
RECORD-BOUNDARY DISCOVERY IN WEB DOCUMENTS

by

Yuan Jiang

A thesis submitted to the faculty of

Brigham Young University

in partial ful�llment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

December 1998

Copyright c 1998 Yuan Jiang

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Yuan Jiang

This thesis has been read by each member of the following graduate committee

and by majority vote has been found to be satisfactory.

Date Dennis Yiu-Kai Ng, Chair

Date David W. Embley

Date Dan R. Olsen

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Yuan Jiang

in its �nal form and have found that (1) its format, citations, and bibliographical style

are consistent and acceptable and ful�ll university and department style requirements;

(2) its illustrative materials including �gures, tables, and charts are in place; and

(3) the �nal manuscript is satisfactory to the graduate committee and is ready for

submission to the university library.

Date Dennis Yiu-Kai Ng
Chair, Graduate Committee

Accepted for the Department

Scott N. Wood�eld
Graduate Coordinator

Accepted for the College

Nolan F. Mangelson, Associate Dean
College of Physical and Mathematical Sciences

ABSTRACT

RECORD-BOUNDARY DISCOVERY IN WEB DOCUMENTS

Yuan Jiang

Department of Computer Science

Master of Science

Extraction of information from unstructured or semistructured Web documents

often requires a recognition and delimitation of records. (By \record" we mean a

group of information relevant to some entity.) Without �rst chunking documents

that contain multiple records according to record boundaries, extraction of record

information will not likely succeed. In this thesis we describe a heuristic approach to

discovering record boundaries in Web documents. In our approach, we capture the

structure of a document as a tree of nested HTML tags, locate the subtree containing

the records of interest, identify candidate separator tags within the subtree using �ve

independent heuristics, and select a consensus separator tag based on a combined

heuristic. Our approach is fast (runs linearly for practical cases within the context

of the larger data-extraction problem) and accurate (100% in the experiments we

conducted).

ACKNOWLEDGMENTS

I would like to express my deep appreciation to several people for their support

and assistance during my MS thesis work. Foremost, I am grateful to my mentor,

Dr. Dennis Ng, who has always made himself available to discuss ideas and provide

feedback. We have spent many hours together working over ideas and �nding ways

to improve our approach. Without his guidance and enthusiasm, this work would not

have been �nished on time and the quality of the thesis would have been much lower.

I appreciate the support of Dr. David Embley, who is my second committee

member and the co-director of the Data Extraction research group. His insights and

enthusiasm really helped me to accomplish this work. Those weekly meetings were

very helpful in shaping many of the ideas that comprise my research. I appreciate his

time and e�ort on my behalf.

The entire Data Extraction research group has also been helpful to me. I would

like to acknowledge Dr. Stephen Liddle who provided some codes and �gures for

my ontology- matching heuristic and Dr. Dallan Quass who assisted me in selecting

and categorizing the related research work from the others. I would also like to

acknowledge the valuable suggestions of the other members of the group.

I want to express my appreciation to Dr. Dan Olsen for stepping in at the last

minute with only three weeks notice when a previous committee member was unable

to attend my thesis defense.

Last, but by no means least, I would like to thank my family and many friends

for their support and encouragement while I attended school.

Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Using Tag Trees for Locating Records of Interest 7

2.1 The Structure of Tag-trees . 9

2.2 Algorithms to Construct Tag Trees 12

2.3 The Largest Fan-out Heuristic Approach 14

2.4 The Pre-processing of the Tags . 19

3 The Individual Heuristics 22

3.1 The Ontology-Matching Heuristic . 23

3.2 The Repeating-Tag Pattern Heuristic 33

3.3 The Standard Deviation Heuristic . 34

3.4 The Identi�able \Separator" Tags Heuristic 39

3.5 The Highest-Count Tags Heuristic . 44

4 The Combined Heuristics 46

4.1 Certainty Measure . 47

4.2 Initial Experiments . 47

vii

4.3 The Combined Heuristic . 51

4.4 The Record-Boundary Discovery Algorithm 53

5 Experimental Results 57

6 Concluding Remarks 62

viii

List of Tables

3.1 The record separators and the numbers of their appearances in 100

Web documents . 42

4.1 On-line newspapers chosen for initial experiments 49

4.2 Experimental results for obituaries application 49

4.3 Experimental results for car advertisements application 49

4.4 Certainty factors, as selected by our initial experiments 50

4.5 Experimental results for all the combined heuristics 52

5.1 Test set 1 - obituaries . 60

5.2 Test set 2 - car advertisements . 60

5.3 Test set 3 - computer job advertisements 60

5.4 Test set 4 - university course descriptions 60

5.5 Success rates of individual heuristics and ORSIH for experimental Web

documents . 61

ix

List of Figures

1.1 Data extraction and structuring process 5

2.1 A sample Web document . 11

2.2 A node that includes the hypertext in Line 4 of the Web document in

Figure 2.1 . 12

2.3 The tag tree of the Web document in Figure 2.1 13

2.4 A sample Web document after all the \missing" end-tags have been

inserted . 17

2.5 The tag tree of the Web document in Figure 2.1 with the largest-fan-

out sub-tree rooted at node td which is embedded within an ellipse . 19

3.1 A sample ontology in graphical form 25

3.2 The ontology rules for the obituaries application 27

3.3 The Data-Record Table generated by using the ontology rules in Fig-

ure 3.2 . 30

4.1 Graphical car advertisements ontology 50

5.1 Graphical computer job advertisements ontology 58

5.2 Graphical university course descriptions ontology 58

5.3 The ontology rules for the OM heuristic 59

0.5in

x

Chapter 1

Introduction

The amount of data available electronically on the Web has increased dramatically in

recent years. At present, browsing and keyword searching are the two commonly used

methods for retrieving data from the Web; however, these methods are ine�ective and

have severe limitations [Ape94]. Browsing the Web is ine�cient, as users have to read

the documents in order to locate the desired information. In addition, browsing is

not suitable for locating particular data items because it is easy to get lost while

tracing links on the Web. Keyword searching, on the other hand, often returns a

huge amount of data, so much that a user cannot handle it.

To overcome these limitations, some researchers have resorted to database tech-

niques, which require structured data. It has been realized that most of the Web

data are semistructured in nature [Abi97, BDFS97], which means that they do not

conform to a regular nor rigorous structure like data in a relational database. Fur-

thermore, their schema may change dynamically. Even though relational database

query languages are well-developed, widely accepted, and easy to use, we cannot

adopt these languages for retrieving data from the Web since Web documents are not

structured as relational databases. In order to query Web documents using traditional

database query languages, attempts have been made to build wrappers around docu-

ments [AK97a, AK97b, AM97, DEW97, GHR97, HGMC+97, KWD97, Sod97, Ade98,

1

ECJ+98, MMK98]. A wrapper is a procedure that extracts data in Web documents

and structures them into some regular forms (such as relational database tables).

In building wrappers, we often need to divide source Web documents into chunks of

information that correspond to records. Each of these records is similar in structure to

other records in the same Web document and represents information relevant to some

entity. For example, in a Web document that contains a list of car advertisements,

a record in the document is a single car advertisement. Identifying the structure of

records of interest in a Web document is the �rst step in designing a wrapper for

extracting data from the document. Since di�erent Web documents have di�erent

structures, the record identi�cation task, by itself, is nontrivial [AK97a, AK97b].

In this thesis we propose a heuristic approach to discover boundaries of records in

a Web document that contains multiple records. Once found we can separate these

records and pass them on for further processing, i.e., extracting data from the records.

The main contribution of this thesis is to provide a set of individual heuristics and

a way to combine these heuristics into a method for discovering record boundaries.

We focus on Web documents that are written in HTML1 and assume that each Web

document we process (1) has multiple records of interest and (2) contains at least one

record-separator tag.

This is not the �rst time the problem of separating records in a Web document

has been addressed. [AM97, HGMC+97] detect record boundaries manually. They

�rst examine the documents, �nd the HTML tags that separate the records of in-

terest, and then write a program to separate the records. [AK97a, AK97b, DEW97,

KWD97, Sod97, Ade98] separate records with some degree of automation. Their

approaches focus primarily on using syntactic clues, such as HTML tags, to iden-

1Even though we have done all our work with HTML documents, most of this work should carry
over directly to other document type de�nitions, such as XML.

2

tify record boundaries and then separate the records. Some of these approaches

[AK97a, AK97b, Ade98] require user assistance in locating record boundaries. None

of these approaches is fully automatic.

Our approach di�ers markedly from these proposals. We present our approach

and results as follows. We �rst provide a heuristic for locating groups of records

within a Web document D (in Chapter 2). D, which contains the records of interest,

usually contains other irrelevant information such as a header and a trailer. To elim-

inate irrelevant information from the consideration and concentrate on the region of

D that contains the records, this heuristic requires the construction of the tag tree of

D based on the nested structure of start- and end-tags and locates the sub-tree that

contains the records of interest in D. We restrict our search for a record-separator

tag to candidate tags, tags that are considered as record-separator tags, found in

this sub-tree. After locating the sub-tree, we apply �ve di�erent heuristics, each of

which individually attempts to locate a record-separator tag among the candidate tags

that appear in the sub-tree (in Chapter 3). These heuristics are ontology-matching

(OM), repeating-tag pattern (RP), standard deviation (SD), identi�able \separator"

tags (IT), and highest-count tags (HT). Each of these heuristics returns one or more

candidate separator tags with a measure of certainty/uncertainty attached to each

candidate. Finally, we adopt Stanford certainty theory [LS98] to combine these in-

dividual heuristics to determine a consensus record-separator tag (in Chapter 4).

For practical cases and in the context of our overall data-extraction process, the en-

tire record-boundary discovery process is O(n), where n is the size of a given Web

document. We applied this approach in four di�erent application areas using Web

documents obtained from twenty di�erent sites, which together contained thousands

of records (in Chapter 5). The results were uniformly good, attaining 100% accuracy

on all sites we examined.

3

Before explaining the details of our approach, we begin with a short descrip-

tion of the larger context in which we use our record-boundary-discovery heuristics.

This short description is necessary to provide the context for our record-boundary-

discovery research work (which is a portion of the on-going data-extraction project

[WWW]) and to explain what we mean by an ontology and how to use it in our work.

Figure 1.1, which is taken from [ECJ+98], shows the overall process for extracting

and structuring Web data. As depicted in the �gure, the input (upper left) is a

Web page, and the output (lower right) is a populated database. The �gure also

shows that an application ontology is an independent input. For us, an application

ontology is a conceptual model augmented with additional information to describe

constants and keywords for the application. This ontology describes the application

of interest. When we change applications, for example from car advertisements, to job

advertisements, to obituaries, to university course descriptions, we only change the

ontology, and apply the same process to di�erent Web pages. Signi�cantly, everything

else remains the same: the routines that extract records, parse the ontology, recognize

constants and keywords, and generate the populated database instance do not change.

In this way, the overall process is generally applicable to any application domain.

Speci�cally, the overall data-extraction project consists of the following steps. (1)

We develop the ontological model instance for the domain of interest (the Application

Ontology in the �gure). (2) We parse this ontology to generate a database scheme (the

Database Description in the �gure) and to generate rules for matching constants and

keywords (the Constant/Keyword Matching Rules in the �gure). (3) To obtain data

from the Web, we invoke a Record Extractor (see �gure) that separates an unstruc-

tured Web document into individual record-size chunks, cleans them by removing

markup-language tags, and presents them as individual unstructured documents for

further processing. (It is the record separation task in this component that we discuss

4

 Application Ontology

 Ontology
 Parser

Constant/Keyword
Matching Rules

Unstructured
Record

Documents

 Constant/Keyword
 Recognizer

 Database-Instance
 Generator

Populated Database

 Database Description

Record-Level
Objects,

Relationships,
and Constraints

Database
Scheme

Web Page

Record Extractor

Data-Record Table
(Descriptor/String/Position)

Object-Relationship
Model Instance

Data Frames

Lexicons

Figure 1.1: Data extraction and structuring process

5

in this thesis.) (4) We invoke recognizers that use the matching rules generated by

the parser to extract from the cleaned individual unstructured documents the objects

and relationships from which we obtain the raw, as-yet-unorganized data to populate

the model instance. The result is the Data-Record Table in the �gure. (5) Finally,

we populate the generated database scheme by using heuristics to determine which

constants populate which records of the database scheme. These heuristics correlate

extracted keywords with extracted constants and use cardinality constraints in the

ontology to determine how to construct records and insert them into the database.

6

Chapter 2

Using Tag Trees for Locating

Records of Interest

Most Web documents are hypertext documents that are written according to a Doc-

ument Type De�nition (DTD)1 and include plain text and tags. A tag in a Web

document consists of a pair of opening and closing brackets (i.e, \<" and \>") that

enclose a tag name, sometimes followed by a list of tag attributes, whereas plain text

in a Web document is a sequence of characters not embedded within any tag. We

distinguish each tag in a Web document as either a start-tag or an end-tag. A start-

tag is a tag whose name does not start with a forward slash (i.e., \/"), whereas the

name of an end-tag is the name of its corresponding start-tag preceded by a \/". A

start-tag may not have a corresponding end-tag. In this thesis, we discard and thus

totally ignore two types of tags: (1) comment tags that start with <! and (2) any

end-tag that has no corresponding start-tag. We categorize these two types of tags

as useless tags.

