
OWL-AA: Enriching OWL with Instance Recognition Semantics
for Automated Semantic Annotation

Yihong Ding, David W. Embley
Department of Computer Science

Brigham Young University
Provo, Utah 84602

(ding, embley)@cs.byu.edu

Stephen W. Liddle
Department of Information Systems

Brigham Young University
Provo, Utah 84602

liddle@byu.edu

Abstract

Although OWL provides a solid basis for many semantic
web applications, it lacks sufficient declarative semantics
for instance recognition to support automated semantic an-
notation. This omission prevents OWL from being a sat-
isfactory ontology language for automated semantic anno-
tation. This problem can be solved by adding declara-
tive instance recognition semantics to OWL. Our declara-
tive instance recognition semantics include external repre-
sentations and context recognition information of ontology
concepts. The implementation shows that the new auto-
mated annotation prototype system using OWL ontologies
with rich declarative instance semantics works well.

1 Introduction

Semantic annotation research is fundamental for the seman-
tic web. A semantic annotationprocess adds formal meta-
data to web pages. This metadata links data in a web page
to defined concepts in an ontology. Because machine agents
are capable of interpreting data with respect to an ontology,
annotated content becomes machine-processable.

Automated semantic annotation is the primary means
of adding machine-processable metadata to existing web
pages. Several researchers have suggested various ways to
automate semantic annotation [1, 5, 12, 18, 20, 22]. Each
of these approaches has adapted a data extraction engine to
wrap and annotate existing web pages. None of the adapted
data extraction engines, however, was originally designed
to produce annotations linking extracted data to an ontol-
ogy [18, 19]. To provide machine-processable semantics
for annotated content, these approaches therefore need to
do post-processing to map the extracted data to an ontol-
ogy. Kiryakov and his colleagues referred to this problem
as the “main drawback” of current approaches to automate

annotation [18]. They suggest that extraction techniques for
semantic annotation should “use ontolog[ies] more directly
during the process of extraction” [18].

Our ontology-based semantic annotation research shows
that this suggested solution does indeed work [7]. There is,
however, a hidden problem in this solution that has not yet
been well addressed. Any system that does not conform to
semantic web standards will not be interoperable and thus
will not be used. The current standard (W3C recommended)
semantic web ontology language is OWL (Web Ontology
Language) [W3Cowl]. But OWL lacks sufficient declara-
tive semantics for instance recognition, which are needed to
extract data directly with respect to ontologies. Our ontol-
ogy language [7] supports rich declarative instance recog-
nition semantics in our annotation approach, but it is not a
standard.

To solve this problem, we propose in this paper an ex-
tension of OWL that contains enriched declarative instance
recognition semantics. Because this extension is specifi-
cally for automated annotation, we call it OWL-AA (OWL
for Automated Annotation). Instead of just proposing our
OWL-AA syntax, the goal of this paper is to illustrate the
essence of a sound solution to the problem.

The primary contribution of this work is that we have
proposed OWL-AA as a way to extend OWL to provide for
automated semantic annotation. Furthermore, as a signifi-
cant consequence, OWL-AA separates the creation of do-
main knowledge from the implementation of a processor to
use domain knowledge for the purpose of annotating web
pages. With OWL-AA, domain experts need not know how
to implement extraction and annotation programs, and pro-
gram developers need not be domain experts.

To explain these contributions, Section 2 presents the de-
tails of our proposed instance recognition semantics and
their role within the automated semantic annotation para-
digm. Section 3 provides an overview of OWL with the pur-
pose of explaining why it is insufficient to specify enough



instance semantics for automated semantic annotation. Sec-
tion 4 introduces OWL-AA, and Section 5 describes the
prototype system and experiments we have done to show
the effectiveness of OWL-AA. Finally, we discuss related
work in Section 6 and conclude the paper in Section 7.

2 Instance Recognition Semantics and Auto-
mated Semantic Annotation

2.1 Instance Recognition Semantics and Declara-
tive Representation

Instance recognition semantics(IRecogniS) are
machine-processable recognizers of instances that belong
to the extention of a formal declaration, which usually
could be an ontology concept. Normally, when people
present the extention of an ontology concept, they list a
set of data instances (setting A-Box). IRecogniS, however,
present the ways of interpreting data instantiations of an
ontology concept.

Despite of its name, people have used instance recog-
nition semantics for decades to do data extraction and the
other data recognition related work. Most commonly, soft-
ware developers encode IRecogniS within programming
procedures. The text analysis engines (TAE) in the IBM
UIMA (Unstructured Information Management Architec-
ture) project are typical examples [15]. Each TAE is a
small reusable programming procedure that do a particular
data analysis on source documents, for example, pulling out
chemical names and their interactions, or identify events,
locations, products, opinions about products, problems,
methods etc. Users can aggregate multiple TAEs to achieve
complicated document-level analysis requirements. Be-
sides UIMA, many traditional data extraction tools also
contain either manually programmed or machine-learned
procedures to recognize data instances for individual extrac-
tion categories.

A significant characteristic of all these IRecogniS rep-
resentations is that they are declared in procedures. Proce-
dural representations of IRecogniS, or we simply call itPro-
cedural IRecogniS, are hard to build, share and reuse. As we
know, a complete automated semantic annotation process
involves two types of very different knowledge formal-
izations. First, it requires formal declarations of IRecog-
niS, which should be created by domain experts. Second,
it requires carefully implemented annotating programs to
process IRecogniS, which should be coded by software de-
velopers. In general, these two groups of experts are not
overlapped. We cannot expect every domain expert to be
a professional software developer; and neither can we ex-
pect a professional software developer to be also an expert
on many different domains. One major problem of using

procedural IRecogniS is that it mixes knowledge specifi-
cations and knowledge processing. Hence it increases the
difficulty of creating high quality procedural IRecogniS be-
cause it thus requires the two mentioned group of experts to
closely cooperate together.

