final Results Generator

Even if our system fillsin the site form the best it can according to the user query,
the results returned may not be the best we can do. Among the cases introduced in
Chapter 1, Cases 1 and 5 may lead to extraneous records. Case 1 may produce
extraneous records because the input form may not allow usto constrain afield whose
values nevertheless appear in the output. Case 5 may produce extraneous records
because ranges in the user’ s query may overlap, rather than coincide, with rangesin the

site form.
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To prevent extraneous records introduced by Cases 1 and 5 from being displayed
to the user, our output analyzer executes an SQL statement corresponding to the user’s
given query over the records returned to the database where we store our intermediate
results. The system generates the SQL statement as follows. First, our system generates
asel ect statement for each field specified in the original user query that did not match
any field in the site form with acount statement to check whether the information for

thefield isin the results. A sample statement is:

sel ect count (%)
from <t abl e nanme>

where <field name> ! = *"
Our system compares the result C;, which is the number of records selected, to the
number of records C; selected by the statement

sel ect count (*) from <table nane>.
If the value C; /C; isless than or equal to 50%, we claim that information for thefield is
not provided in the results and output an HTML message to the user that thisfield is not
considered in our search. Otherwise, our system generates another sel ect count
statement for the field to check if there are any records in our database that have the value

the user specified. A sample statement is:

sel ect count (*)
from <t abl e nanme>

where <field name> <operator> <field val ue>.
If the result is zero, our system outputs an HTML message to the user that no record is
found and terminates the program.

Then, if there is one non-empty table, our system concatenates all fields with

values presented in our database to form the wher e clause. To eliminate the possibility



of duplicate records in the final results, our system uses the keyword di st i nct inthe

SQL statement. Thefinal statement is as follows:

Sel ect distinct *
from <table nane>
where <field; nanme> <operator;> <field; val ue>
and <field, nane> <operator,> <field, val ue>

éﬁd <field, nane> <operator,> <field, val ue>
where <field, name> is the n field the user specified in the original, and <f i el d,
val ue> and <operator,> are the value and the operator the user specified for the n™ field
in the query. The <operator> can be “<=", “>=" or “=".
Finally, we display the final resultsto the user in HTML format. Figure 15 shows

partial final results our system displays to the user after applying the SQL statement
sel ect distinct * fromcar where price <= 9000

for the search results shown in Figure 13.

Search Results:

Ho information provided on color.

car vyear make model mileage price phonenr color transmi
1002 1992  Ford Taurus 20000 3000
1003 1997  Chrysler 40000 6000
1004 1994  Lincoln Town Car 22200 6000
1008 19687  Chevrolet Camaro

1009 1998 Acura 6500
1010 1992 Honda civic 6200
1011 1995  Mitsubishi NIRAGE 26263 2500
1012 1989 MNissan NaXTNA B5025 2500
1013 1984 Nercedes—B E0100 BR00
1Mltad  14ak Trsrnt = M mmar 147095 ARNN

Figure 15: Partial Final Results Displayed to User for Search Resultsin Figure 13.
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If there is more than one non-empty table for the domain in the database, our
system joins all tables and selects distinct qualified records from the database. According
to the database scheme generated by Ontos, the first table from the database schemeis
always the primary table, which means that all other tables generated from the same
process have common fields with thistable. If the database has three non-empty tables A,
B, and C with the following scheme:

A:[a b, c d, €;

B: [a f];

C:[d. gl
where all fields have values present, and the user query is:

b>=n; and f<=n, and g="xx",
the final SQL statement would be the following:

sel ect distinct A.a, A b, Ac, Ad, Ae Bf, Cg
from Aleft join Bon (A a=B.a) left join C on (A d=C. d)
wher e b>n1 and f<n2 and g="xx"
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Chapter 4

EXPERIMENTAL RESULTSAND ANALYSIS

In this project, we experimented on seven Web sites for each of two applications:
car ads and digital cameraads. The approach, however, is not limited to the two
applications on which we experiment. 1t can work with other applications aslong as
those applications have Web sites with forms, and we have ontologies for those

applications. The process of rewriting queries in terms of site formsis the same.

41  Experimental Results

We are interested in three kinds of measurements: field-matching efficiency,
guery-submission efficiency, and post-processing efficiency.