Tags in a Web document D de�ne discrete regions in D. A region R in D begins

where a start-tag S appears and ends where the corresponding end-tag of S appears.

If the corresponding end-tag of a start-tag S does not exist, we consider whatever

1A DTD de�nes the syntax and semantics of a language used for creating a Web document. For
example, every HTML document should conform to the HTML SGML DTD, the Document Type
De�nition that de�nes the HTML standard.

7

appears between S and the next tag (or the end ofD) as a region. Between a start-tag

and its corresponding end-tag, other start- and/or end-tags can be nested. Note that

regions, as de�ned here, do not necessarily correspond to regions over which a tag

applies for display purposes. Our purpose here is not to display a document, but to

build a convenient structure for discovering record boundaries.

Based on this nested structure, we construct a data structure, called a tag tree,

to represent a document D according to the regions in D. The tag tree of D is a

tree representation of D, which is based on the tags and the plain text that appears

either between each pair of start-tag and its corresponding end-tag in D or after the

end-tag, if it exists. A node in the tag tree of D identi�es a region in D.

We attempt to discover the boundaries of records in D by using the tag tree T

of D and an automated tool - the record-boundary discovery program. In designing

our record-boundary discovery program, we �rst attempt to detect the region in T

that most likely contains the records of interest. It is our conjecture that in a Web

document with multiple records of interest, the sub-tree of T rooted at the largest-

fan-out node N , called the largest-fan-out sub-tree of T , should contain the records.

The largest-fan-out node in the tag tree T has the largest number of child nodes

among all the other nodes in T . We count the number of appearance of each distinct

start-tag in the region identi�ed by N , and distinguish each of these tags as either an

irrelevant tag or a candidate tag. An irrelevant tag is a start-tag with relatively few

appearances among the start-tags appeared in the region identi�ed by N , whereas a

candidate tag is a start-tag that appears signi�cantly more often than the irrelevant

tags in the region bound by N . We ignore all the irrelevant tags and consider only the

candidate tags in all the heuristics to be introduced in Chapters 3 and 4. Eliminating

all the irrelevant tags from consideration simpli�es our task in determining the correct

record separator (which is a start-tag that separates two records of interest) of D. If

8

there is only one candidate tag, we treat it as the record separator; otherwise, we

apply the heuristic approaches to determine the record separator.

We introduce the structure of tag trees in Section 2.1 and the algorithms to con-

struct a tag tree in Section 2.2. In Sections 2.3 and 2.4 we describe the process of

�nding the largest-fan-out sub-tree S of a tag tree and eliminating from consideration

all the irrelevant tags in the region bound by S.

2.1 The Structure of Tag-trees

The structure of a node in the tag tree T of a Web document D is shown below:

Start-tag

Inside-text

Post-text

A node N in T consists of three elements, the start-tag S, the inside-text I, and

the post-text P . The content of any of these three elements may be unassigned. The

content of S, denoted N:S, is a start-tag St. N:S is not assigned only if N is the

root node of T , which represents the region that is the entire D. The content of I,

denoted N:I, is the plain text that appears between St and the next tag (or the end

of D). If the next tag is the corresponding end-tag Et of St, then N is a leaf node

of T . The content of P , denoted N:P , is the plain text that appears between Et and

the end of D if Et is the last tag in D, or it is the plain text that appears between

Et and the next tag in D.

Figure 2.1 shows a sample Web document2. The numbering of each line is not

part of the document but is included solely for referencing a particular portion of the

2To protect individual privacy, this document is not real. It is based on an actual Web document,
but it has been signi�cantly changed so as not to reveal the identities of individuals. However, Web
documents used in our experiments reported in Chapters 4 and 5 are real.

9

document. Figure 2.2 shows a node in the tag tree of the Web document in Figure 2.1.

In Line 4 of the document, the plain text \Funeral Notices - " appears between the

start-tag <h1 align=\left"> and its corresponding end-tag </h1>. Thus, the content

of the inside-text element of this node is \Funeral Notices - ". Since the plain text

\October 1, 1998" appears between </h1> and the next tag <hr>, the content of

the post-text element of this node is \October 1, 1998".

If there exist other tags between a start-tag St and its corresponding end-tag Et

of the region denoted by node N in document D, then new nodes, called child nodes

of N , are constructed while tag tree T is being built. N represents a region R of D,

whereas a sub-region of R, which is denoted by a child node of N , is a region that

starts with a start-tag S 0 and ends with its corresponding end-tag E 0 (or the next

tag if E 0 does not exist), and S 0 and E 0 are not embedded within other start-tags

and their corresponding end-tags other than St and Et. If there are m sub-regions

in R, then there are m child nodes of N . The order of these child nodes in T is

determined by the appearance of their corresponding start-tags in R. We apply the

same strategy of constructing N to construct its child nodes. The leftmost child node

of N , which represents the �rst sub-region of R, contains the hypertext bound by the

�rst start-tag Bs after St in R and its corresponding end-tag Be (or the next tag if Be

does not exist). The second child node of N represents the second sub-region of R,

and so on. If there exist other start-tags embedded inside one of the sub-regions in

R, we apply the same method for constructing the next generation of the child nodes

at the next level. Edges from a parent node to its child nodes capture the nested

structure of tags.

Figure 2.3 shows an abstraction of the tag tree T of the Web document D in

Figure 2.1. Note that in the abstraction we use only the name in the start-tag element

of a node in T as the label of the node to simplify the drawing of each node in the

10

1: <html><head><title>Classi�eds</title></head>
2: <body bgcolor=\#FFFFFF">
3: <table><tr><td>
4: <h1 align=\left">Funeral Notices - </h1> October 1, 1998
5: <hr>
6: Lemar K. Adamson
 age 84, of Tucson, died September 30, 1998.
7: He is survived by wife, Cindy; daughters, Elvia, Gloria, Irene, Isabel,
8: Jewel, and Jessica; sons, Paul, John, Je�ery, and Louis; brothers, Kirk,
9: Justin, Ivan, Hubert and Grover. Funeral service 10:00 a.m. Monday,
10: October 5, 1998 at Silverbell Ward, 1540 E. Linden. Burial in City
11: Cemetery. Friends may call from 9:00 a.m. to 10:00 a.m. Monday, at the
12: church. Arrangements by MEMORIAL CHAPEL, 236 S. Scott

13: <hr>
14: Our beloved Brian Fielding Frost, age 41, passed away Wednesday
15: morning, September 30, 1998, due to injuries sustained in an automobile
16: accident. He was born January 12, 1957 in Salt Lake City, to Donald
17: Fielding and Helen Glade Frost. He married Susan Fox on June 1, 1981.
18: He is survived by Susan; sons Alfred, Joseph; parents, and two sisters,
19: Anne (Dale) Elkins and Sally (Kent) Britton. Funeral services will be
20: held at 12 noon Tuesday, October 6, 1998 in the Howard Stake Center,
21: 350 South 1600 East. Friends may call 5-7pm. Monday at
22: Carrillo's Tucson Mortuary, 3401 S. Highland Drive. Interment at
23: Holy Hope Cemetery.

24: <hr>
25: Leonard Kenneth Gunther
 age 82. A resident of Tucson,
26: passed away peacefully on September 30, 1998. He was born June 6, 1916 in Iowa.
27: He joined the U.S. Navy serving during World War II. He remained a member
28: of the U.S. Naval Reserve (USNR) for several years. He is survived by his wife,
29: Gwendolyn; sons, Eric D. of San Francisco, CA, Vincent J. of Tucson; a daughter,
30: Janet H. of Provo, UT; and one granddaughter, Sarah R. of Phoenix, AZ.
31: Friends may call from 5:00 p.m. until 7:00 p.m. on Monday, October 5, 1998 at
32: HEATHER MORTUARY, 1040 N. Columbus Blvd. Funeral services
33: will be at 11:00 a.m. at HEATHER MORTUARY, on Tuesday,
34: October 6, 1998. Burial will be private at South Lawn Cemetery.

35: <hr>
36: </td></tr></table>
37: All material is copyrighted.
38: </body>
39:</html>

Figure 2.1: A sample Web document

11

Start-tag = <h1 align="left">

Inside-text = Funeral Notices -

Post-text = October 1, 1998

Figure 2.2: A node that includes the hypertext in Line 4 of the Web document in
Figure 2.1

�gure. Since the tags <html> and </html> embed all of D, <html> is the content

of the start-tag element of the root node R of T . Since a <head> tag exists between

the <html> and </html> tags in D, a child node of R is constructed which contains

<head> as the content of its start-tag element. The contents of the inside-text and

post-text elements of node head are unassigned. This is because there is no plain text

between <head> and the next tag <title>, and between the </head> tag and the

next tag <body>. The tag <title> is embedded between the <head> and </head>

tags in D; it is thus a child (and the only child) of node head. The content of the

inside-text element of node title is \Classi�eds," whereas the content of its post-text

element is unassigned. The node labeled body is another child node of R, and the

descendant nodes of the node body are constructed as shown in Figure 2.3.

2.2 Algorithms to Construct Tag Trees

The tag tree of a Web document is constructed by algorithm Construct T ree pre-

sented in this section. The algorithm, which takes a Web document D as input and

produces the tag tree T of D as output, consists of three steps. (1) A stack S and a

table TBL, whose entries are to be indexed by the start-tag names in D, are initial-

ized. S is used for keeping track of the order of the appearance of start-tags in D.

Since the same start-tag may appear multiple times in D, their relative positions in

D are maintained in S for future reference. Each entry of TBL, which is labeled by

a start-tag name s, is associated with a linked list of nodes that keeps track of the

12

html

head body

title table

tr

td

h1 hr b br b br hr b b b br hr b br b b br hr

Figure 2.3: The tag tree of the Web document in Figure 2.1

positions of each appearance of s in D and S. (2) The second step scans through D to

discard useless tags and insert all \missing" end-tags. In order to build the tag tree

of D using a linear algorithm, we need to make sure that for every start-tag in D, its

corresponding end-tag also exists in D. If the corresponding end-tag of a start-tag is

\missing" in the original D, we insert the \missing" end-tag into D. S and TBL are

set up for inserting missing end-tags into D and eliminating useless tags from D. All

start-tags that are encountered in this pass through D are pushed onto S. Also, the

relative position of each start-tag <St> in D and its location on S are stored in a

new node which is then inserted at the beginning of a linked list whose tail is pointed

by the entry indexed by <St> in TBL. (3) The �nal step scans through D again,

which now has every \missing" end-tag. In this pass, T is created according to an

in-order traversal.

Algorithm Construct T ree has time complexity O(n), where n is the length of

the input Web document D. Scanning D to insert all the start-tags in D as labels of

13

entries in table TBL takes O(n) time. For an appropriate list representation, adding

a new entry to TBL for each new start-tag and creating a node in a (an existing)

linked list takes a constant amount of time. Since we do not consider a tag more

than once after it has been put in the table, discarding useless tags and inserting a

\missing" end-tag into D for its corresponding start-tag which appears on the stack

takes at most O(t) time, where t is the number of tags in D. Hence, the insertion and

deletion operations are at most O(t). In the construction step (i.e., Step 3) of building

the tag tree T of D, the number of nodes to be constructed in T is proportional to

t, and the plain text to be inserted into each node is proportional to n, the length of

D. Since n > t, algorithm Construct T ree has time complexity O(n).

For example, consider the Web document D in Figure 2.1. Algorithm Construct

T ree �rst inserts all \missing" end-tags inD. (Note that there is no useless tag inD.)

Figure 2.4 shows the document with all the \missing" end-tags inserted. (By inserting

\missing" end-tags, note that we are not preparing the document for display; instead

we are preparing it to help build tag trees. The updated document is discarded once

the tag tree is built.) The entire tag tree of the document is shown in Figure 2.3 after

the construction step. (Note that only the name of the start-tag element of each node

is shown in the �gure.)

2.3 The Largest Fan-out Heuristic Approach

A Web document D, which contains the records of interest, usually contains other

irrelevant information such as a header and a trailer. To detect the boundary of

records of interest in D, we �rst attempt to detect the region in the tag tree T of D

that contains the records by searching for the largest-fan-out node N of T , where the

records of interest in D is located in the sub-tree rooted at N (i.e., the largest-fan-out

sub-tree).