Despite of this cooperation problem, procedural IRecog-
niS lead to more troubles on knowledge sharing and com-
munication. A procedure written in one programming lan-
guage is generally not interpretable by a party that uses
another programming language. Even if two parties use
a same programming language such as C++, they may
still have to re-compile procedure code when they are un-
der different platforms such as Windows or Unix. This
heterogeneity problem with programming languages and
platforms makes it difficult to share procedural IRecogniS
through the web.

Less degree of shareability also leads to less degree of
reusability. To reuse existing procedural IRecogniS, a user
must carefully identify the original executional environment
that the procedural IRecogniS are based, beyond the check-
ing of an appropriate application domain. A very undesir-
able, but very much possible, problem is that a user can-
not directly use some existing procedural IRecogniS in spite
that they are appropriate for the application domain and cor-
rectly formalized. The reason is that the user may have to
recode these procedural IRecogniS according to his own ex-
ecution environment. And as we all know, such a kind of
re-implementation is not trivial.

The last but not the least, it is not easy to make
procedural IRecogniS machine-interpretable. Even after
we have implemented procedural IRecogniS by platform-
independent programming languages, such as Java, and
stored them properly in an organized factory, they are,
in essence, still not machine-interpretable. The TAEs in
UIMA are typical examples. According to Ferrucci and
Lally [9], they expected to reuse TAEs through composi-
tion so as to reduce redundant effort. They, however, also
pointed out that such an “analysis engine assembler” was
human-guided. Professional experts, who possibly know
both the application domain and Java programming, need
to decide how to select appropriate TAEs from a TAE fac-
tory and manually compose them.

All of these discussions lead to a perspective: we need
declarative representations of IRecogniS, ordeclarative
IRecogniS, for automated semantic annotation. Declarative
IRecogniS are independent to procedures. Domain experts
can use declarative languages to present IRecogniS with-
out the need of knowing how to process them by imple-
mented programs. Similarly, software developers can im-
plement standard IRecogniS processors by any program-
ming languages without the need of knowing which domain
is going to process. Comparing to procedures, declarative
IRecogniS are easy to share and reuse through the web.

2



Nevertheless, when such a declarative language is a type
of ontology language, these declarative IRecogniS become
machine-interpretable.

2.2 Declarative Instance Recognition Semantics
for Automated Annotation

Our goal is to separate the specifications of domain-
specific knowledge from the specifications of domain-
independent knowledge. As we have seen, two different
groups of experts must cooperate closely to build proce-
dural IRecogniS. The underlying reason is that IRecogniS
are domain-specific, and thus these procedures are domain-
specific. Software developers must consult with domain ex-
perts to create IRecogniS procedures. This analysis give us
the hint that we must make declarative IRecogniS take care
of all the required domain-specific knowledge specification
issues for automated semantic annotation. Then the pro-
cedures of IRecogniS processing become totally domain-
independent. In such a new paradigm, the work of domain
experts and software developers becomes independent to
each other.

Data frame in information extraction ontology is an ex-
ample of best practice about declarative IRecogniS. We
have shown successful practices of using information ex-
traction ontologies with data frames for automated informa-
tion extraction [8] and for automated semantic annotation
[7]. Therefore, starting with the discussion of data frame,
we present the necessary intent of declarative IRecogniS for
automated semantic annotation.

Figure 1 shows an example of presenting IRecogniS for
the conceptsPriceandMakein the domain of car advertise-
ments in the format of data frames used by data-extraction
ontologies [8]. As Figure 1 shows, we use regular expres-
sions to capture external representations. ThePrice data
frame, for example, captures instances of this concept such
as “4500” and “17,900”. The left context phrase shows
that it may has “$” directly adhere to the left of the ex-
tracted data. So “$4500” has a higher confidence to become
a price. Although not shown in this figure, we can spec-
ify right context phrases as well as the left context phrase.
A data frame’s context keywords are also regular expres-
sions. ThePrice data frame in Figure 1, for example, in-
cludes context keywords such as “price,” “asking,” “obo,”
and “negotiable”. In the context of one of these keywords,
if a number appears, it is likely that this number is a price
(e.g. “asking 17,900 obo). Sometimes external representa-
tions are best described by lexicons or other reference sets.
These lexicons or reference sets are also regular expres-
sions, often simple lists of possible external representations,
and can be used in place of or in combination with regular
expressions. In Figure 1,CarMake.lexiconis a lexicon of
car makes, which would include, for example, “Toyota”,

Price
external representation:\d+ | \d?\d?\d,\d\d\d
left context phrases:\$?
context keywords:price| asking| obo| neg(\.|otiable)
...

end

Make
external representation:CarMake.lexicon
...

end

Figure 1. Sample (partial) Declarative In-
stance Recognition Semantics for Price and
Make in the domain of car ads.

“Honda”, and “Nissan” and potentially also misspellings
(e.g. “Volkswagon”) and abbreviations (e.g. “Chev” and
“Chevy”).

This example illustrates two major components of
declarative IRecogniS: external representations and contex-
tual representations. External representation expresses ex-
traction patterns, and contextual keywords or phrases de-
scribes typical context that helps to determine the presence
of instances of a concept. It is not surprising that contextual
representations are domain-specific. Nevertheless, the ex-
ternal representations are also domain-specific. For exam-
ple, when we declare IRecogniS of a conceptConsumer
Price , its external representations are different in the
domain of house-sale from which are in the domain of
apartment-rental, even though both of the domains are about
real-estate business. The consumer price in the former do-
main is rarely below $10,000 and the same defined price
in the latter domain is very unlikely over $10,000. As an-
other example, although the external representations of the
conceptNameare the same in the domain of student infor-
mation and the domain of faculty introduction, their recog-
nizing contexts are different. TheNamein the former do-
main includes context keywords such as “student” and “en-
roll,” but the Name in the latter domain includes context
keywords such as “faculty” and ”teach.”