To know if we properly matched the fieldsin a user query with the fieldsin asite
guery, we measure the ratio of the number of correctly matched fields to the total number
of fields that could have been matched (arecall ratio Ry, for field matching, fm), and we
measure the ratio of the number of correctly matched fields to the number of correctly
matched fields plus the number of incorrectly matched fields (a precision ratio Py):

_ number _of _correctly matched _ fields
total number of _fields that should have been matched

fm

_ number _of _correctly matched _ fields
total number of matched fields

fm

To know if we submitted the query effectively, we measure the ratio of the
number of correct queries submitted to the number of queries that should have been

submitted (arecall ratio Rys for query submission, gs), and we measure the ratio of the
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number of correct system queries submitted to the number of correct queries submitted
plus the number of incorrectly submitted queries (a precision ratio Pgy):

_ number _of _correct _queries_ submitted
Re = total _number of queries that should have been submitted
p = number _of _correct _queries_ submitted

*®  total _number of _queries_submitted

We also conduct an overall efficiency measurement which we obtain by

multiplying the three recall measurements and the three precision measurements together:
Roverall = Rfm * Rqs

P

overall = me * qu
Because the two kinds of metrics measure two stages of one single process, we use the
products to calculate the overall performance of the process with respect to our extraction

ontol ogy.

4.1.1 Car Advertisements

We experimented on seven Web sites containing search forms for car ads. We
issued five queries to each of the sites and obtained the following results. (Appendix A
lists the Web sites, and Appendix B lists the queries.) We found 31 fieldsin the seven
forms. Among them, there were 21 fields that are recognizable with respect to our
application extraction ontology. The system correctly matched all 21 of them. There
were no false positives. According to the five queries, the system should have submitted
146 origina queries and 1858 queries for retrieving all next links. Since our submission
process deals with all form fields (not just those applicable to the ontology), the system

actually submitted 372 original queries and 1863 queries for retrieving next links. 1f we
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ignore nonapplicable fields, the system should have submitted 249 original queries and
1847 queries for next links. For just the applicable fields, the system actually submitted
301 original queries and 1858 queries for next links, which includes the 249 original
gueries and 1847 queries for next links the system should have submitted. Because we
do not want to measure the effectiveness of the existing application extraction ontologies
and plug in programs, such as the Record Separator and Ontos, and outside the scope of
our work, we do not measure their effectiveness (see [ECJ+99, ETLO03] for measures of
their effectiveness). Finally, we do not measure the effectiveness of the post-processing
part of our system because, by itself, it cannot fail. Table 1 shows the precision and
recall ratios calculated with respect to recognizable fields for the measurements we made,

and it also shows the overall efficiency.

Number of Forms: 7
Number of Fieldsin Forms; 31

Number of Fields Applicable to the Ontotlogy: 21 (67.7%)

Field Matching | Query Submission Overall
Recall 100% (21/21) 100% (249/249) 100%
Precision | 100% (21/21) 82.7% (249/301) 82.7%

[97.1% ((249+1847)/(301+1858)) " | [97.1%]

* Numbersin square brackets are cal culated including queries submitted for retrieving next links.

Table 1: Experimental Results for Used-Cars Search.
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4.1.2 Digital Camera Advertisements

We experimented on seven Web sites containing search forms for digital camera
advertisements. We issued four queries to each of the site and obtained the following
results. (Appendix A liststhe Web sites, and Appendix B lists the queries)) Wefound 41
fieldsin the seven forms. Among them, there were 23 fields that were applicable to our
application extraction ontology. The system correctly matched 21 of them. There were
no false positives. According to the four queries and the 21 matched fields, the system
should have submitted 31 original queries and 85 queries for retrieving all next links. It
actually submitted 31 origina queries and 85 queriesfor retrieving next links. Table 2
shows the precision and recall ratios for the three measurements we made, and it also

shows the overall efficiency.