14

Algorithm Construct Tree /* Construct the tag tree of a Web document */
Input: A Web document D
Output: The tag tree T of D
Begin /* Algorithm */

/* Initialization */
1. Initialize stack S = [] and TBL := [], an array such that an entry of

TBL is to be labeled by a start-tag and associated with a linked list
of nodes, and let n := 0, where n denotes the number of entries in TBL

2. REPEAT
2.1. Locate the next tag G in D and set N := the name of G
2.2. IF G starts with <! /* a comment-tag */

THEN remove G from D /* eliminates a useless tag */
2.3. ELSE IF G is a start-tag
2.3.1. THEN IF N 6= TABLE[j], 8j, 0 � j < n /* G is not in TBL */

THEN TABLE[n] := N , n := n + 1, and PUSH(N) /* create

an entry in TBL with label N and push N onto stack S */
END-IF

2.3.2. Create a node of the form [L, Sp], where L is the location of the
next tag in D and Sp is the location of N on S, and link it
to the entry with label N in TBL

END-IF
2.4. ELSE /* G is an end-tag */

IF (the corresponding start-tag Gs of G does not exist in TBL)
OR (the linked list associated with Gs is null)
/* an end-tag without its corresponding start-tag */

THEN remove G from D /* eliminates a useless tag */
ELSE DO /* Search for the corresponding start-tag of G in S */

2.4.1. Let A := POP ()
2.4.2. Remove the corresponding node in the linked list associated with A

/* A is no longer on the stack */
2.4.3. IF A is not the corresponding start-tag of G

THEN insert the corresponding end-tag of A at L in D, where
L is the �rst �eld in the node linked to the entry A
in TBL which points to A on S

END-IF
WHILE A is not the corresponding start-tag of G

END-IF
END-IF

UNTIL end-of-�le(D)
3. /* Construct the tag-tree T */

/* Construct the root node R of T , which is of the form [S, I, P], where
S, I, and P are the contents of the start-tag, inside-text, and post-text
elements of R, respectively. */

15

3.1. Initialize the root node R of T such that R := [nil, nil, nil] and set
cnt := 0 and position := 0, where cnt is the number of sub-trees of R and
position is the o�set from the beginning of D

3.2. WHILE position 6= the location of end-of-�le(D)
let (CT[cnt], position) := Create Subtree(D, position), where CT[cnt]
is the (cnt + 1)-th sub-tree of R, and position is the o�set from the
beginning of D, and set cnt := cnt + 1 /* Construct the child nodes

of R */
END-WHILE

4. Return T

End /* Algorithm */

Algorithm Create Subtree /* Create a sub-tree of the tag tree of D */
Input: a Web document D, and POS, the o�set from the beginning of D
Output: a (sub-tree of the) tag tree S, which represents (part of) D, and new
o�set from the beginning of D

Begin /* Algorithm */

/* Construct the root node R of T , which is of the form [S, I, P], where S,
I, and P are the contents of the start-tag, inside-text, and post-text elements
of R, respectively. */

1. Initialize the root node R of T such that R := [nil, nil, nil] and set cnt := 0,
where cnt is the number of sub-trees of R

2. Search for the �rst tag F starting from the POS-th position in D /* the tag
is always a start-tag and begins at the POS-th position in D */

3. Set R:S := F and POS := POS + size of(R:S)
4. REPEAT
4.1. Search for the next tag G after F in D
4.2. Set R:I := the plain text between F and G and POS := POS

+ size of(R:I)
4.3. IF G is not the end-tag of F

THEN let (CT [cnt], POS) := Create Subtree(D, POS), where CT [cnt]
is the (cnt + 1)-th sub-tree of R and POS is the o�set from the
beginning of D and set cnt := cnt + 1 /* construct the child

nodes of R */
END-IF

UNTIL G is the corresponding end-tag of F
5. Set R:P := the plain text between G and the next tag or the end of D

if G is the last tag in D and POS := POS + size of(R:P)
6. Return (T , POS)

End /* Algorithm */

16

1: <html><head><title>Classi�eds</title></head>
2: <body bgcolor=\#FFFFFF">
3: <table><tr><td>
4: <h1 align=\left">Funeral Notices - </h1> October 1, 1998
5: <hr>
6: </hr>Lemar K. Adamson
 age 84, of Tucson, died September 30, 1998.
7: He is survived by wife, Cindy; daughters, Elvia, Gloria, Irene, Isabel,
8: Jewel, and Jessica; sons, Paul, John, Je�ery, and Louis; brothers, Kirk,
9: Justin, Ivan, Hubert and Grover. Funeral service 10:00 a.m. Monday,
10: October 5, 1998 at Silverbell Ward, 1540 E. Linden. Burial in City
11: Cemetery. Friends may call from 9:00 a.m. to 10:00 a.m. Monday, at the
12: church. Arrangements by </br>MEMORIAL CHAPEL, 236 S. Scott

13: </br><hr>
14: Our beloved </hr>Brian Fielding Frost, age 41, passed away Wednesday
15: morning, September 30, 1998, due to injuries sustained in an automobile
16: accident. He was born January 12, 1957 in Salt Lake City, to Donald
17: Fielding and Helen Glade Frost. He married Susan Fox on June 1, 1981.
18: He is survived by Susan; sons Alfred, Joseph; parents, and two sisters,
19: Anne (Dale) Elkins and Sally (Kent) Britton. Funeral services will be
20: held at 12 noon Tuesday, October 6, 1998 in the Howard Stake Center,
21: 350 South 1600 East. Friends may call 5-7pm. Monday at
22: Carrillo's Tucson Mortuary, 3401 S. Highland Drive. Interment at
23: Holy Hope Cemetery.

24: </br><hr>
25: </hr>Leonard Kenneth Gunther
 age 82. A resident of Tucson,
26: passed away peacefully on September 30, 1998. He was born June 6, 1916 in Iowa.
27: He joined the U.S. Navy serving during World War II. He remained a member
28: of the U.S. Naval Reserve (USNR) for several years. He is survived by his wife,
29: Gwendolyn; sons, Eric D. of San Francisco, CA, Vincent J. of Tucson; a daughter,
30: Janet H. of Provo, UT; and one granddaughter, Sarah R. of Phoenix, AZ.
31: Friends may call from 5:00 p.m. until 7:00 p.m. on Monday, October 5, 1998 at
32: </br>HEATHER MORTUARY, 1040 N. Columbus Blvd. Funeral services
33: will be at 11:00 a.m. at HEATHER MORTUARY, on Tuesday,
34: October 6, 1998. Burial will be private at South Lawn Cemetery.

35: </br><hr>
36: </hr></td></tr></table>
37: All material is copyrighted.
38: </body>
39:</html>

Figure 2.4: A sample Web document after all the \missing" end-tags have been
inserted

17

Algorithm Find Largest Fanout /* Finds the largest-fan-out node of a tag tree */

Input: (a sub-tree of) the tag tree T of a Web document D

Output: the largest-fan-out node S in T and max, the fan-out of S

Begin /* Algorithm */

1. Set S := the root node R of T and max := the fan-out of R

2. IF max > 0 /* R has at least one child node */

THEN

FOR each sub-tree u rooted at a child node of R DO

2.1. Set (S 0, max0) := Find Largest Fanout(u)

2.2. IF max0 > max

THEN set S := S 0 and max := max0

END-IF

END-FOR

END-IF

3. Return S and max

End /* Algorithm */

Algorithm Find Largest Fanout details the step-by-step process of locating the

largest-fan-out node of T . This algorithm, which takes T as an input and returns the

largest-fan-out node S of T and max, which is the fan-out of S, consists of two main

steps. In the �rst step, S is initialized to be the root node R of T , and the largest

number of fan-out, max, is initialized to be the fan-out of R. In the second step,

algorithm Find Largest Fanout is recursively called for each node of T , except R,

to locate the largest-fan-out node in T , R included.

The complexity of algorithm Find Largest Fanout is O(t), where t is the number

of start-tags in D. If there are t start-tags in D, then there are t nodes in T since each

node contains one and only one start-tag in its start-tag element. Since algorithm

Find Largest Fanout is (recursively) called for (i.e., visits) each node of T once in

order to �nd the largest-fan-out node, the complexity of the algorithm is O(t).

For example, consider the Web document D in Figure 2.1 and its tag tree T in

Figure 2.3. Algorithm Find Largest Fanout �rst initializes S to be the root node

18

html

head body

title table

tr

td

h1 hr b br b br hr b b b br hr b br b b br hr

Figure 2.5: The tag tree of the Web document in Figure 2.1 with the largest-fan-out
sub-tree rooted at node td which is embedded within an ellipse

html in T and max to be 2, the fan-out of node html. For node head, which is

a child node of node html, and node title, which is the only child node of node

head, neither one of them has larger fan-out than node html. Thus, S and max

remain unchanged. For node body and its descendant nodes, Find Largest Fanout

detects that the fan-out of node td (at level 4 of T) is 18, which is greater than max.

Eventually, Find Largest Fanout returns td, which has the largest fan-out in T , and

18, the fan-out of td. Figure 2.5 shows the sub-tree rooted at td embedded within an

ellipse.

2.4 The Pre-processing of the Tags

Using the largest-fan-out sub-tree rooted at node S, the number of appearance of

each distinct tag name in the start-tag elements of all the child nodes of S can be

determined. We distinguish all irrelevant tags from all the candidate tags using a

19

threshold t, which is set to be 10% of the fan-out of S. We believe that a start-tag

is highly unlikely a record separator if it appears less than 10% among all the child

nodes of S. If the number of appearance of a particular start-tag g is less than or equal

to t, then g is treated as an irrelevant tag. All start-tags that are not irrelevant are

candidate tags, because these tags become our candidates as the record separator.

Algorithm Pre-Process Tags determines all the candidate tags and eliminates all

irrelevant tags in the child nodes of S.

In order to count the number of distinct start-tag names appeared in the child

nodes of S, algorithm Pre-Process Tags scans through all the child nodes of S

once. Also, Pre-Process Tags compares the number of appearance of each distinct

start-tag name with the threshold t and eliminates all the irrelevant tags. Thus, the

complexity of Pre-Process Tags is O(m + s), where m is the fan-out of S and s is

the number of distinct start-tags in the child nodes of S.

For example, consider the sub-tree rooted at the largest-fan-out node td in Fig-

ure 2.5. Algorithm Pre-Process Tags constructs TL = [(h1, 1), (hr, 4), (b, 8), (br,

5)]. (The second element of each ordered pair in TL denotes the number of appear-

ance of the �rst element among the child nodes of td.) Since the default t is 10% � 18

�= 2, `h1' (which appears only once) is an irrelevant tag, and (h1, 1) is removed from

TL. The other three tags, `hr', `b', and `br', are candidate tags and will be further

considered as the record separator in the algorithms presented in Chapters 3 and 4.

20

Algorithm Pre-Process Tags /* Determines all the candidate tags and

eliminates all irrelevant tags in the input largest-fan-out sub-tree */

Input: the sub-tree rooted at the largest-fan-out node S

Output: TL, an array of ordered pairs of the form (STR, NUM) /* STR is

the name of a candidate tag and NUM is the number of appearance of its

corresponding STR in the child nodes of S */

Begin /* Algorithm */

/* Initialization */

1. Initialize TL := [], t := 10% * the fan-out of S, and s := 0

/* t is the threshold to determine irrelevant tags, whereas s denotes

the number of distinct start-tags in the child nodes of S */

/* Construct a tag list for all the distinct tag names */

2. FOR each child node C of S DO

2.1. Let E be the name in the start-tag element of C

2.2. IF E 6= TL[j]:STR, 8j, 0 � j < s

THEN set TL[s]:STR := E, TL[s]:NUM := 1, and s := s + 1

ELSE set TL[p]:NUM := TL[p]:NUM + 1, where TL[p]:STR = E

/* p is the location in TL where E occurs */

END-IF

END-FOR

/* Eliminate all irrelevant tags */

3. FOR k := 0 TO s - 1 DO

IF TL[k]:NUM � t /* TL[k]:STR is an irrelevant tag */

THEN remove TL[k] from TL and set s := s - 1

/* remove all irrelevant tags from TL */

END-IF

END-FOR

4. Return TL

End /* Algorithm */

21

Chapter 3

The Individual Heuristics

To discover the record separator of a Web document D we �rst apply each of the

�ve independent heuristics (to be introduced in Sections 3.1 - 3.5) to determine the

ranking of each candidate tag and then apply a combined heuristic (which will be in-

troduced in Chapter 4) to determine the record separator. The ranking of a candidate

tag, determined by an individual heuristic HP , is a prioritized choice of HP . For ex-

ample, if HP ranks a candidate tag <A> to be 1, then <A> is considered by HP to

be the �rst choice as the record separator of D. Note that several candidate tags may

have the same ranking. Hence, the output of each individual heuristic is a candidate

list CL, which is an array of ordered pairs in the form of (STR, NUM), where STR

is the name of a candidate tag and NUM is the ranking of STR determined by the

heuristic.

The �ve individual heuristics, ontology-matching (OM), repeating-tag pattern

(RP), standard deviation (SD), identi�able \separator" tags (IT), and highest-count

tags (HT), span a broad range of possible techniques for discovering record bound-

aries in a Web document. The OM heuristic considers the content of a record. Items

that are in a one-to-one correspondence or are functional with respect to the entity

of interest tend to appear once and only once in a record. If we can recognize these

items, we can look for candidate tags that best separate these items into individ-

22

ual records. The RP heuristic makes use of the observation that divisions between

records often include several tags that consistently appear in the same order. The

SD heuristic is based on the observation that when multiple records about an en-

tity appear in a document, the records are typically about the same size. Thus, the

candidate tag c with the minimum standard deviation, based on the size of all the

plain text appeared between each pair of c, tends to be the record separator. The

IT heuristic uses a predetermined list of likely HTML separator tags. This heuristic

is applicable since both hand-created HTML documents and tool-generated HTML

documents tend to consistently use some common separator tags (e.g., `hr'). The HT

heuristic simply ranks the candidate tags based on the number of their appearances

in the child nodes of the largest-fan-out node. This heuristic is based on the assump-

tion that the record separator probably appears the most in a Web document that

contains a large number of records.