With the use of data frames in ontologies, ourOntosdata
extraction engine and the automated semantic annotator
based uponOntosare domain-independent [4]. Within the
Ontosprocessor, we have implemented additional domain-
independent knowledge to help data processing. For exam-
ple, the recognition of a string overrides any recognitions
of its substrings. That is, when the system simultaneously
determines “Henry Ford” to be aPersonand “Ford”, which
is part of the “Henry Ford,” to be aCarMake, the system
eliminates the latter one because its super-string is identi-
fied to be an instantiation of another concept. Because all

3



these types of knowledge are domain-independent, to cre-
ate them is one-time effort by software developers. Also
because they are domain-independent, software developers
do not need to consult with domain experts to build them.
More importantly, later on when domain experts build spec-
ifications of their interested domains, they no longer need
to worry about these tedious domain-independent miscella-
nies. Therefore, they can pay their whole attentions to the
interesting “domain-specific” knowledge specifications.

Different from many other IRecogniS representations
(such as TAEs in UIMA), in data frames we do not sup-
port to declare document layout information (as Figure 1
shows). It is due to that layout is for displaying, not for
describing data. We expect an annotation system based on
processing declarative IRecogniS to continually work on a
web page when its layout changes. A reality of current web
is that web page layouts do change from time to time, and to
automatically detect these changes is very difficult. There-
fore, layout-independence is a preferable feature of auto-
mated semantic annotation, and our declarative IRecogniS
satisfy this preference. This layout-independent property
has been calledresiliency[19].

Moreover, resiliency also means that an annotation
process can automatically work correctly on new web pages
only if they are for the same application domain. The layout
of information does not matter, only appearance of data in
expected conditions matters.

With both domain-independent and layout-independent
features, our semantic annotator does hold improved degree
of automation. Both of these independent properties reduce
the needs for human intervention when either application
domains or web page layouts change. Therefore, we may
say that the use of declarative instance recognition seman-
tics improves the degree of automation of automated seman-
tic annotation systems. An important remaining problem is,
however, that our declarative IRecogniS are not standard. In
the other words, we need to make our declarative IRecogniS
be compatible to semantic web standards, which is the rest
of this paper.

3 Brief Overview of OWL

OWL is a standard of presenting ontologies in the seman-
tic web [23]. Knowledge specification in OWL ontologies
is very declarative. OWL provide varied syntaxes to specify
rich semantics in target domains. In brief, we can categorize
existing OWL constructs into three types. To illustrate our
points, we use a well-known “standard” OWL ontology, the
Food ontology in W3C web site.1 Figure 2 shows partial of
the Food ontology in its RDF/XML style.

First, OWL provides formal constructs of specifying
classes, relations, and different types of constraints. As in

1http://www.w3.org/TR/2003/WD-owl-guide-20030331/food.owl

<owl:Ontology rdf:about=“”>
<rdfs:comment>Derived from ... .</rdfs:comment>

</owl:Ontology>
<owl:Class rdf:ID=“ConsumableThing” />
<owl:Class rdf:ID=“MealCourse”>

<rdfs:subClassOf rdf:resource=“#ConsumableThing” />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=“#hasFood” />
<owl:minCardinality

rdf:datatype=“&xsd;#nonNegativeInteger”>1
</owl:minCardinality>

</owl:Restriction> ...
<rdfs:subClassOf>
...

</owl:Class>
<owl:Class rdf:ID=“Fish”>

<rdfs:subClassOf rdf:resource=“#Seafood” />
...

</owl:Class>
<owl:Class rdf:ID=“BlandFish”>

<rdfs:subClassOf rdf:resource=“#Fish” />
<owl:disjointWith rdf:resource=“#NonBlandFish” />

</owl:Class>
...
<owl:ObjectProperty rdf:ID=“hasFood”>

<rdfs:domain rdf:resource=“#MealCourse” />
<rdfs:range rdf:resource=“#EdibleThing” />

</owl:ObjectProperty>
...
<BlandFish rdf:ID=“Halibut” />
<BlandFish rdf:ID=“Flounder” />
<NonBlandFish rdf:ID=“Swordfish” />

Figure 2. Sample food.owl (adopted from W3C
web site, slightly reformatted).

Figure 2, an OWL class can be as simple as just a declara-
tion like ConsumableThing, or it can include detailed spec-
ifications of its related properties and constraints likeMeal-
Course. A relation in OWL can be a property, likehasFood,
with specified domains and ranges. Or it can be a hierar-
chical relationship such asFish is rdfs:subclassOf Seafood.
OWL also provides multiple specifications of constraints on
relations, which are calledRestrictions. In our example, we
show a cardinalityRestrictionon the propertyhasFoodthat
shows whenMealCourse hasFood, it has at least oneEdi-
bleThing.

Besides domain description, or someone call it the T-
Box specifications, the second type of specifications OWL
supports is data instance binding with ontology concepts,
which someone also call it the A-Box specifications. In

4



our Figure, bothHalibut andFlounderareBlandFish; and
Swordfishis NonBlandFish.

At last, OWL supports human to put human-interpretable
comments into ontologies. These comments are for human
readers to understand an ontology. They are, however, es-
sentially not machine-interpretable. In Figure 2, the second
line, for example, explains a brief history about from where
this Food ontology is derived.

With this brief classification of OWL declarations, we
can see that OWL only provide very limited supports of
declarative IRecogniS. By using OWL, we can assign in-
dividuals to classes. But there are no formal constructs
that allow us to specify a recognizer for a class. Moreover,
although Figure 2 does show that OWL supports primary
XML datatypes, and even enumerated datatypes (not shown
in this figure), they are not enough for the purpose of auto-
mated semantic annotation. Some people may argue that
whether we can userdfs:comment, as in the second line,
to declare IRecogniS, since in general we can put whatever
we want insiderdfs:comment. This is technically applica-
ble, but semantically incorrect.rdfs:commentis for human-
readable comments, and it has been formally defined to hold
this meaning. If we put IRecogniS inside this tag, machines
are not going to distinguish an IRecogniS declaration from a
normal comment. Therefore, we need an extension of OWL
for automated annotation, which is OWL-AA.