Number of Forms: 7
Number of Fieldsin Forms; 41

Number of Fields Applicable to the Ontology: 23 (56.1%)

Field Matching Query Submission Overall
Recall 91.3% (21/23) 100% ((31+85)/(31+85)) | 91.3%
Precision 100% (21/21) 100% ((31+85)/(31+85)) | 100%

Table 2: Experimental Results for Digital-Cameras Search.
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4.2  Results Analysisand Discussion

Field-matching efficiency is a measurement for field-name matching. This
matching is affected by the value for the name attribute and the type attribute the site
form designer chose for each field. For fieldsin the site form with no values provided or
fields having less than half their values recognized, our system depends only on the
values of name attributes. If the site form designer assigns meaningful names to each tag,
our field-matching efficiency is high. In our experiment, we found respectively 7 and 6
such fields from the two domains, and our system recognized 95.7% of the fields for the
two domains. We found respectively 14 and 17 fields from the two domain with values
provided, and the result was 100% for both precision and recall for the two domains
tested. We have no way of recognizing fields that are not described in our extraction
ontology, so we did not consider those fields when cal culating name matching efficiency.

Query-submission efficiency is a measurement of field-value matching. When
calculating query-submission efficiency, we consider only the fields where names
matched correctly. Thisefficiency is greatly affected when fields are designed in away
that our system cannot handle. For the form in Figure 16, we found two fields that are for
Price; together, they form arange. Rangefields, if are formed by two independent fields,
normally are of the same type, i.e., both fields are text fields (Price in Figure 17), or both
fields are selection lists (Price in Figure 1). The range in Figure 16, however, is formed
by atext field and aselection list. Our system does not recognize these two fieldsas a
range. So, when it fills out the Price fields, it puts both the lower value and the upper
value a user specifiesin thefirst Pricefield. For the second Pricefield, whichisa

selection list, our system chooses al three values in the selection list. This generates six
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gueries instead of one query — properly chosen, one query would be sufficient. For the
particular form in Figure 16, our system always generate 6 queriesif either Price or Year
is specified by auser, among which 5 of the queries are not necessary. When a user
specifies both fields, our system submits 36 queries, among which 35 of the queries are
not necessary. Thisresult greatly affects the precision of query submission.. The recall,
however, is 100% because all queries that could have been submitted are submitted

correctly.

Search Vehicle Database

Nake || (Any) v
Class [Any]l w

Year ||2002 orolder
Price orless +

State/Province |[(Any)

Figure 16: Web formfor Car-Ads Search at http://www.autointerface.com/vfs.htm,

February, 2004.
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Digital cameras

Select a manufacturer;
Arw manufacturer

Search by model name:
Min Price:
M aw Price:
i%) Search

Figure 17: Web form for Digital-Camera Search at

http://www.netbuyer.co.uk/categories/englishcameracrawl zd.html, February, 2004.
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Chapter 5

CONCLUSION

In this research, we designed and implemented a system that can fill out and
submit Web forms automatically according to a given user query against a corresponding
application extraction ontology. From the returned results, the system extracts
information from the pages, puts the extracted records in a database, and queries the
database with the original user query to get, to the extent possible, just the relevant data
behind these Web forms.

We tested our system on two applications. car advertisements and digital camera
advertisements. In average, there were 61.9% fields in the site forms that were applicable
to the extraction ontologies. The system correctly matched 95.7% of them. Considering
only the fields that were applicable to the extraction ontol ogies and were correctly
matched, the system correctly sent out all queries that should have been submitted to the
Web sites we tested. It, however, also sent out some additional queriesthat are not
necessary according to the original user query. Among all queries our system submitted
for our experiments, only 91.4% of them are necessary. Further, for the Web siteswe
tested, our Output Analyzer correctly gathered all linked pages. Finally, of the records
correctly extracted by Ontos, our system always correctly returned just those records that
satisfied the user-specified search criteria.

Even though our experimental results turned out to be working well, the results
can be adversely affected if

text fields come with poor internal tag names,
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extraction ontologies are poorly written.
Poor tag names can make the name-matching process for text fields impossible, and
poorly written extraction ontol ogies would make the name-matching process for fields
with values inaccurate. Both cases would decrease the field-matching efficiency
dramatically. With considerably more work, which we did not do because others have
already solved this problem [RGa00, Rga01, MGJ01], it would be possible to resolve the
first problem by locating the displayed names, which should be human readable, rather
than the internal tag names, which need not be human readable. The solution for the
second problem is to improve the quality of a poorly written extraction ontology.