3.1 The Ontology-Matching Heuristic

An application ontology describes the application of interest. It is a conceptual model

augmented with additional information to describe constants and keywords for the

application. We develop the ontological model instance for the domain of interest.

In this thesis, our ontologies are assumed to be narrow in breadth (meaning that

the ontology is small, having no more than a few dozen object and relationship sets

in its conceptual model) and that our target Web documents are assumed to be

rich in data (meaning that there is an abundance of recognizable constants such as

email addresses, phone numbers, names of automobile makes and models, and so

forth). Figure 3.1 shows the ontological model instance for the obituaries application

in graphical form, and the entity of interest is Deceased Person that is marked by

\-> �" as shown in the �gure. We adopt the Object-oriented Systems Model (OSM)

23

[EKW92] to describe our ontology.

In OSM rectangles represent sets of objects. Dotted rectangles and solid rectangles

represent lexical object sets and non-lexical object sets, respectively. Whether an

object set is lexical or non-lexical depends on whether its associated data frame

([Emb80]) describes a set of possible strings as objects for the object set. If the data

frame is for a lexical object set, it describes the string patterns for its constants.

Whether lexical or non-lexical object sets, an associated data frame describes context

keywords that indicate the presence of an object in an object set. For example,

\died" or \passed away" can be included as context keywords for Death Date. In

OSM lines connecting rectangles represent sets of relationships, and participation

constraints near connection points between object sets and relationship sets designate

the minimum and maximum number of times an object in the set participates in the

relationship. Binary relationship sets have a verb phrase and reading-direction arrow,

and n-ary relationships have a diamond and a full descriptive name that includes the

names of its connected object sets. For example, \Funeral is on Funeral Date" names

the relationship set between Funeral and Funeral Date. In OSM a colon after an

object-set name denotes that the object set is a specialization. For example, \Birth

Date: Date" denotes that the set of objects in Birth Date is a subset of the objects

in Date object set.

For our ontologies, an ontological model instance provides both a global view

(e.g., across all obituaries) and a local view (e.g., for a single obituary). We express

the global view as previously explained and specialize it for a particular instance

by imposing additional constraints, which denotes by the \becomes" arrow (->). In

Figure 3.1, for example, the Deceased Person object set becomes a single set, as

denoted by \-> �", and the 1..* participation constraint on both Deceased Name

and Relative Name becomes 1. Thus, we declare in our ontology that an obituary

24

Relative
Name: NameAge

Birth Date: Date

Death Date: Date

Relationship

Deceased
Person

1..*->1

1..*

Deceased Person
has Relationship
to Relative Name0..*

0..11..* died on

Funeral
Date: Date

Viewing

Funeral

0..1

1

has

0..*

1

has

Beginning Time: Time

Ending Time: Time

0..1

1..*
has

0..1

1..*

has

Viewing Date: Date

0..1
1..*

is on

Interment Date: Date

Funeral Time: Time

0..1

1..*

has

Interment

0..1

1

has

0..11..*

has

Viewing
Address:
Address

Interment
Address: Address

Funeral
Address:
Address

0..1

1..*

has

 ->

0..1

1..*

has

0..1

1..*

has

0..11..*

has

0..1

1..* has

0..1

1..*

has

Deceased
Name: Name

1

1..*->1

has

Figure 3.1: A sample ontology in graphical form

is for one deceased person and that a name either identi�es the deceased person or

the family relationship of a relative of the deceased person. From these specializing

constraints, we can also derive other facts about individual obituaries, such as there

is only one funeral and one interment, although there may be several viewings and

several relatives.

We may expect one or more �elds, called record-identifying �elds, of a record

appear once and only once in the record. For each record-identifying �eld, if we

can locate a value for the �eld or even just an indication that the value exists, we

can count the number of such occurrences. Then, if we take the average number of

occurrences for several record-identifying �elds in a Web document D, we have a good

chance of correctly estimating the number of records in D. With this estimation, we

25

rank the candidate tags by how closely their number of appearances corresponds to

the estimated number of records. For example, the Death Date for an obituary is a

record-identifying �eld because there should be one and only one death date in each

record. As an indication that this �eld exists, we use a keyword set that includes

\died on" and \passed away on" to indicate the existence of the �eld. We do not use

the date itself because there may be many other �elds in the record such as Birth

Date and Funeral Date that are also dates. Although date values themselves are not

record-identifying indicators for obituaries, the keywords that distinguish among the

various dates are excellent indicators for the existence of record-identifying �elds. We

note that a record-identifying �eld is not the same as a key for a record, but rather

is a �eld that is likely to occur once and only once for each record. A death date, for

example, occurs once in every obituary, but a death date is not a key that identi�es

deceased persons in a genealogical database.

A given application ontology contains the information needed to determine the

record-identifying �elds. All object sets whose objects have a one-to-one correspon-

dence with the entity of interest designate record-identifying �elds as well as all object

sets whose objects are functionally dependent on the entity of interest. We are selec-

tive in choosing which record-identifying �elds to consider in our ontology-matching

(OM) heuristic. We limit the number of �elds to be at least 3 and no more than 20%

of the number of sets of objects in the ontology. We want at least 3 so that we can

obtain a reasonable average for estimating the number of records in a Web document.

(If we do not have at least 3 record-identifying �elds, we do not use our OM heuristic.)

We also set an upper bound because we want to use only a few of the \best" record-

identifying �elds. For example, consider the obituaries application ontology shown

in Figure 3.1, there are 19 sets of objects (i.e., the number of rectangles). Thus, the

number of record-identifying �elds that we are interested in should be 4 (i.e., max(3,

26

KEYWORD(Interment) : \bburial\b

KEYWORD(Interment) : \binterment\b

KEYWORD(Funeral) : \brosary\b

KEYWORD(Funeral) : \blaid\s+to\s+rest\b

KEYWORD(Funeral) : \bmass(\s+of\s+christian\s+burial)\b

KEYWORD(Funeral) : \bcelebration\s+of\s+(his|her)\s+life\b

KEYWORD(Funeral) : \bprivate\s+service

KEYWORD(Funeral) : \bmemorial\s+service

KEYWORD(Funeral) : \bgraveside\s+service

KEYWORD(Funeral) : \bfuneral(?!\s+(home|director))\b

KEYWORD(BirthDate) : \bborn\b

KEYWORD(DeathDate) : \breturned\s+to\b

KEYWORD(DeathDate) : \bjoined\s+(his|her)\b

KEYWORD(DeathDate) : \bhave\s+gone\s+together\b

KEYWORD(DeathDate) : \bfinished\s+life

KEYWORD(DeathDate) : \bsuffering\s+is\s+over\b

KEYWORD(DeathDate) : \bleft\s+(his|her)\s+mortal

KEYWORD(DeathDate) : \bwas\s+called\s+home\b

KEYWORD(DeathDate) : \bwas\s+released\s+from\b

KEYWORD(DeathDate) : \bpassed\s+over\b

KEYWORD(DeathDate) : \bpassed\s+on\b

KEYWORD(DeathDate) : \bpassed\s+away\b

KEYWORD(DeathDate) : \bdied\b

Figure 3.2: The ontology rules for the obituaries application

19 � 20%) = max (3,4) = 4). We order the potential record-identifying �elds from

\best" to \worst" by �rst considering �elds that are in a one-to-one correspondence

with the entity of interest and then considering those that are functionally dependent

on the entity of interest. Then, within these �elds we consider keyword indicators

�rst followed by identi�able values, except that we do not consider identi�able values

that share a common type (e.g., dates in the obituary example). For example, we

have chosen the keyword indicators associated with the sets of objects Internment,

Funeral, Birth Date, and Death Date in Figure 3.1 as our input ontology rules

since these sets of objects have one-to-one relationships with the entity of interest

Deceased Person. The ontology rules are for keywords associated with these object

sets represented in regular expressions as shown in Figure 3.2.

27

To apply our OM heuristic, we �rst count the number of appearance of each dis-

tinct record-identifying �eld in a Web document D and calculate the average number

of appearance of all record-identifying �elds inD. We then consider the number of ap-

pearance of each candidate tag and rank them in order by how close they come to the

average. If among all the candidate tags the number of appearance of a candidate tag

DT is the closest to the average number of appearances of all the record-identifying

�elds in D, then the ranking of DT is 1 (i.e., the �rst choice to be the record separa-

tor).

Algorithm Apply OM describes the step-by-step process of implementing the OM

heuristic. The Constant/Keyword Recognizer ([ECJ+98]) applies the ontology rules

to the plain text extracted from the largest-fan-out sub-tree and produces a data-

record table DRT . Each row e in DRT , which describes either a constant or a

keyword, consists of four �elds separated by bars (\j"). The �rst �eld of e is a

descriptor such that if e describes a constant, then the descriptor is an object-set

name to which the constant may belong, and if e describes a keyword, then the

descriptor is of the format KEYWORD(w), where w is an object-set name to which

the keyword may apply. The second �eld of e is the constant or keyword found in

the document. The last two �elds give the positions of the beginning and ending

character locations in the document for the �rst and last symbol of the recognized

constant or keyword (i.e., the second �eld), respectively. In our OM heuristic, we

only need the �rst two �elds. Apply OM categorizes the content of DRT based

on the descriptors, calculates the average number of appearances of all the distinct

descriptors, and computes the absolute value of the di�erence between the number

of appearance of each candidate tag and the average number of appearance of all

the distinct descriptors. Finally, Apply OM generates the candidate list CL, which

orders all the candidate tags according to their rankings such that the candidate tag

28

with the smallest absolute value is ranked as 1 and placed at the beginning of CL.

We check for the existence of a keyword or constant value by matching a regular

expression with the plain text in the largest-fan-out sub-tree. Since this matching

process is at best O(pr), where p is the size of the plain text and r is the number of

regular expressions, the running time of the OM heuristic is not linear. We observe,

however, that in the overall data-extraction process, as shown in Figure 1.1, we must

run the regular expressions over all the plain text in the largest-fan-out sub-tree.

We further observe that if we integrate processes, we can run the regular-expression

matching process before separating records at no additional cost. This is because the

entries in the Data-Record Table are ordered by position in the document. (Figure 3.3

shows a portion of the Data-Record Table for the Web document in Figure 2.1 in the

overall process.) Once we discover the record separator, we can use the position of

the record separator in the document to partition the Data-Record Table into sets

of entries that are in a one-to-one correspondence with the records, and use these

sets of entries for further downstream processing by the Database-Instance Generator

(see Figure 1.1). Using this approach, we assume the regular-expression matching

for the OM heuristic has already been done for the overall data-extraction process

and thus ignore its complexity measure in the OM heuristic. Since the Data-Record

Table contains all the recognized keywords and values, along with their associated

object sets and their positions within the plain text of the document, a single scan

through the table allows us to obtain the counts we need. Thus, the OM heuristic

is O(d), where d is the number of lines in the Data-Record Table for the plain text

in the largest-fan-out sub-tree. Although d may be large, for practical cases it is not

typically larger than n, the document size; thus, we assume O(d) < O(n). Also, we

note that sorting the candidate tags takes O(s log s) time, where s is the number of

candidate tags. Since s � d, the sorting operation is negligible.

29

KEYWORD(Funeral)jFuneralj1j7
KEYWORD(DeathDate)jdiedj73j76
KEYWORD(Funeral)jFuneralj281j287
KEYWORD(Interment)jBurialj372j377
KEYWORD(DeathDate)jpassed awayj565j575
KEYWORD(BirthDate)jbornj677j680
KEYWORD(Funeral)jFuneralj919j925
KEYWORD(Interment)jIntermentj1125j1133
KEYWORD(DeathDate)jpassed awayj1215j1225
KEYWORD(BirthDate)jbornj1268j1271
KEYWORD(Funeral)jFuneralj1731j1737
KEYWORD(Interment)jBurialj1822j1827

Figure 3.3: The Data-Record Table generated by using the ontology rules in Figure 3.2

For example, consider the Web document in Figure 2.1, the sub-tree rooted at the

largest-fan-out node td as shown in Figure 2.5, and TL = [(hr, 4), (b, 8), (br, 5)] as

computed in Section 2.4. In TL, there are 4 hr's, 8 b's, and 5 br's which appear in the

child nodes of node td. Using the ontology rules in Figure 3.2, the Constant/Keyword

Recognizer generates the Data-Record Table DRT as shown in Figure 3.3. Algorithm

Apply OM then counts the number of appearance of each distinct descriptor, and

the result is shown as follows, where the second element is the number of appearance

of its corresponding �rst element:

(KEYWORD(Funeral), 4),

(KEYWORD(DeathDate), 3),

(KEYWORD(Interment), 3),

(KEYWORD(BirthDate), 2).