4 OWL-AA: OWL for Automated Annota-
tion

There are three designing perspectives on OWL-AA.
First, it must be fully compatible to the current OWL dec-
larations. It means that any interpretations in OWL-AA are
not going to be conflict to existing OWL declarations. It
also means that the new OWL-AA representations should
follow the representation style of normal OWL. Second,
its declarations should be easily attachable and detachable.
That is, the addition of OWL-AA will not affect any existing
OWL declarations. Our projection is that we can add OWL-
AA declarations into any existing OWL ontologies with-
out deviating any original interpretations. Also, by simply
detaching OWL-AA declarations, any OWL-AA ontology
becomes a valid normal OWL ontology. Third, it should
not introduce additional complexity of decidability. As we
know, a major designing problem of OWL is its decidability
issue. To resolve it, researchers have proposed three sublan-
guages, namely OWL-Full, OWL-DL, and OWL-Lite, that
are compromised to different degree of computational com-
plexity. We do not want to increase the language’s degree
of computational complexity because of OWL-AA.

With the three perspectives, we define the RDF schema
for the OWL-AA extension as Figure 3 shows. At the be-
ginning, we specify three XML namespaces used in the

<?xml version=“1.0” encoding=“UTF-8”?>
<rdf:RDF

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=“http://www.w3.org/2001/01/rdf-schema#”
xmlns:owl=“http://www.w3.org/2002/07/owl#”>
<rdfs:Class rdf:ID=“ExternalRepresentation”/>
<rdfs:Class rdf:ID=“ContextualRepresentation”/>
<rdfs:Class rdf:ID=“RegularExpression”>

<rdfs:subClassOf
rdf:resource=“#ExternalRepresentation”/>

</rdfs:Class>
<rdfs:Class rdf:ID=“LexiconList”>

<rdfs:subClassOf
rdf:resource=“#ExternalRepresentation”/>

</rdfs:Class>
<rdfs:Class rdf:ID=“ContextPhrase”>

<rdfs:subClassOf
rdf:resource=“#ContextualRepresentation”/>

</rdfs:Class>
<rdfs:Class rdf:ID=“ContextKeyword”>

<rdfs:subClassOf
rdf:resource=“#ContextualRepresentation”/>

</rdfs:Class>
<rdfs:Class rdf:ID=“LeftContextPhrase”>

<rdfs:subClassOf rdf:resource=“#ContextPhrase”/>
</rdfs:Class>
<rdfs:Class rdf:ID=“RightContextPhrase”>

<rdfs:subClassOf rdf:resource=“#ContextPhrase”/>
</rdfs:Class>
<rdf:Property rdf:ID=“ExtractionPattern”>

<rdfs:domain rdf:resource=“owl:Class”/>
<rdfs:range rdf:resource=“#ExternalRepresentation”/>

</rdf:Property>
<rdf:Property rdf:ID=“ExtractionContext”>

<rdfs:domain rdf:resource=“#ExternalRepresentation”/>
<rdfs:range rdf:resource=“#ContextPhrase”/>

</rdf:Property>
<rdf:Property rdf:ID=“ExtractionKeyword”>

<rdfs:domain rdf:resource=“#ExternalRepresentation”/>
<rdfs:range rdf:resource=“#ContextKeyword”/>

</rdf:Property>
</rdf:RDF>

Figure 3. RDF Schema Defines Extension of
OWL.

5



definition: rdf, rdfs, and owl. According to our discus-
sions of data frame in Section 2, we declare two basic rdfs
classesExternalRepresentationandContextualRepresenta-
tion to be the main body of IRecogniS declarations.Ex-
ternalRepresentationhas two subclasses, which areReg-
ularExpressionandLexiconList. Accordingly, they repre-
sent the types of external representations as the examples of
PriceandMakein Figure 1.ContextualRepresentationalso
has two subclasses, which areContextPhraseandContex-
tKeyword. They, respectively, present the context phrases
and context keywords as Figure 1 shows. In detail, as we
mentioned before, we distinguish left context phrases and
right context phrases. So they are the subclasses ofCon-
textPhrase.

In this definition, we also defined three properties. As
Figure 3 shows, for eachowl:Class, we can declareExter-
nalRepresentationas itsExtractionPattern. For eachEx-
ternalRepresentation, we can declareContextPhraseas its
ExtractionContext, andContextKeywordas itsExtraction-
Keyword.

Figure 4 shows the instance recognition semantics in
Figure 1 declared by OWL-AA. To be able to use for-
mal OWL-AA definitions, first we need to add anowlaa
namespace declaration at the beginning of an ontology file,
as the first line in Figure 4. Originally, we useowl:Class
to declare a class in a normal OWL ontology. So do we
using OWL-AA. The only difference is that we now need
to add a new property ofowlaa:ExtractionPatternwithin
the declaration of a class if an ontology developer de-
cides to add IRecogniS declarations for this class. In our
example, the external representations ofPrice is stored
in a new classPriceER. Note that although the declara-
tion of PriceER is totally within the scope of OWL-AA,
most of its representations, as Figure 4 shows, are nor-
mal OWL representations. As we have already known,
PriceERshould be presented asowlaa:RegularExpression.
Also, it may have multipleowlaa:ExtractionContextand
owlaa:ExtractionKeywordproperties. Following the exam-
ple, we specify the details of both external representations
and contextual information ofPrice. They have exactly the
same semantic meanings as Figure 1 shows.

Similarly, we can declare IRecogniS forMakein Figure
1. As in the end of Figure 4 shows, the only difference from
the declared IRecogniS forPrice is that the external repre-
sentation ofMakeis from a dictionary file instead of regular
expressions. So when we declare an instance ofMakeER,
we present the URL of the dictionary file, instead of exact
values.