In addition, our system is not designed to handle all kinds of forms on the Web. It
does not try to handle

multiple forms (one form lead to another),

forms whose actions are coded inside scripts.
As future work, we could program our system to handle multiple forms. Thefield-
matching process for multiple formsislike separating the field-matching process for
single formsinto several parts. After matching and submitting, we repeat the process
until we have exhausted all forms in the chain of forms. Query-submission and post-
processing processes are the same for both multiple-forms and single-form cases. Note
that our system must know the submission paths (aform’s action attribute) in order to
submit queries. It is possible to write script code that submits queries independent of
explicit action attributes. So our system will not always be able to submit queriesto such

sites. Therefore, our experiements ignore those pathological cases.
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Appendix A

TheWeb FormsUsed in Experiments

Car of the Month

2000 Acora 3.2TL

| Select Desired Auto Here | | NEXT STEP

Figure AL: Web form for Car-Ads Search at http://2see.com/buy.asp, February, 2004.

Instant Vehicle Search!

1, Mew @ pre-owned @

2, Zip Code -

o Celectabdake

Figure A2: Web form for Car-Ads Search at http://deal ernet.com/, February, 2004.
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Figure A3: Web form for Car-Ads Search at http://www.ads4autos.com/autos/index.cfm,
February, 2004.

Figure A4: Web form for Car-Ads Search at http://www.carbuyer.com/, February, 2004.
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Figure A5: Web form for Car-Ads Search at http://www.autointerface.com/vfs.htm,
February, 2004.

Figure A6: Web form for Car-Ads Search at http://wwwheels.com/cfapps/autosearch.cfm,
February, 2004.
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Figure A7: Web form for Car-Ads Search at http://www.belcyber.net/cars/, February,
2004.




Figure A8: Web form for Digital-Camera Search at
http: //www7.activebuyer squi de.convabg/nav/SartPageHandl er.cfm?PI D= 12X7X97X557
36X5f6e0& option=search& CatlD=2& Refl D=12& check=0, February, 2004.

Figure A9: Web form for Digital-Camera Search at
http: //www.bhphotovideo.comvybnh/controller/home; | sessionid=A9808MtKaz! 121158313
9?0=NavBar & A= search& Q=& ci=1082& sh=bs%2Cupper %28ds%29& sq=asc& pn=1
&si=filter, February, 2004.
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Figure A10: Web form for Digital-Camera Search at http://deal cam.conv?ref=ov-
digital _camera& sess=c6aldd6e4adf00108692ae0f0d50b515, February, 2004.
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Figure A11: Web form for Digital-Camera Search at
http: //www.netbuyer .co.uk/categories/englishcameracrawl zd.html, February, 2004.

Figure A12: Web form for Digital-Camera Search at http://overturel-
cnet.com.conVDigital_Cameras/4007-6501 9-0.html?& part=overturel-
cnet& subj=digital_camera&tag=ref, February, 2004.
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Figure A13: Web form for Digital-Camera Search at http://www.imaging-
resour ce.conVCAMDB/camera_finder.php, February, 2004.
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Figure A14: Web form for Digital-Camera Search at
http://www.pricegrabber.convsearch_attrib.php/page _id=48/topcat_search=1/form key
wor d=digital+ camera/mode= gotoph/ut= 97c8eb606d9cf20c, February, 2004.
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Appendix B

The Queries Used in Experiments

B1l. Car advertisement queries:

1.

2.

Zip=20171, search range=100 miles, make=ford

Zip=20171, search range=100 miles, make=ford, price<=10000

Zip=20171, search range=100 miles, make=ford, model=mustang, year>=1995
Zip=20171, search range=100 miles, price>=4000, price<=10000

Zip=20171, search range=100 miles, make=ford, price<=10000, year>=1995,

color=green

B2. Digital cameras queries:

1.

2.

Zip=20171, search range=100 miles, Manufacturer=canon

Zip=20171, search range=100 miles, Manufacturer=canon, CCD resolution>=3
Zip=20171, search range=100 miles, price<=800

Zip=20171, search range=100 miles, Manufacturer=canon, CCD resolution=3,

optical zoom>=3.0
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