Thus, the average number of appearance of all the descriptors is three (i.e., (3 +

3 + 3 + 2) / 4 = 3). After calculating the absolute values of the di�erences between

the appearance of each candidate tag in TL and three, TL becomes [(hr, 1), (b, 5),

(br, 2)], where the absolute value appears as the second element in each ordered pair

of TL. Since 1 < 2 < 5, the computed CL = [(hr, 1), (br, 2), (b, 3)].

30

Algorithm Apply OM

Input: the largest-fan-out sub-tree S, the ontology rules CKMR, and TL, an array

of ordered pairs in the form of (STR, NUM), which contains all the distinct

candidate tags and their numbers of appearances in the child nodes of the root

node in S. /* TL is generated by algorithm Pre-Process Tags */

Output: the candidate list CL that contains all the candidate tags and their rankings

Begin /* Algorithm */

1. Let PT := Get P laintext(S) /* extracts plain text from the largest-fan

-out sub-tree */

2. Call Constant/Keyword Recognizer(PT , CKMR) which returns the

Data-Record Table DRT , where each row of DRT contains a

descriptor, a string, and the starting and ending positions

/* Determines the content of each descriptor element in DRT */

3. Initialize n := 0 and DT = [] /* DT is an array of ordered pairs in

the form of (STR, NUM) */

4. FOR each entry e of DRT DO

IF e:descriptor 6= DT [j]:STR, 8j, 0 � j < n

THEN set DT [n]:STR := e:descriptor, DT [n]:NUM := 1,

and n := n + 1

ELSE set DT [p]:NUM := DT [p]:NUM + 1, where DT [p]:STR =

e:descriptor /* p is the location in DT where e:descriptor

occurs */

END-IF

END-FOR

/* Calculate the average number of appearance of all the keys */

5. Initialize sum := 0

6. FOR j := 0 TO n - 1 DO

sum := sum + DT [j]:NUM

END-FOR

7. Set ave := sum / n

/* Calculate the di�erence between the number of appearance of a tag

and ave */

8. FOR j := 0 TO jTLj - 1 DO

TL[j]:NUM := abs(TL[j]:NUM - ave) /* abs is the absolute value

of a number */

END-FOR

9. TL := sort(TL) so that for each j and k such that 0 � j < k < jTLj,

TL[j]:NUM � TL[k]:NUM /* the tag with the smallest di�erence

is placed at the beginning of the list */

31

/* Construct the candidate list such that the tag with the smallest

di�erence has the highest ranking, i.e., 1 */

10. Initialize r := 0 /* the counter of the rankings */

11. FOR m := 0 TO jTLj - 1 DO /* determines the ranking of each

candidate tag */

11.1. Set CL[m]:STR := TL[m]:STR and r := r + 1

11.2. IF m > 0 AND TL[m]:NUM = TL[m� 1]:NUM

THEN CL[m]:NUM := CL[m� 1]:NUM /* assigns the same

ranking to the two candidate tags which have the same

absolute value */

ELSE CL[m]:NUM := r /* assigns ranking r to the candidate

tag CL[m]:STR */

END-IF

END-FOR

12. Return CL

End /* Algorithm */

Algorithm Get Plaintext /* extracts the plain text from the given tag tree */

Input: a (sub-tree of the) tag tree T rooted at node R

Output: the plain text PT that is in the region bounded by T

Begin /* Algorithm */

1. Set PT := []

2. Set PT := append (R:I, PT) /* R:I is the content of the inside-text

element of R */

3. FOR each sub-tree rooted at a child node c of R, chosen according to

the left-to-right order, DO

3.1. Set PT 0 := Get Plaintext(c)

3.2. Set PT := append(PT 0, PT) /* appends PT 0 to PT */

END-FOR

4. Set PT := append (R:P , PT) /* R:P is the content of the post-text

element of R */

5. Return PT

End /* Algorithm */

32

3.2 The Repeating-Tag Pattern Heuristic

Our repeating-tag pattern (RP) heuristic is based on the observation that there often

exist consistent patterns of two or more adjacent tags at the record boundaries in a

Web document. For example, some candidate tags may consistently appear before

or after the record separators. If a pair of candidate tags <a> (resp.

<a>) occurs at a record boundary and <a> is the record separator, the number

of the appearance (i.e., count) for this pair should be the same as the count of the

number of occurrence of <a> alone. For simplicity, we only consider the number of

appearance of each pair of distinct adjacent candidate tags.

Our RP heuristic �rst counts the number of occurrence of each pair of candidate

tags that have no intervening plain text. For each of these pairs <a> , the RP

heuristic calculates the absolute value of the di�erence between the count of the pair

and the count of <a> alone (resp. alone). Finally, the candidate tags are ranked

in ascending order according to their absolute values (i.e., the candidate tag with the

smallest absolute value among all the candidate tags is ranked 1). Since a particular

candidate tag may appear more than once in di�erence pairs (i.e., may have several

absolute values), our approach discards all but the smallest of the absolute values of

the candidate tag. Note that our RP heuristic may not supply the rankings of the

candidate tags if there does not exist any pair of adjacent candidate tags that have

no intervening plain text in the child nodes of the largest-fan-out node. Algorithm

Apply RP details our RP heuristic.

To analyze the running time of algorithm Apply RP , we �rst observe that we can

make a single pass through the plain text in the descendent nodes of the largest-fan-

out sub-tree S and create up to s2 pairs of adjacent candidate tags in O(e+ s2) time,

where e is the number of plain text characters in S and s is the number of distinct

33

candidate tags. Taking the absolute value of the di�erence between the count of a

pair and the count of each candidate tag in the pair and checking the candidate tag as

a record separator requires a pass through all the pairs, an O(s2) operation. Sorting

each of the candidate tags in ascending order on their absolute values and removing

duplicates take as much as O(s2 log s2) time. Thus, the complexity of algorithm

Apply RP is O(s2(2 + log s2) + e). Since e � s, we can neglect all the operations

on s and obtain O(e) as the time complexity of algorithm Apply RP . Since e � n,

where n is the size of the Web document, algorithm Apply RP is bounded by O(n).

For example, consider the largest-fan-out sub-tree rooted at node td in Figure 2.5

and TL = [(hr, 4), (b, 8), (br, 5)] as computed in Section 2.4. Since the numbers of

occurrences of the pairs \hr b" and \br hr" are 2 and 3, respectively, PAIR TBL

= [(\hr b", 2), (\br hr", 3)] is created by algorithm Apply RP . The absolute value

of the di�erence between the count for \hr b", i.e., 2, and the count for `hr', i.e., 4,

is 2. The absolute value of the di�erence between the count for \br hr", i.e., 3, and

the count for `hr', i.e., 4, is 1. Since the algorithm takes the smallest number if a

candidate tag appears more than once in di�erence pairs in PAIR TBL, the absolute

value of the di�erence is 1 for `hr'. After calculating the absolute values for `b' and

`br', Apply RP generates L = [(hr, 1), (b, 6), (br, 2)]. Since 1 < 2 < 6, CL = [(hr,

1), (br, 2), (b, 3)], as computed by algorithm Apply RP .

3.3 The Standard Deviation Heuristic

Standard deviation measures the variability of a set of numbers deviated from their

average and reects the contribution of all numbers. The value of the standard

deviation of the numbers is independent of the size of the set of numbers. In the

standard deviation (SD) heuristic we determine the record separator based on the

34

Algorithm Apply RP

Input: the largest-fan-out sub-tree S and TL, an array of ordered pairs of the

form (STR, NUM), where STR is the name of a candidate tag and NUM

is the number of appearance of STR in the child nodes of the largest-fan-out

node /* S and TL are generated by algorithms Find Largest Fanout and Pre-

Process Tags, respectively */

Output: the candidate list CL that contains all the candidate tags and their rankings

Begin /* Algorithm */

1. Initialize PAIR TBL := [] /* PAIR TBL is an array of ordered pairs

of the form (STR, NUM), where STR is a pair of adjacent candidate

tags and NUM is the number of the appearance of STR in the child

nodes of the root node in S */

2. FOR j := 1 TO the fan-out of the root node R in S DO

2.1. Set tag1 := the name of the start-tag in the j-th child node of R

and tag2 := the name of the start-tag in the (j+1)-th child node

of R

2.2. IF tag1 = TL[x]:STR AND tag2 = TL[y]:STR, where

0 � x, y < jTLj /* both tag1 and tag2 are candidate tags */

THEN IF the fan-out of the j-th child node of R is 0 /* leaf node */

2.2.1. THEN set txt := Get P laintext(the j-th child node of R)

2.2.2. IF jtxtj = 0 OR txt[z] = ` ', 8z, 0 � z < jtxtj

/* tag1 and tag2 are adjacent */

THEN PAIR TBL := Add Pair(PAIR TBL, tag1, tag2)

END-IF

END-IF

END-IF

END-FOR

3. Initialize n := 0 and L := [] /* L is an array of ordered pairs of the form

(STR, NUM), where each entry stores the name of a candidate tag

and its smallest absolute value */

4. FOR j := 0 TO jPAIR TBLj - 1 DO

4.1. Set tg1 := the string that appears before ` ' in PAIR TBL[j]:STR

and tg2 := the string that appears after ` ' in PAIR TBL[j]:STR

/* calculates the absolute value of the di�erence between the count

for the pair and the count for tg1 alone */

4.2. Find position i in TL such that TL[i]:STR = tg1, 0 � i < jTLj

and set num1 := abs(TL[i]:NUM - PAIR TBL[j]:NUM)

35

/* calculates the absolute value of the di�erence between the count

for the pair and the count for tg2 alone */

4.3. Find position i in TL such that TL[i]:STR = tg2, 0 � i < jTLj

and set num2 := abs(TL[i]:NUM - PAIR TBL[j]:NUM)

4.4. IF tg1 6= L[k]:STR, 8k, 0 � k < n

THEN set L[n]:STR := tg1, L[n]:NUM := num1, and n := n + 1

ELSE IF L[p]:NUM > num1, where L[p]:STR = tg1 /* p is the

location in L where tg1 occurs */

THEN L[p]:NUM := num1 /* replaces smaller abs. value */

END-IF

END-IF

4.5. IF tg2 6= L[k]:STR, 8k, 0 � k < n

THEN set L[n]:STR := tg2, L[n]:NUM := num2, and n := n + 1

ELSE IF L[p]:NUM > num2, where L[p]:STR = tg2 /*p is the

location in L where tg2 occurs */

THEN L[p]:NUM := num2 /* replaces smaller abs. value */

END-IF

END-IF

END-FOR

5. Set L := sort(L) so that for each j and k such that 0 � j < k < jLj,

L[j]:NUM � L[k]:NUM /* the tag with the smallest absolute value

is placed at the beginning of L */

6. Initialize CL := [] and r := 0 /* r is the counter of the rankings */

7. FOR m := 0 TO jCLj - 1 DO /* determines the ranking of each

candidate tag */

7.1. Set CL[m]:STR := L[m]:STR and r := r + 1

7.2. IF m > 0 AND L[m]:NUM = L[m� 1]:NUM

THEN CL[m]:NUM := CL[m� 1]:NUM /* assigns the same

ranking to the two candidate tags which have the same

absolute value */

ELSE CL[m]:NUM := r /* assigns ranking r to the candidate tag

CL[m]:STR */

END-IF

END-FOR

8. Return CL

End /* Algorithm */

36

Algorithm Add Pair /* Adds a pair of tags into an entry of the input table or

increase the count of the entry where the pair locates */

Input: PAIR TBL, and tag1 and tag2, where PAIR TBL is an array of ordered

pairs of the form (STR, SUM), where STR is a pair of candidate tags and

SUM is the number of appearance of STR in the adjacent child nodes of the

largest-fan-out node, and tag1 and tag2 are two adjacent candidate tags

Output: PAIR TBL, an updated version of the input table PAIR TBL

Begin /* Algorithm */

1. Let n := jPAIR TBLj and tg := concat(tag1, ` ', tag2) /* n is the

number of entries in PAIR TBL and tg is the result of combining

tag1 and tag2 together with a space in between */

2. IF tg 6= PAIR TBL[j]:STR, 8j, 0 � j < n /* the pair does not

exist in the table */

THEN set PAIR TBL[n]:STR := tg, PAIR TBL[n]:NUM := 1

ELSE set PAIR TBL[p]:NUM := PAIR TBL[p]:NUM + 1, where

PAIR TBL[p]:STR = tg /* p is the location in PAIR TBL

where tg occurs */

END-IF

3. Return PAIR TBL

End /* Algorithm */

37

assumption that the records of interest often have approximately the same length,

and thus the standard deviation of the intervals (in terms of the number of characters)

between the record separators should be smaller than that of the other candidate tags.

The SD heuristic is detailed in algorithm Apply SD, which takes the largest-

fan-out sub-tree and a list of candidate tags (which is generated by algorithm Pre-

Process Tags) as input and returns the candidate list. Apply SD �rst calls algorithm

Calculate SD, which calculates the standard deviation of the lengths of the plain text

lying between each pair of consecutive, identical candidate tags1. It then determines

the ranking of each candidate tag based on the standard deviation of the lengths.