A special addition is the internal datatypes of external
representations and context representations. In the figure,
we declaredER-value, CT-value, and KW-value. All of
them are bound to XML String datatype. We can, however,
omit these declarations and simplify the presentations be-

<rdf:RDF ... xmlns:owlaa=“http://www.deg.byu.edu/owlaa-rdfs#”>
<owl:Class rdf:ID=“Price”>

... (standard OWL declaration of owl:Class Price)
<rdfs:subClassOf> <owl:Restriction>

<owl:onProperty rdf:resource=“owlaa:ExtractionPattern” />
<owl:allValuesFrom rdf:resource=“PriceER” />

</owl:Restriction> </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID=“PriceER”/>

<rdfs:subClassOf rdf:resource=“owlaa:RegularExpression”/>
<rdfs:subClassOf> <owl:Restriction>

<owl:onProperty rdf:resource=“owlaa:ExtractionContext” />
<owl:someValuesFrom rdf:resource=“PriceER-CT-L” />

</owl:Restriction> </rdfs:subClassOf>
<rdfs:subClassOf> <owl:Restriction>

<owl:onProperty rdf:resource=“owlaa:ExtractionKeyword” />
<owl:allValuesFrom rdf:resource=“PriceER-KW” />

</owl:Restriction> </rdfs:subClassOf>
...

</owl:Class>
<owl:Class rdf:ID=“PriceER-CT-L”/>

<rdfs:subClassOf rdf:resource=“owlaa:LeftContextPhrase”/>
</owl:Class>
<owl:Class rdf:ID=“PriceER-KW”/>

<rdfs:subClassOf rdf:resource=“owlaa:ContextKeywor”/>
</owl:Class>
<owl:DatatypeProperty rdf:about=“ER-value”>

<rdfs:domain rdf:resource=“owlaa:ExternalRepresentation”/>
<rdfs:range rdf:resource=“&xsd;#string”/> </...>

<owl:DatatypeProperty rdf:about=“CT-value”>
<rdfs:domain rdf:resource=“owlaa:ContextPhrase”/>
<rdfs:range rdf:resource=“&xsd;#string”/> </...>

<owl:DatatypeProperty rdf:about=“KW-value”>
<rdfs:domain rdf:resource=“owlaa:ContextKeyword”/>
<rdfs:range rdf:resource=“&xsd;#string”/> </...>

<PriceER rdf:ID=“PriceER-1”/>
<ER-value rdf:datatype=“&xsd;#string”/>

\d+ | \d?\d?\d,\d\d\d</ER-value>
<owlaa:ExtractionContext rdf:resource=“#PriceER-CT-L-1”/>
<owlaa:ExtractionKeyword rdf:resource=“#PriceER-KW-1”/>

</PriceER>
<PriceER-CT-L rdf:ID=“PriceER-CT-L-1”>

<CT-value rdf:datatype=“&xsd;#string”/>
\$?</CT-value> </...>

<PriceER-KW rdf:ID=“PriceER-KW-1”>
<KW-value rdf:datatype=“&xsd;#string”/>

price| asking| obo| neg(\.|otiable)</KW-value> </...>
<owl:Class rdf:ID=“MakeER”/>

<rdfs:subClassOf rdf:resource=“owlaa:LexiconList”/>
</owl:Class>
<MakeER rdf:ID=“MakeER-1”/>

<ER-value rdf:datatype=“&xsd;#string”/>
CarMake.lexicon</ER-value>

</MakeER>
</rdf:RDF>

Figure 4. IRecogniS Declaration of Figure 1 in
OWL-AA.

6



cause currently all of them are simple strings. But we finally
decide to present them in this way because we want to show
that OWL-AA is able to support other, possibly more com-
plicated, datatypes as well. Although based on our prac-
tice, using regular expressions to represent extraction pat-
terns works well. We do not object to use any other com-
plicated object datatypes to represent extraction patterns or
contextual patterns. On the contrary, we believe that com-
plicated datatypes of extraction patterns could improve the
accuracies of data recognition results.

Finally, we do a quick review of the three perspectives
we mentioned at the beginning. This OWL-AA presenta-
tion is fully compatible to current OWL. We have added a
few new formal constructs without modifying any existing
ones. Also, these new constructs are defined upon RDFS on
which OWL is defined. So there is no problem seamlessly
put them together.

Even more important, as Figure 4 shows, the declara-
tion of IRecogniS using OWL-AA is completely detach-
able. Figure 4 shows only the OWL-AA part of a complete
ontology. For users who do not require IRecogniS infor-
mation and believe that the IRecogniS declarations increase
the burden of knowledge sharing, it is straightforward to re-
move all the OWL-AA declarations and they will get a plain
OWL ontology as usual. Similarly, when users do expect to
add IRecogniS declarations in their existing OWL ontology,
it is quite easy because they do not need to make a change
of any lines of their existing OWL ontology.

As a direct consequence of this easy-to-detach property,
OWL-AA does not introduce any new decidability com-
plexity into OWL. OWL-AA additions is an independent
attachment to a normal OWL ontology. Hence any exist-
ing OWL inference engine can process an OWL-AA ontol-
ogy just as processing a normal OWL ontology. OWL-AA,
however, does provide richer semantics that could be help-
ful to derive more delicate inferential conclusions. We are
going to explore some of its usage beyond automated anno-
tation in Section 6.

When we only focus on the OWL-AA attachment part
itself, it is still fully decidable. In the context of this paper,
we are not going to present a theoretic proof on its decid-
ability. As a simple explanation, both of our external repre-
sentations and contextual representations can be presented
in regular expressions, which are basically finite automata.
And we know that we can decide the output of a finite au-
tomata in polynomial time.

5 Automated Annotation System

This work is a part of a big project of build a practical,
automated semantic annotation system. Figure 5 shows the
architecture of the entire system. Our projection of such
a system is to make it annotate web pages in a domain-

Ontology-based
Resilient 

Data Recognizer

Task-input Interface

Web Pages

Ontology 
(optional input)

Ontology-input Interface

…

…

Ontology-base

Annotation
Generator

Layout-specific
Fast-performing
Data Recognizer

Conceptual Annotator

Structural Annotator
Heavy-load, focused 
domain tasks

Light-load, diverse 
domain tasks

Sample pages

Dynamic generation

Ontology Creation 
Module

Ontology update or web-page-based 
domain selection 

Ontology Assembler

Selected Knowledge Components

…

Annotated
Web Pages

O
ntology

C
onverter

O
ntology

C
onverter

Figure 5. System Architecture

independent and layout-independent way, while we expect
the system to have high-speed performance when process-
ing large size tasks. Also, the system is going to provide fa-
cilities for users so that they are able to assemble unique do-
main ontologies for their own special applications. A more
details description of the entire system can be found in [6]
for readers who are interested in this project.

An important part of this semantic annotator project is
the ontology converter (as Figure 5 shows). The converter
is to do transformation between OWL-AA representations
and OSMX representations, which is what we discussed
in Section 2. Our adopted ontology-based data recognizer
takes OSMX ontologies as its input, and so does our anno-
tator. But OSMX is not a standard, and so a system based
on OSMX ontologies is difficult to be used by normal se-
mantic web users. The ontology converter is to resolve this
problem. Since OWL-AA is full compatible to OWL and its
presentations is totally OWL-style, it is very straightforward
for normal OWL users to augment any existing OWL on-
tologies to be OWL-AA ontologies. Through the ontology
converter, our system therefore can take OWL-AA, besides
OSMX, ontologies as its input. Also, on the output side, the
ontology converter will convert OSMX representations to
OWL representations. Therefore, our annotation results are
going to be presented with respect to standard OWL ontolo-
gies instead of OSMX ontologies. This change also makes
our annotation results be more useable by normal semantic
web consumers.

Except of IRecogniS declarations, an OSMX ontology
[7, 8] is semantically equivalent to an OWL ontology,
although syntactically they are quite different from each
other. For example, both of the languages construct a
graph of domain knowledge with classes (or object sets in
OSMX), properties (or relationship sets in OSMX), restric-
tions (such as participation constraints in OSMX), and hi-
erarchical declarations (such as is-a declaration in OSMX).

7



A direct syntax-to-syntax transformation, however, is both
tedious and error-prone. A complete syntax-to-syntax con-
version must base on very carefully theoretical proof of the
semantic equivalence. Otherwise, a careless ontology con-
version is easy to cause the problem of information leak,
i.e., the converted domain is not exactly the domain before
it is converted. OWL is built upon a very delicate analysis of
description logic. Unfortunately, however, we are not such
experts that know every detail about the logic foundation of
OWL.

To solve this problem, we have used Jena [16], a stan-
dard semantic web framework. Jena is a carefully designed
semantic web project primarily by HP research. In essence,
Jena can take an input of OWL ontologies and convert them
to be a Jena graph. Also, it has well-designed functions
that can output correct OWL ontologies based on any con-
structed Jena graph. This nice feature really solves our
problem of avoiding information leak during ontology con-
version. As long as we can correctly present our OSMX
domain declarations in Jena graphs, we can promise that
there should be no information leak because these Jena de-
velopers are the group of people that help to build the logic
foundation of OWL.

Fortunately, our OSMX ontologies are also conceptual
graphs [8], which is very much alike the conceptual graphs
OWL ontologies represent. Moreover, Jena graph, by its
designers’ words, is not only for OWL ontologies, but also
for ontologies no matter of their representing languages. We
found that it was much easier for us to convert our OSMX
ontologies to Jena graphs than through directly syntax-to-
syntax conversion to OWL ontologies.

A problem in this conversion process is the IRecogniS
declarations because neither OWL nor Jena graph has pre-
reserved rooms for IRecogniS. But again, we have designed
our OWL-AA extensions to be a fully detachable part of
OWL ontologies. Hence we have added some new classes
in Jena so that each named ontology class object can hold
an additional data structure that contains IRecogniS decla-
rations. This part of ontology conversion code is written
by ourselves. Again, since they can be sit totally separated
to the other OWL representations, our new implementation
does not affect the correctness of original Jena ontology
model.

6 Related Work and Discussion

There are three categories of related work:instance
recognition semantics declarations, extension of OWL, and
ontology conversion. Although the principle of IRecogniS
is not new, very few explorative studies have ever done
on declarative IRecogniS, or even procedural IRecogniS.
Many users have coded IRecogniS into their procedures.
For example, a common part of most data extraction tools

is wrapper, which wraps representations of desired data in
target documents [19]. These wrappers therefore present
IRecogniS. In general, more or less these wrappers con-
tain document layout information. Although processing ex-
traction based on layouts does help to improve a system’s
performance of speed, it is not desirable when the focus
is knowledge sharing and reusing. As we discussed ear-
lier, the inclusion of layout information makes IRecogniS
generally inapplicable to a web page from another resource
because layouts are usually different with respect to differ-
ent resources. Consequently, even layout-independent part
of IRecogniS in these wrappers also becomes very hard
to reuse since it is difficult to separate them from layout-
dependent part of IRecogniS.

IBM UIMA [9] is a typical approach that has seri-
ously addressed the issues of sharing and reusing pro-
cedural IRecogniS. Besides, machine learning researchers
used to train machines to learn domain-specific data ex-
traction rules, which belong to IRecogniS. Some of these
learned rules are claimed to be applicable in different ex-
traction tasks. So they are also examples of IRecogniS
reuse. The difference between our declarative IRecogniS
and all these previous attempts is that we are trying to for-
malize the IRecogniS declarations so that they fit better to
the requirements of semantic web applications. Semantic
annotation is a typical application field that we can gain
benefits by using declarative IRecogniS. Nevertheless, later
on in this section we are going to address several other
semantic web applications to which declarative IRecogniS
also contribute.