The candidate tag which has the smallest standard deviation is ranked as 1.

Algorithm Calculate SD �rst calculates the length of the plain text between each

pair of consecutive, identical candidate tags T and places all the lengths into an array

INTERV AL. Hereafter, it calculates the standard deviation of the lengths, denoted

SD(T), using the formula ((
Pn

k=0(Xk � ave(INTERV AL))2)=(n + 1))1=2 [Wit89],

where Xk is an element of INTERV AL (0 � k � n), the number of elements in

INTERV AL is n + 1, and ave(INTERV AL) is the average of the elements in

INTERV AL.

The complexity of algorithm Apply SD is O(e), where e is the length of the

plain text in the descendent nodes of the largest-fan-out sub-tree S. In order to

calculate SD(T) of each distinct candidate tag T , algorithm Calculate SD retrieves

the plain text in S, which is of length e. Thus, the complexity of Calculate SD is

O(e). Apply SD calls Calculate SD for each distinct candidate tag and sorts all

the distinct candidate tags according to the standard deviations of the lengths for

the candidate tags to obtain the rankings. Hence, the complexity of Apply SD is

1A pair of consecutive, identical candidate tags is a pair of identical tags which appear one after
the other regardless whether there exist other distinct tags or plain text in between.

38

O(se+s log s), where s is the number of distinct candidate tags. Since e� s, we can

neglect all the operations on s and conclude that the complexity of Apply SD is O(e).

Since e � n, where n is the size of the Web document from which S is constructed,

algorithm Apply SD has time complexity O(n).

For example, consider the largest-fan-out sub-tree rooted at node td in Figure 2.5

and the three candidate tags `hr', `b', and `br' as computed in Section 2.4. Algo-

rithm Calculate SD determines the standard deviation of the lengths between each

pair of identical candidate tags `hr', `b', and `br', respectively. In processing `hr',

Calculate SD constructs INTERV AL = [486, 637, 710], calculates the summation

of all the elements in INTERV AL, which is sum = 1833, and computes the average

of all the elements in INTERV AL, which is ave = 1833/3 = 611. Thus, SD(hr)

is (((486 � 611)2 + (637 � 611)2 + (710 � 611)2)=3)1=2 �= 93.28, whereas SD(b) and

SD(br) are 200.78 and 260.33, respectively. Since SD(hr) < SD(b) < SD(br), CL

= [(hr, 1), (b, 2), (br, 3)] is computed by algorithm Apply SD.

3.4 The Identi�able \Separator" Tags Heuristic

For documents with multiple records, there tends to be a few tags that consistently

separate these records. By looking at these documents and keeping track of the sepa-

rator tags and how often these separator tags are used, we can create an ordered list

of the most commonly used tags that separate records of interest in Web documents.

To construct an identi�able-\separator"-tags list (called IST) that contains the

most commonly used tags that separate records of interest in Web documents, we

retrieved one hundred Web documents in two application areas (obituaries and car

advertisements applications) from ten di�erent Web sites, manually determined the

record separators of these documents, and included them in IST . The tags in IST

are ordered according to the occurrences of the tags being the separators. The tag

39

Algorithm Apply SD /* Orders candidate tags according to their standard devia-

tions */

Input: the largest-fan-out sub-tree S and TL, an array of ordered pairs of the form

(STR, NUM), where STR is the name of a candidate tag and NUM is the

number of appearance of STR in the child nodes of the root node in S /* S and

TL are generated by algorithms Find Largest Fanout and Pre-Process Tags,

respectively */

Output: the candidate listCL that contains all the candidate tags and their rankings

that are determined by their standard deviations

Begin /* Algorithm */

1. Initialize n := 0 and L := [] /* n denotes the size of CL and L is an

array of ordered pairs of the form (STR, NUM) */

2. WHILE n < jTLj DO /* jTLj denotes the size of TL */

2.1. Set sd := Calculate SD(S, TL[n]:STR) /* calculates the standard

deviation of a candidate tag */

2.2. Set temp := (TL[n]:STR; sd) /* temp is an ordered pair (STR,

NUM), and TL[n]:STR is the name of a candidate tag */

2.3. For each element in L, 0 � j < i < k < n and j + 1 = i = k - 1,

if L[j]:NUM � temp:NUM � L[k]:NUM , then L := insert(L,

temp, i) /* inserts temp into the i-th position of L */

2.4. Set n := n + 1

END-WHILE

3. Initialize r := 0 /* r is the counter of the rankings */

4. FOR m := 0 TO n - 1 DO /* determines the ranking of each tag */

4.1. Set CL[m]:STR := L[m]:STR and r := r + 1

4.2. IF m > 0 AND L[m]:NUM = L[m� 1]:NUM

THEN CL[m]:NUM := CL[m� 1]:NUM /* assigns the same

ranking to the two tags with the same standard deviation */

ELSE CL[m]:NUM := r /* assigns ranking r to the candidate

tag CL[m]:STR */

END-IF

END-FOR

5. Return CL

End /* Algorithm */

40

Algorithm Calculate SD /* Calculates the standard deviation of tag T */

Input: the largest-fan-out sub-tree S and T , where T is the name of a candidate tag

Output: sd, the standard deviation of the lengths of plain text between each pair of
consecutive T s

Begin /* Algorithm */

1. Initialize sum := 0, n := 0, and INTERV AL := [], where INTERV AL
is an array of integers /* An integer in INTERV AL denotes the length

of the plain text between a pair of consecutive, identical candidate
tags, and sum is the sum of INTERV AL */

/* Builds INTERV AL */
2. Let p be the position of the �rst appearance of T in the start-tag

element in a child node of the root node in S
3. WHILE p 6= -1 /* If T is not found in the child nodes of S, then

p = -1 */
3.1. Let q be the position of the next appearance of T in the start-tag

element of a child node (which is the right sibling of the node that
contains p), or -1, otherwise

3.2. Initialize len := 0 /* len is the size of the plain text between a pair
of identical candidate tags */

3.3. IF q 6= -1
3.3.1. THEN FOR j := p TO q - 1 DO

Let u be the sub-tree rooted at the j-th child node of the root
node in S, and set len := len + size of(Get P laintext(u))
/* size of(String) is the number of characters in String */
END-FOR

3.3.2. Let INTERV AL[n] := len and n := n + 1
3.3.3. Let sum := sum + len

END-IF

3.4. Set p := q
END-WHILE
/* Calculates SD(T) */

4. Set ave := sum / n
5. Initialize sum2 := 0
6. FOR j := 0 TO n - 1 DO

sum2 := sum2 + (INTERV AL[j]� ave)2

END-FOR
7. Set sd := (sum2=(n+ 1))1=2

8. Return sd

End /* Algorithm */

41

Record Separator Number of Appearance

hr 75
tr 15
td 15
a 14

table 10
p 10
br 10
h4 10
h1 10

strong 10
b 6
i 5

Table 3.1: The record separators and the numbers of their appearances in 100 Web
documents

that appears more often than the others as the record separator in the hundred Web

documents is placed at the beginning of IST . Table 3.1 lists all the record separators

and the numbers of their appearances in the hundred Web documents we examined.

Note that since one document may contain more than one record separator, the total

number of appearances of record separators can be greater than one hundred (i.e.,

the number of Web documents). If the appearances of two record separators are the

same, we randomly order these two tags in our IST .

The identi�able-\separator"-tags (IT) heuristic is implemented in algorithmApply

IT which takes a list of candidate tags generated by algorithm Pre-Process Tags

and IST (i.e., the list of tags as shown in Table 3.1) as input and returns the candidate

list CL which contains the candidate record separators and their rankings. The

algorithm compares the candidate tags with the tags in IST . If a tag D in IST is

also a candidate tag, D is inserted into CL. Eventually, the tags in CL are ordered

according to their relative positions in IST . Thus, the ranking of D is determined by

its position in CL. For example, If D is the �rst element in CL, the ranking of D is 1.

42

Algorithm Apply IT /* Determines whether a tag in IST is a candidate tag */

Input: TL and IST , where TL is an array of ordered pairs of the form (STR,

NUM), where STR is the name of a candidate tag and NUM is the number

of appearance of STR in the child nodes of the largest-fan-out node and IST

consists of the names of identi�able-\separator"-tags /* TL is generated by

algorithm Pre-Process Tags */

Output: the candidate list CL which contains the candidate tags which appear in

IST and their rankings which are determined by their relative positions in IST

Begin /* Algorithm */

1. Initialize n := 0 /* n denotes the size of CL */

2. FOR each element e in IST (chosen according to the left-to-right order)

DO

IF e = TL[j]:STR, 8j, 0 � j � jIST j

THEN Let CL[n]:STR := e, CL[n]:NUM := n + 1, and n := n + 1

/* CL[n]:STR is the name of the candidate tag, whereas

CL[n]:NUM is the ranking of CL[n]:STR */

END-FOR

3. Return CL

End /* Algorithm */

Since Apply IT compares each tags in IST with each candidate tag, the complexity

of Apply IT is O(sl), where s is the number of distinct candidate tags and l is the

number of tags in IST . Since both the number of candidate tags s and the length of

our tag list l are small compared to the size of a document, the cost of this operation

is negligible.

For example, consider the Web document in Figure 2.1, tags `hr', `b', and `br' are

the candidate tags computed in Section 2.4. IST = [hr, tr, td, a, table, p, br, h4, h1,

strong, b, i], as shown in Table 3.1. Since candidate tags `hr', `b', and `br' appear in

IST and since `hr' appears in front of `br' and `br' in turn appears in front of `b' in

IST , algorithm Apply IT simply returns CL = [(hr, 1), (br, 2), (b, 3)].

43

3.5 The Highest-Count Tags Heuristic

For a Web document D that contains multiple records of interest, the tag with the

most appearance may be the record separator of D. In the highest-count tag (HT)

heuristic, we construct a candidate list CL that contains the names of the distinct

candidate tags and their rankings. The rankings of candidate tags in CL are deter-

mined by the number of appearance of each candidate tag in the child nodes of the

largest-fan-out node constructed from D. The candidate tag with the largest number

of appearance is ranked as 1 and placed at the beginning of CL. For example, con-

sider the Web document in Figure 2.1 and TL = [(hr, 4), (b, 8), (br, 5)] as computed

in Section 2.4. (The second element of each ordered pair is the number of appearance

of its corresponding �rst element.) Since 8 > 5 > 4, CL = [(b, 1), (br, 2), (hr, 3)].

The HT heuristic is implemented in algorithm Apply HT . Suppose the number of

distinct candidate tags is s. The candidate tags are sorted according to their numbers

of appearances in the child nodes of the largest-fan-out node in a tag tree T . The

complexity of sorting these candidate tags is O(s log s). Also, the complexity of

assigning a ranking to each distinct candidate tag is O(s). Thus, the complexity of

Apply HT is O(s log s+s), which is O(s log s). Since s� n, where n is the length of

the Web document from which T is constructed, we consider the cost of this operation

to be negligible.

44

Algorithm Apply HT /* Orders the candidate tags so that the candidate tag with

the most appearance in TL is at the beginning of the candidate list */

Input: TL, an array of ordered pairs of the form (STR, NUM), where STR is the

name of a candidate tag and NUM is the number of appearance of STR in

the child nodes of the largest-fan-out node of a tag tree /* TL is generated by

algorithm Pre-Process Tags */

Output: the candidate list CL that contains all the candidate tags and their rankings

that are determined by the second elements of the ordered pairs in TL

Begin /* Algorithm */

1. Set TL0 := sort (TL) so that for each j and k such that

0 � j < k < jTLj, TL0[j]:NUM � TL0[k]:NUM /* the tag with the

most appearance is placed at the beginning of the list */

2. Initialize r := 0 /* r is the counter of the rankings */

3. FOR m := 0 TO jTLj - 1 DO /* determines the rankings of each

candidate tag */

3.1. Set CL[m]:STR := TL0[m]:STR and r := r + 1

3.2. IF m > 0 AND TL0[m]:NUM = TL0[m� 1]:NUM

THEN CL[m]:NUM := CL[m� 1]:NUM

ELSE CL[m]:NUM := r

END-IF

END-FOR

4. Return CL

End /* Algorithm */

45

Chapter 4

The Combined Heuristics

Each individual heuristic presented in Chapter 3 is independent of the others and

works well only for some particular Web documents. We therefore consider combining

two or more of these individual heuristics to improve our chances of locating the

correct record separator in a Web document. To determine the best combination of

the �ve individual heuristics, we adopt Stanford certainty theory to help us make the

decision.

In Section 4.1 we explain our adaptation of Stanford certainty theory. As will

be evident in this section, we will need to have certainty factors for candidate tags

determined by each of our individual heuristics (or certainty factors for short). To

obtain these certainty factors, we conducted some initial experiments. In Section 4.2

we describe these initial experiments and how we used them to obtain the certainty

factors. Given these certainty factors, we present in Section 4.3 the process for se-

lecting our combined heuristic. Finally, we present in Section 4.4 our overall heuristic

algorithm for discovering record separators in Web documents that contain multiple

records.