Although OWL is the current W3C recommendation of
web ontology languages, researchers have pointed out that
OWL is not sufficient for every semantic web work. Hence
it is not surprising to see several proposed extensions of
OWL. For example, Bouquet and et. al. proposed C-OWL
(Context OWL) to localize content of ontologies and to sup-
port explicit ontology mappings which allow for limited and
totally controlled forms of global visibility [3]. According
to the authors, such a type of problem “could not other-
wise be dealt with” except of C-OWL. Nevertheless, Pan
and Horrocks proposed another extension of OWL, which is
named OWL-Eu, to enrich OWL with customized datatypes
[21]. The authors pointed out that “many potential users
will not adopt OWL unless [the datatype support problem]
is overcome.” With our experiences, we also believe that
the support of customized datatypes could improve the per-
formance of data extraction. So we have reserved a space
to declare complex datatypes when using OWL-AA, as dis-
cussed in Section 4. Our OWL-AA is not only compatible
to OWL, but also automatically compatible to OWL-Eu.

Before semantic web, ontology had already been de-
signed and used for different purposes for years. One trend
of the semantic web is to uniform these different ontology

8



representations so that machine communications could be
simpler. Hence there has been several work of ontology
conversion. Among them, we are particularly interested in
the conversion studies between OWL and another ontology
language.

Kashyap and Borgida presented a work of represent-
ing UMLS (Unified Medical Language System) in OWL
[17]. In this work, the authors showed a syntax-to-syntax
ontology conversion based on a detailed theoretical analy-
sis of their logic foundations. Although this type of theo-
retical proofs ensures the integrity of ontology conversion,
proofs are unavoidably difficult. Hence many other ontol-
ogy conversion researchers tried alternative ways to avoid
such a sophisticated theoretical analysis of logic founda-
tions. Gasevic and et. al. published a study of doing trans-
formation between OWL and MDA (Model-Driven Archi-
tectures) through technological spaces, which are working
contexts with a set of associated concepts, body of knowl-
edge, tools, required skills, and possibilities [10]. Their im-
plementation is based on the similarity of UML diagrams of
two ontological representations and uses XSLT to perform
a syntax-to-syntax transformation. Heimbigner worked on
another project of transforming a specific software engi-
neering ontology CIM (Common Information Model) into
OWL [13]. He did an exhaustive syntactical analysis of
both languages and performed a syntax-to-syntax conver-
sion. Instead of through theoretical proofs to confirm the
integrity of these syntactical transformations, Heimbigner
processes a converted OWL ontology through Jena reasoner
to ensure that it derives the same inferential results as the
original CIM ontology does. This is, however, a neces-
sary but incomplete integrity checking. In practice, how-
ever, it usually brings satisfactory results. In the same year,
van Assem and et. al. presented another work of con-
verting MeSH (Medical Subject Headings) and WordNet,
two well-known thesauri, to RDF/OWL. They proposed a
three-step conversion, which consists of knowledge under-
standing preparation, syntactical conversion, and semantic
checking. The main contribution of their work is that it
formalizes the generic steps people need to follow to en-
sure a precise ontology conversion. Finally, but not the
last one, Hepp presented an approach, namely the gen/tax
approach, to represent hierarchy of industrial taxonomies
in OWL [14]. Hepp proposed a novel method of deriving
two concepts for each taxonomy category, one reflecting
the generic concept and another reflecting the taxonomy
concept. With this gen/tax technology, a conversion from
industrial taxonomies to OWL does not require reasoning
capabilities beyondrdfs:subClassOf.

Although OWL-AA is proposed for automated seman-
tic annotation, we can reduce the difficulty of several other
hard semantic web problems by using OWL-AA. A key ob-
servation is that if we can think of solutions before a prob-

lem comes to reality, usually the solutions could be much
easier than later. Within the semantic web scenario, almost
all the other applications are based on semantic annotations.
Hence the choices of semantic annotation approaches and
annotation representations not only affect the annotation
problem itself, but also significantly affect the performance
of the other semantic web applications that depend on an-
notations. Declarative IRecogniS provide facilities to solve
these hard problems. Two typical examples are the studies
of ontology mapping and annotation integrity.

Semantic-web machine agents communicate each other
through ontology mapping just like humans communicate
through talking. The most significant problem on ontology
mapping is that a machine agent does not know how to in-
terpret another ontology based on its own knowledge. Ear-
lier research has shown that IRecogniS help to achieve high
accurate, automated schema and ontology mappings [?, ?].
However, in general ontology mapping researchers need to
reproduce these IRecogniS information for their mapping
purposes because IRecogniS usually are missing, even in
populated ontologies. If we can keep the used declarative
IRecogniS (during annotation processes) in produced anno-
tations through OWL-AA, they become a valuable resource
that may provide great help for potential ontology mapping
requests in the future.

Annotation integrity is another important problem in se-
mantic web research. Without confident integrity checking,
semantic annotations will never be accepted by serious in-
dustrial users. Declarative IRecogniS can provide help on
solving this annotation integrity problem too. For exam-
ple, by using OWL-AA, we would not mistakenly accept
“Taurus” with its annotation to beCarMake, but rather cor-
rectly interpret it as aCarModel, in the domain of automo-
bile. Declarative IRecogniS allow annotation consumers to
verify the correct bindings of data instances to their onto-
logical definitions. Humans, as well as ontologies armed
with IRecogniS, can catch these kinds of errors, but they
are likely to be hard, if not impossible, for independent ma-
chine agents to catch and resolve.

7 Concluding Remarks

Our, as well as some previous, research studies show that
declarative instance recognition semantics are important for
automated semantic annotation. However, current seman-
tic web ontology language standard—OWL—does not well
support IRecogniS declarations. Hence it is not a satisfac-
tory ontology language for automated semantic annotation.
The OWL-AA extension of OWL is to solve this problem.
OWL-AA is full compatible to original OWL, fully attach-
able to and detachable from normal OWL ontologies, and it
does not introduce any new complexity of decidability into
OWL declarations. Our implementation and practices show

9



that this OWL-AA extensions work well in our automated
semantic annotation system.

Declarative instance recognition semantics are very use-
ful not only for automated annotation work. In this paper,
we also discuss several external problems that OWL-AA
can help to solve. For example, OWL-AA could be very
much useful to deal with the problems of ontology mapping
and annotation integrity.