46

4.1 Certainty Measure

Stanford certainty theory de�nes a con�dence measure and generates some simple

rules for combining independent evidence. The certainty factor associated with evi-

dence E for some observation B, denoted CF (E : B), is the probability with which

E supports B. For example, if the observation is that a candidate tag <A> is the

record separator of a Web document D and CF (<A>) = 70%, then <A> has a 70%

chance to be the record separator of D. If two independent evidence support the

same observation B (e.g., two individual heuristics applied on a Web document D

support the same result that a particular candidate tag is the record separator of D),

Stanford certainty theory gives the following rule to combine these two evidence for

B. Suppose CF (E1 : B) is the certainty factor associated with evidence E1 for some

observation B and CF (E2 : B) is the certainty factor associated with evidence E2

for the same observation B, then the new certainty factor of B, called the compound

certainty factor of B, is calculated by: CF (E1 : B) + CF (E2 : B) - CF (E1 : B) �

CF(E2 : B). By using this rule repeatedly, it is possible to combine the results of

evidence from any number of independent events that are used for determining B.

For example, if the certainty factors from three di�erent heuristics are 88%, 74%, and

66% that a tag <T> is the record separator in a Web document, then the compound

certainty factor for <T> is 98.93%. (The compound certainty factor is computed

using Stanford certain theory on these three certainty factors as 88% + 74% + 66%

- 88% � 74% - 88% � 66% - 74% � 66% + 88% � 74% � 66% = 98.93%.)

4.2 Initial Experiments

To determine the certainty factors for the �ve individual heuristics, we considered

two application areas: obituaries and car advertisements. Figures 3.1 and 4.1 give

47

the object-relationship model instances for the obituaries and car advertisements in

graphical form, respectively. To achieve geographical diversity (and thus hopefully a

reasonable sampling of di�erent kinds of Web documents), we chose ten on-line news-

paper sites1 (listed in Table 4.1) located in di�erent regions of the United States. For

each application, we retrieved �ve Web documents from each site. Thus, 100 exper-

imental Web documents were examined. After scanning through these documents,

we manually located the correct record separators in each of these 100 documents.

(Note that a Web document may contain more than one record separator, and the

same record separator may not be used in all the Web documents retrieved from

the same site.) We then applied each individual heuristic H on each experimental

Web document and compared the record separator retrieved by H with the manually

determined record separators.

Tables 4.2 and 4.3 give the results for obituaries and car advertisements, respec-

tively. The �rst row of Table 4.2 shows that 83% of the time the OM heuristic ranked

a correct record separator of an experimental Web document as its �rst choice and

17% of the time the OM heuristic ranked a correct record separator as its second

choice. Similarly, for the other heuristics, we calculated the percentage of Web doc-

uments in which a correct record separator was the �rst, second, third, or fourth

choice of the ranking obtained from each of the individual heuristics. In these initial

experiments, a correct record separator was always among the four highest ranked

choices for all the individual heuristics.

By comparing the percentages of the two application areas in Tables 4.2 and 4.3,

we can see that the results are reasonably consistent in both applications. We obtained

1In the process of choosing the sites for our initial experiments, we examined 14 di�erent sites.
At two sites their records always resided in more than one Web document and were connected by
hypertext links. At another site a tag in a Web document was used for all the purposes (such as line
break, paragraph break, and record separator). At yet another site two di�erent record separators
alternatively appeared at di�erent record boundaries. Web documents located at these four sites
did not �t our assumptions and thus were eliminated from consideration in our experiments.

48

On-line Newspaper URL

The Salt Lake Tribune http://www.sltrib.com
The Arizona Daily Star http://www.azstarnet.com
The Houston Chronicle http://www.chron.com
The San Francisco Chronicle http://www.sfgate.com
The Seattle Times http://www.seatimes.com
GoCincinnati.com http://classi�nder.gocinci.net/
The Standard Times http://www.s-t.com/
The Detroit Newspapers http://www.dnps.com
The Connecticut Post http://www.connpost.com
Access Atlanta http://www.accessatlanta.com

Table 4.1: On-line newspapers chosen for initial experiments

Heuristic ApproachnRanking 1 2 3 4

OM 83% 17% 0% 0%
RP 83% 7% 10% 0%
SD 59% 27% 14% 0%
IT 92% 8% 0% 0%
HT 58% 23% 17% 2%

Table 4.2: Experimental results for obituaries application

Heuristic ApproachnRanking 1 2 3 4

OM 86% 8% 4% 2%
RP 72% 18% 8% 2%
SD 72% 18% 10% 0%
IT 100% 0% 0% 0%
HT 40% 42% 16% 2%

Table 4.3: Experimental results for car advertisements application

49

Car

Make

Model

Year

Mileage

PhoneNr

Feature

0..1

1..*

has

0..1

1..*

has

0..1

1..*

has

0..1

1..*

has

1..*
0..1

is for

0..1

1..*

has

Price

0..1

1..*

has

Extension

0..1

1..*
has

->

Figure 4.1: Graphical car advertisements ontology

Heuristic ApproachnRanking 1 2 3 4

OM 84.50% 12.50% 2.00% 1.00%
RP 77.50% 12.50% 9.00% 1.00%
SD 65.50% 22.50% 12.00% 0.00%
IT 96.00% 4.00% 0.00% 0.00%
HT 49.00% 32.50% 16.50% 2.00%

Table 4.4: Certainty factors, as selected by our initial experiments

our certainty factors for candidate tags in each individual heuristic by averaging the

percentages in Tables 4.2 and 4.3. Table 4.4 shows the resulting certainty factors.

This table asserts that the highest ranking candidate tag chosen by the OM heuristic

has a certainty factor of 84.50%, that the second highest ranking candidate tag has

a certainty factor of 12.50%, and so on for the OM heuristic and also for all other

heuristics.

50

4.3 The Combined Heuristic

For our combined heuristic we had the choice of any combination of two, three, four,

or all �ve of the individual heuristics. It might seem that choosing the top two or

three individual heuristics and ignoring the rest might produce the best results. Be-

cause we did not know what combination to choose, we continued with our initial

experiments and tried all combinations on the same 100 Web documents as men-

tioned in Section 4.2. There are twenty-six (i.e.,
P

5

i=0C(5; i) � 6 = 26) possible

combinations. (Note that six of the possible combinations are excluded because we

cannot have none and we already have the results for the �ve individual heuristics.)

For each combination, we calculated the compound certainty factor for each can-

didate tag in our experimental documents. In each experimental document, the can-

didate tag with the highest compound certainty factor was chosen as the record

separator. We then determined the success rate of each combination on our experi-

mental Web documents. In order to calculate the success rate of a combination on

the experimental documents, we need to �rst obtain the success of a combined heuris-

tic on a particular document. If there are X tags that have the highest compound

certainty factors and only Y of these X tags are correct record separators in a Web

document D, then the success for D, denoted sc(D), is Y=X (i.e., there is Y=X%

chance that the correct record separator in D is chosen). If all the tags that have the

highest certainty factors are record separators in D (i.e., Y = X), then sc(D) is 1

(i.e., the correct record separator in D is always chosen by a combined heuristic). If

none of the tags that has the highest certainty factors is a record separator in D (i.e.,

Y = 0), then sc(D) is 0 (i.e., none of the correct record separators in D is chosen by

a combined heuristic). The success rate for a combination on n Web documents is

(
Pn

i=1(sc(Di))=n), where Di is the i-th experimental Web document. Table 4.5 shows

51

Compound Success Compound Success
Heuristic Rate Heuristic Rate

OR 85.83% OSI 95.00%
OS 88.00% OSH 87.50%
OI 95.00% OIH 95.00%
OH 79.00% RSI 95.00%
RS 79.50% RSH 85.50%
RI 95.00% RIH 95.00%
RH 76.33% SIH 95.00%
SI 95.00% ORSI 100.00%
SH 69.50% ORSH 82.50%
IH 95.00% ORIH 100.00%
ORS 81.50% OSIH 95.00%
ORI 93.33% RSIH 100.00%
ORH 84.83% ORSIH 100.00%

Table 4.5: Experimental results for all the combined heuristics

the success rates for all combinations. Note that in Table 4.5 we use O, R, S, I, and

H to represent the OM, RP, SD, IT, and HT heuristics, respectively. For example,

OR denotes the OM and RP combination.

By considering the success rates in Table 4.5, we realize that all the combinations

that include IT have high success rates (over 90%). This is not surprising since IT,

by itself, was the best in our initial experiments as Tables 4.2 and 4.3 show. We

also see, however, that ORSI, ORIH, RSIH, and ORSIH all have 100% success rate

for our experimental documents (i.e., in �nding a correct record separator in each

of the 100 experimental documents). In deciding among these four best choices, we

observed that any one of them could be chosen as our combined heuristic. Since all

�ve individual heuristics are independent and since they may all help �nd the correct

record separator in a Web document, we decided to choose ORSIH, which includes all

�ve individual heuristics, as the combined heuristic in our record-boundary discovery

approach.

52

Algorithm Apply CH describes the process of implementing ORSIH. For each

candidate tag C in the largest-fan-out sub-tree, Apply CH applies Stanford certainty

theory to the results of the �ve individual heuristics using the certainty factors as

shown in Table 4.4 and produces the compound certainty factor for C. Note that

the OM, RP, or IT heuristics may not supply a result (i.e., the returned result is

null). Apply CH returns a candidate list that contains all the candidate tags and

their compound certainty factors. The complexity of Apply CH is O(s), where s is

the number of distinct candidate tags.

4.4 The Record-Boundary Discovery Algorithm

We present our record-boundary discovery approach in algorithm Discover Record-

boundary.

For example, consider the Web document D in Figure 2.1. The results of applying

the �ve individual heuristics are as follows:

OML = [(hr, 1), (br, 2), (b, 3)]

RPL = [(hr, 1), (br, 2), (b, 3)]

SDL = [(hr, 1), (b, 2), (br, 3)]

ITL = [(hr, 1), (br, 2), (b, 3)]

HTL = [(b, 1), (br, 2), (hr, 3)]

Applying algorithm Apply CH to the results of the �ve individual heuristics

(shown above) yields CL = [(hr, 99.96%), (b, 64.75%), (br, 56.34%)]. Thus, `hr'

is chosen as the record separator of D since `hr' has the highest compound certainty

factor (99.96%) among all the three candidate tags.

We argued earlier that the time complexity of constructing the tag tree T of a

Web document D is O(n), where n is the length of D, which is the time complexity of

53

Algorithm Apply CH

Input: CFT , and six arrays TL, OML, RPL, SDL, ITL, and HTL of ordered

pairs of the form (STR, NUM), which are generated by algorithms Pre-

Process Tag, Apply OM , Apply RP , Apply SD, Apply IT , and Apply HT ,

respectively, for a Web document D. /* CFT is the certainty factors table as

shown in Table 4.4, and STR in the last �ve input is a candidate tag name

and NUM is the ranking of STR computed by the corresponding individual

heuristic */

Output: CL, an array of ordered pairs of the form (STR, NUM), where STR is the

name of a candidate tag and NUM is the compound certainty factor of STR

Begin /* Algorithm */

1. Initialize CL := []

2. FOR j := 0 TO jTLj - 1 DO

2.1. Set a := 0, b := 0, c := 0, d := 0, and e := 0 /* a, b, c, d, and e

are the certainty factors for TL[j]:STR, each determined by its

corresponding individual heuristic */

/* Find TL[j]:STR in each of the candidate lists generated by an

individual heuristic and obtain the certainty factor from each

individual heuristic */

2.2. IF OML 6= null /* the OM heuristic provides an answer for D */

AND TL[j]:STR = OML[k]:STR, 8k, 0 � k < jOMLj

THEN a := CFT [0][k] /* CFT [0] is the �rst row in Table 4.4 */

END-IF

2.3. IF RPL 6= null /* the RP heuristic provides an answer for D */

AND TL[j]:STR = RPL[k]:STR, 8k, 0 � k < jRPLj

THEN b := CFT [1][k] /* CFT [1] is the second row in Table 4.4 */

END-IF

2.4. IF TL[j]:STR = SDL[k]:STR, 8k, 0 � k < jSDLj

THEN c := CFT [2][k] /* CFT [2] is the third row in Table 4.4 */

END-IF

2.5. IF ITL 6= null /* the IT heuristic provides an answer for D */

AND TL[j]:STR = ITL[k]:STR, 8k, 0 � k < jITLj

THEN d := CFT [3][k] /* CFT [3] is the fourth row in Table 4.4 */

END-IF

2.6. IF TL[j]:STR = HTL[k]:STR, 8k, 0 � k < jHTLj

THEN e := CFT [4][k] /*CFT [4] is the last row in Table 4.4 */

END-IF

54

/* Apply Stanford certainty theory to calculate the compound

certainty factor for TL[j]:STR */

2.7. Set cf := a + b + c + d + e - a � b - a � c - a � d - a � e - b � c

- b � d - b � e - c � d - c � e - d � e + a � b � c + a � b � d +

a � b � e + a � c � d + a � c � e + a � d � e + b � c � d + b

� c � e + b � d � e + c � d � e - a � b � c � d - a � b � c � e

- a � b � d � e - a � c � d � e - b � c � d � e + a � b � c � d

� e

/* Insert TL[j]:STR and cf into CL */

2.8. Set temp := (TL[j]:STR, cf) /* temp is an ordered pair of the

form (STR, NUM) */

2.9. Set CL := insert(CL, temp) /* inserts temp into CL */

END-FOR

3. return CL

End /* Algorithm */

Algorithm Discover Record-boundary

Input: A Web document D

Output: The consensus record separator of D

Begin /* Algorithm */

1. call algorithm Construct Tree (in Section 2.2) to create the tag tree T of D

2. call algorithm Find Largest Fanout (in Section 2.3) to locate the largest-fan

-out sub-tree HF in T

3. call algorithm Pre-Process Tags (in Section 2.4) to extract the set of

candidate tags TL from HF

4. call algorithms Apply OM , Apply RP , Apply SD, Apply IT , and Apply HT

(in Chapter 3) to apply the �ve individual heuristics OM, RP, SD, IT, and

HT using TL and other inputs as detailed in each algorithm, respectively

5. call algorithm Apply CH to produce the compound certainty factor for

each candidate tag

6. choose the candidate tag with the highest compound certainty factor

computed in Step 5 as the record separator of D

End /* Algorithm */

55

Step 1 in algorithm Discover Record-boundary. Locating the largest-fan-out sub-tree

of T in Step 2 and creating TL in Step 3 take a constant amount of time. Applying

each individual heuristic in Step 4 takes at most O(n) time, with the understanding

that D is a Web document found in practice and that the regular-expression matching

for the OM heuristic has already been done for the overall data-extraction process.

Computing the compound certainty factor for each of the candidate tags in Step 5

using Stanford certainty theory is O(s), where s is the number of candidate tags, as

is choosing the candidate tag with the highest compound certainty factor. Hence, the

entire process for discovering the record separator of D is O(n) for practical cases

within the context of the larger data-extraction problem.

56

Chapter 5

Experimental Results

To verify the accuracy of our heuristic approach in discovering the correct record

separators, we examined four sets of Web documents in four di�erent application

areas. Each set contained �ve Web documents, each one retrieved from a di�erent

Web site, and there were twenty Web documents all together. The twenty Web sites

we chose were located in di�erent regions of the United States. Two of the sets

were documents for obituaries and car advertisements, the applications that we used

in our initial experiments (see Chapter 4). However, we chose di�erent groups of

Web documents in these two application areas from entirely di�erent sites to verify

our approach (compare Table 4.1 with the site listings in Tables 5.1 and 5.2). The

other two sets of Web documents were for two entirely di�erent applications, namely

computer job advertisements and university course descriptions (see the site listings

in Tables 5.3 and 5.4). The ontology for these two applications are given in Figures 5.1

and 5.2, respectively.

For each of the twenty Web documents, we applied the �ve individual heuristics

presented in Chapter 3 and ORSIH, selected as our combined heuristic as explained

in Chapter 4. For the OM heuristic, we chose the record-identifying �elds listed

in Figure 5.3 as our ontology rules for the corresponding application. Note that in

Figure 5.3 \KEYWORD(X)" denotes the keyword indicator associated with the set of

57

Job Contact

Email FaxVoiceWebSkill

0..1

1..*

has

0..1

1..*

has

0..*

1..*

has

0..1

1..*

has
0..*

1..*

requires

1 1..*

has

Degree

0..*

1..*

requires

 ->

Figure 5.1: Graphical computer job advertisements ontology

Course
DescriptionWhen To Offer

Description

Course Number

Title

Prerequistes

0..11..* has

1

1

has

1

1

has

1 1has

0..*

1..*

has

Credit Hours

1

1..*

has

 ->

Figure 5.2: Graphical university course descriptions ontology

58

Obituaries
KEYWORD(Internment)
KEYWORD(Funeral)
KEYWORD(BirthDate)
KEYWORD(DeathDate)

Car advertisements
Make
Model
KEYWORD(Mileage)

Computer job advertisements
KEYWORD(Voice)
KEYWORD(Fax)
Voice

University course descriptions
KEYWORD(CreditHour)
CourseNumber
KEYWORD(Prerequisite)

Figure 5.3: The ontology rules for the OM heuristic

objects X in the ontology rules (see Figure 3.2 for the obituaries application), whereas

the identi�able value indicator associated with the set of objects Y in the ontology

rules is denoted by \Y " in Figure 5.3 (e.g., buick is an identi�able value associated

with the set of objects MAKE in the car advertisements application). The results

of the rankings of the record separators generated by each heuristic are shown in

Tables 5.1 - 5.4. The numbers in each column are the rankings of the correct record

separator obtained by the heuristic. (Note that we assign the ranking to a candidate

tag DT determined by a combined heuristic H based on the compound certainty

factor for DT using H. A candidate tag with the highest compound certainty factor

is ranked 1 in H.) For the car advertisements appeared in the Sioux City Journal in

Table 5.2, for example, the OM heuristic ranked the correct record separator �rst, RP

ranked it second, SD also ranked it second, IT ranked it �rst, HT ranked it fourth,

and ORSIH ranked it �rst.

We also calculated the success rate for each heuristic on all experimental Web

59

On-line Newspaper URL OM RP SD IT HT ORSIH

Alameda Newspaper http://www.adone.com/alameda 1 1 1 1 1 1
Idaho State Journal http://www.journalnet.com 1 1 2 1 2 1
Sacramento Bee http://www.sacbee.com 1 1 1 1 1 1
Tampa Tribune http://www.tampatrib.com 1 1 1 1 1 1
Shoals Timesdaily http://www.timesdaily.com 1 1 1 1 2 1

Table 5.1: Test set 1 - obituaries

On-line Newspaper URL OM RP SD IT HT ORSIH

Arkansas Democrat- http://www.ardemgaz.com 1 1 1 1 2 1
Gazette

Sioux City Journal http://www.siouxcityjournal.com 1 2 2 1 4 1
Knoxville News http://www.knoxnews.com 1 1 1 1 1 1
Lincoln Journal Star http://www.nebweb.com 1 1 1 1 1 1
Reno Gazette - http://www.nevadanet.com/ 3 3 1 1 3 1

Journal renogazette

Table 5.2: Test set 2 - car advertisements

On-line Newspaper URL OM RP SD IT HT ORSIH

Baltimore Sun http://www.sunspot.net 1 1 1 1 2 1
Dallas Morning News http://dallasnews.com 1 1 2 1 2 1
Denver Post http://www.denverpost.com 4 1 1 1 4 1
Indianapolis Star/News http://www.starnews.com 1 1 1 1 1 1
Los Angeles Times http://www.latimes.com 2 3 2 1 2 1

Table 5.3: Test set 3 - computer job advertisements

University URL OM RP SD IT HT ORSIH

Brigham Young University http://www.byu.edu 2 2 1 1 1 1
MIT http://registrar.mit.edu 1 1 1 1 2 1
Kansas State University http://www.ksu.edu 1 1 2 2 2 1
USC http://www.usc.edu 1 1 2 1 1 1
Univ. of Texas - Austin http://www.utexas.edu 1 2 2 1 1 1

Table 5.4: Test set 4 - university course descriptions

60

Heuristic Approach Success Rate

OM 80%
RP 75%
SD 65%
IT 95%
HT 45%

ORSIH 100%

Table 5.5: Success rates of individual heuristics and ORSIH for experimental Web
documents

documents. Table 5.5 shows the results. (The success rates for all the individual

heuristics are very close to the success rates presented in Chapter 4.) We note that

even though none of the �ve individual heuristics had a 100% success rate, the success

rate for our combined heuristic (i.e., ORSIH) that we chose in Chapter 4 is 100% on

the experimental Web documents used in this chapter.

61

Chapter 6

Concluding Remarks

We have described a heuristic approach to discovering record boundaries in semistruc-

tured or unstructured Web documents which contain multiple records of interest sepa-

rated by one or more tags. In our approach, we (1) de�ned a tag tree T to capture the

structure of tags nested in a raw Web document, (2) located the sub-tree containing

the records of interest by searching for the largest-fan-out sub-tree in T , (3) identi�ed

candidate tags within the sub-tree, (4) applied �ve individual heuristics (ontology-

matching, repeating-tag pattern, standard deviation, identi�able \separator" tags,

and highest-count tags) to rank candidate tags, and (5) combined the results of the

�ve individual heuristics to select a consensus record separator by adopting Stanford

certainty theory. For practical cases and in the context of the overall data-extraction

process, the record-boundary-discovery process is O(n), where n is the size of a Web

document.

We applied this record-boundary-discovery approach in four di�erent application

areas (obituaries, car advertisement, job advertisement, and university course descrip-

tion) using Web documents obtained from twenty di�erent Web sites. The experi-

ments we conducted showed that this approach uniformly attained an accuracy of

100%.

Although we have accomplished our goal by showing that our approach to discover

62

record boundaries in a Web document is promising, much remains to be done. As for

future work, we note that our approach assumes that each Web document we process

(1) contains multiple records and (2) contains at least one record separator. In this

thesis, we do not verify these assumptions on an input Web document, nor do we

solve similar document classi�cation problems such as determining if a record spans

over multiple Web documents or if a Web document only contains a single record.

Furthermore, we have done all our work with HTML documents; however, we believe

that most of our work should carry over directly to other DTDs, such as XML. All

these issues will be of interest in our further research.

63

Bibliography

[Abi97] S. Abiteboul. Querying semi-structured data. In Proceedings of Inter-

national Conference on Database Theory(ICDT), pages 1{18, Delphi,

Greece, January 1997.

[Ade98] B. Adelberg. Nodose - a tool for semi-automatically extracting struc-

tured and semistructured data from text documents. In Proceedings of

the 1998 ACM SIGMOD International Conference on Management of

Data, pages 283{294, Seattle, Washington, June 1998.

[AK97a] N. Ashish and C. Knoblock. Semi-automatic wrapper generation for

internet information sources. In Proceedings of the CoopIS'97, 1997.

[AK97b] N. Ashish and C. Knoblock. Wrapper generation for semi-structured

internet sources. SIGMOD Record, 26(4):8{15, December 1997.

[AM97] P. Atzeni and G. Mecca. Cut and paste. In Proceedings of the 16th

ACM PODS, pages 144{153, May 1997.

[Ape94] P. M. G. Apers. Identifying internet-related database research. In Pro-

ceedings of the 2nd International East-West Database Workshop, pages

183{193, Klagenfurt, 1994. Springer-Verlag.

64

[BDFS97] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding struc-

ture to unstructured data. In Proceedings of the International Confer-

ence on Database Theory (ICDT), 1997.

[DEW97] R.B. Doorenbos, O. Etzioni, and D.S. Weld. A scalable comparison-

shopping agent for the world-wide web. In Proceedings of the First

International Conference on Autonomous Agents, pages 39{48, Marina

Del Rey, California, February 1997.

[ECJ+98] D.W. Embley, D.M. Campbell, Y.S. Jiang, Y.-K. Ng, R.D. Smith, S.W.

Liddle, and D.W. Quass. A conceptual-modeling approach to extracting

data from the web. In Proceedings of the 17th International Conference

on Conceptual Modeling (ER'98), pages 78{91, Singapore, November

1998.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Wood�eld. Object-oriented Systems

Analysis: A Model-Driven Approach. Prentice Hall, Englewood Cli�s,

New Jersey, 1992.

[Emb80] D.W. Embley. Programming with data frames for everyday data items.

In Proceedings of the 1980 National Computer Conference, pages 301{

305, Anaheim, California, May 1980.

[GHR97] A. Gupta, V. Harinarayan, and A. Rajaraman. Virtual database tech-

nology. SIGMOD Record, 26(4):57{61, December 1997.

[HGMC+97] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Ex-

tracting semistructured information from the web. In Proceedings of the

Workshop on Management of Semistructured Data, Tucson, Arizona,

May 1997.

65

[KWD97] N. Kushmerick, D.S. Weld, and R. Doorenbos. Wrapper induction for

information extraction. In Proceedings of the 1997 International Joint

Conference on Arti�cial Intelligence, pages 729{735, 1997.

[LS98] G.F. Luger and W.A. Stubble�eld. Arti�cial Intelligence: Structures

and Strategies for Complex Problem Solving, Third Edition. Addison

Wesley Longman, Inc., 1998.

[MMK98] I. Muslea, S. Minton, and C. Knoblock. Stakler: Learning extraction

rules for semistructured, web-based information sources. In Proceedings

of AAAI'98: Workshop on AI and Information Integration, Madison,

Wisconsin, July 1998.

[Sod97] S. Soderland. Learning to extract text-based information from the world

wide web. In Proceedings of the Third International Conference on

Knowledge Discovery and Data Mining, pages 251{254, Newport Beach,

California, August 1997.

[Wit89] Robert S. Witte. Statistics. Holt, Rinehart and Winston, Inc., New

York, 1989.

[WWW] Homepage for BYU data extraction research group. URL:

http://osm7.cs. byu.edu/deg/index.html.

66