Until now, the discussion of using declarative IRecogniS
is still limited. Its usage, however, could be very explo-
rative. In this paper, we have proposed OWL-AA. But it
does not mean that this is the best representation of declar-
ative IRecogniS everyone should follow. Instead, we want
to emphasize that we should pay the most attentions to the
use of IRecogniS for the semantic web practices itself. We
expect that this research work, as well as our practices on
exploring the use of declarative IRecogniS, is going to lead
more constructive discussions of exploring the use of on-
tologies for the semantic web.

References

[1] L. Arlotta, V. Crescenzi, G. Mecca, and P. Merialdo,
“Automatic annotation of data extracted from large
web sites,”Proc. Sixth International Workshop on the
Web and Databases (WebDB 2003), pp. 7-12, San
Diego, California, June 2003.

[2] M. van Assem, M.R. Menken, G. Schreiber, J. Wiele-
maker, and B. Wielinga, “ A Method for Converting
Thesauri to RDF/OWL,”Proc. Third International Se-
mantic Web Conference (ISWC 2004), pp. 17-31, Hi-
roshima, Japan, November 2004.

[3] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Ser-
afini, and H. Stuckenschmidt, “Contextualizing On-
tologies,”Journal of Web Semantics, vol. 1, no. 4, pp.
325–343, October 2004.

[4] Data Extraction Research Group, Brigham Young
University, URL: http://www.deg.byu.edu/.

[5] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha,
A. Jhingran, T. Kanungo, K.S. McCurley, S. Ra-
jagopalan, A. Tomkins, J.A. Tomlin, and J.Y. Zien,
“A Case for Automated Large Scale Semantic Anno-
tations,”Journal of Web Semantics, vol. 1, no. 1, pp.
115–132, December 2003.

[6] Y. Ding and D.W. Embley, “Using Data-Extraction
Ontologies to Foster Automating Semantic Annota-
tion,” Proc. PhD Workshop in 22nd International Con-
ference on Data Engineering (ICDE 2006), Atlanta,
Georgia, April 2006.

[7] Y. Ding, D.W. Embley, and S.W. Liddle, “Auto-
matic Creation and Simplified Querying of Semantic
Web Content: An Approach Based on Information-
Extraction Ontologies,” 2006. (submitted to review)

[8] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W.
Liddle, D.W. Lonsdale, Y.-K. Ng, and R.D.
Smith, “Conceptual-model-based data extraction from
multiple-record web pages,”Data & Knowledge Engi-
neering, vol. 31, no. 3, pp. 227-251, November 1999.

[9] D. Ferrucci and A. Lally, “Building an example ap-
plication with the Unstructured Information Manage-
ment Architecture,”IBM Systems Journal, vol. 43, No.
3, pp. 455–475, March 2004.

[10] D. Gasevic, D. Djuric, V. Devedzic, and V. Dam-
janovic, “Approaching OWL and MDA Through
Technological Spaces,”Proc. 3rd Workshop in Soft-
ware Model Engineering (WiSME2004) in conjunc-
tion with UML-2004, Lisbon, Portugal, October 2004.

[11] T.R. Gruber, “A translation approach to portable on-
tology specifications,”Knowledge Acquisition, vol. 5,
no. 2, pp. 199-220, 1993.

[12] S. Handschuh, S. Staab, and F. Ciravegna, “S-
CREAM Semi-automatic CREAtion of Metadata,”
Proc. European Conference on Knowledge Acquisi-
tion and Management (EKAW-2002), pp. 358–372,
Madrid, Spain, October, 2002.

[13] D. Heimbigner, “DMTF - CIM to OWL: A Case Study
in Ontology Conversion,”Proc. Ontology in Action
Workshop in conjunction with SEKE’04, Banff, Al-
berta, Canada, June 2004.

[14] M. Hepp, “Representing the Hierarchy of Industrial
Taxonomies in OWL: The gen/tax Approach,”Proc.
ISWC Workshop on Semantic Web Case Studies and
Best Practices for eBusiness (SWCASE’05), pp. 49–
56, Galway, Irland, November 2005.

[15] IBM Research, Unstructured Information
Management Architecture (UIMA), URL:
http://www.research.ibm.com/UIMA/.

[16] Jena, A Semantic Web Framework for Java, URL:
http://jena.sourceforge.net/.

[17] V. Kashyap and A. Borgida, “Representing the UMLS
Semantic Network using OWL,”Proc. Second Inter-
national Semantic Web Conference (ISWC 2003), pp.
1–16, Sanibel Island, Florida, October 2003.

10



[18] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D.
Ognyanoff, “Semantic Annotation, Indexing, and Re-
trieval,” Journal of Web Semantics, vol. 2, no. 1, pp.
49–79, December 2004.

[19] A.H.F. Laender, B.A. Ribeiro-Neto, A.S. da Silva, and
J.S. Teixeira, “A brief survey of web data extraction
tools,” SIGMOD Record, vol. 31, no. 2, pp. 84-93,
June 2002.

[20] S. Mukherjee, G. Yang, and I.V. Ramakrishnan, “Au-
tomatic Annotation of Content-Rich HTML Docu-
ments: Structural and Semantic Analysis,”Proc. Sec-
ond International Semantic Web Conference (ISWC
2003), pp. 533–549, Sanibel Island, Florida, October,
2003.

[21] J. Z. Pan and I. Horrocks, “OWL-Eu: Adding cus-
tomised datatypes into OWL,”Journal of Web Seman-
tics, vol. 4, no. 1, pp. 29–39, January 2006.

[22] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni,
A. Stutt, and F. Ciravegna, “MnM: Ontology Driven
Tool for Semantic Markup,”Proc. Workshop Se-
mantic Authoring, Annotation & Knowledge Markup
(SAAKM 2002), pp. 43–47, Lyon, France, July, 2002.

[23] W3C (World Wide Web Consortium) OWL
Web Ontology Language Reference, URL:
http://www.w3.org/TR/owl-ref/.

11


