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1 Introduction

The World Wide Web contains abundant repositories of
information in HTML documents – indeed, it contains
so much that locating information of interest is a huge
challenge. Even sorting through a tiny subset of HTML
documents for particular items of interest is overwhelming.
How canwe automatically select just those documents that
have the needed information for a user?

In this paper, we focus on the specialised subproblem
of servicing users seeking highly specific information
about items of interest either for themselves or for
their customers. In both cases, users only want data-rich
Web documents in a narrow domain of interest, either
for manual perusal for themselves or for subsequent
automatic information extraction for their customers.
Often, the users we consider have a long-term need
for gathering information within a particular domain of

Copyright © 2008 Inderscience Enterprises Ltd.



4 L. Xu and D.W. Embley

interest. Examples include users wanting to purchase a car,
rent an apartment, or find genealogical information about
their ancestors.

In our work we apply techniques from data
extraction (Laender et al., 2002), information retrieval
(Baeza-Yates and Ribeiro-Neto, 1999), and machine
learning (Quinlan, 1993). Using these techniques, we
exploit the content of HTML documents and construct
automated processes to do categorisation (i.e., to classify
a document as belonging or not belonging to the specified
domain of interest). The HTML documents we consider
include semistructured HTML documents, HTML tables,
and HTML forms. Given a set of HTML documents, we
use an extraction ontology to find expected ontological
vocabulary (keywords and keyword phrases) and expected
ontological instance data (particular values for ontological
concepts). We then give extracted vocabulary and instance
data to machine-learned rules to determine whether
the HTML documents contain items of interest for the
application.

The basic motivation for our ontological approach is
the belief that if we can encode a formal conceptualisation
(Gruber, 1993) of the items of interest to a user, we
can use this formal conceptualisation to identify Web
documents that contain them. A disadvantage of this
approach, of course, is the cost of constructing extraction
ontologies (http://www.deg.byu.edu/multidemos.html).1

The approach is therefore not useful for ad hoc,
one-time queries, but rather for applications requiring
repeated searches or requiring informational repository
construction. An advantage, on the other hand, is that
the precision and recall can be high, making the effort
worthwhile. The approach is particularly useful for
applications where subsequent extraction is wanted or
where semantic annotation is needed.

This paper expands on our previous work (Embley
et al., 2001) by

• extending our coverage – adding single-record
documents, forms, and documents with linked
subdocuments in addition to multiple-record
documents

• redoing earlier experiments and expanding the
applications used for experiments

• completely rewriting the description of our approach

• improving our heuristics leading to better results.

This paper presents our contributions as follows.
Section 2 discusses related work. Section 3 illustrates
our assumptions about HTML documents and provides
an example to which we refer throughout the paper
to illustrate our ideas. Section 4 describes extraction
ontologies, on which we base our work. Given an
extraction ontology and a set of HTML documents,
Section 5 explains how we automatically obtain statistical
measures for determining document relevance using a set
of heuristics including:

• a density heuristic

• an expected-values heuristic

• a grouping heuristic.

Section 6 presents the architecture of the framework we
have built. Section 7 provides an empirical evaluation
of our approach including our experimental results.
Section 8 gives concluding remarks and our plans for
future work.

2 Related work

An abundance of related work has been done, but outside
of our lab, none of this related work applies extraction
ontologies to do categorisation. Although related work
is not based on extraction ontologies, it is nevertheless
relevant because it provides for comparison of alternatives
and because it suggests techniques applicable to the goal of
finding items of interest inWebdocuments.Representative
of the abundant related work, we cite the following.

Search engines

For our application, search engines (e.g., Google
(www.google.com) and Swoogle (Ding et al., 2004)) are
clearly not precise enough.

Information retrieval

More general Information Retrieval (IR) techniques
(Baeza-Yates and Ribeiro-Neto, 1999) and even Web IR
techniques (Kobayashi and Takeda, 2000) typically do
not solve the problem well either. Traditional IR systems
retrieve documents based on exact matching of terms
in user queries and documents. Fang and Zhai (2006)
address this issueby incorporating semantic termmatching
techniques into IR models. Lin and Demner-Fushman
(2006) apply conceptual knowledge in a restricted domain
such as Clinical Medicine to achieve a better performance
gain. IR systems usually only facilitate retrieving
information units quickly for relatively short-term
information needs of a diverse large group of users,
whereas our application facilitates specific interests of
aparticular user or a groupofusers and supports long-term
information needs. Nevertheless, some semantic-specific
IR techniques like (Chu-Carroll et al., 2006) use XML
fragments to conceptualise, restrict, or relate terms in
user queries in order to achieve a high-precision search
over semantically annotated text. Semantic annotation,
however, is still only being explored and there are no
encouraging results that are good enough to be practical
(Dill et al., 2003; Kiryakov et al., 2004).

Text categorisation

Text categorisation systems assign text documents to one
or more predefined categories based on their content
(Sebastaini, 2002). Most of these systems are based on
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machine learning; they use pre-classified documents to
train classifiers, as we do. They do not use specifically
identified and extracted features as we do, however, and
they therefore lack support to explicitly specify items of
user interest in a precise way. Instead, each document
is represented using a feature vector, which is typically
a vector of terms that appear in document categories.
The number of terms is often high, resulting in feature
vectors of high dimensionality. Processing large feature
sets, however, is not reliable because of the typical
lack of sufficient training data. Thus, to obtain optimal
cost-effectiveness, a pass of dimensionality reduction is

Figure 1 A car-ads Web document and a non-car-ads Web document: (a) car ads from www.elkintribune.com and (b) items for sale
from www.crookstontimes.com

required. In removing features to represent documents,
the reduction process must be preformed with care to
avoid removing potentially useful information about the
meaning of the documents. Some approaches (Schapire
et al., 2002; Wu and Srihari, 2004; Dayanik et al., 2006)
combine domain knowledge, informally represented as
keywords, pseudo training data, and domain knowledge
text respectively, to learn from a handful training
examples. In recent work on aligning ontologies with
real-world data sets, researchers suggest extracting a finite
set of words as a context to describe a document,
generalising this context for a concept given training
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data, and then providing a ranking method that ranks
ontology concepts according to their relevancy to a given
context extracted from a document (Segev and Gal, 2007).
Compared with this work on text categorisation, our work
avoids the high-dimensionality problem associated with
machine learning by carefully choosing a few, specific,
heuristic-based features, all of which are made available
through extraction ontologies.

Focused crawling

Focused crawlers (Chakrabarti, 1999; Chakrabarti et al.,
1999) aim to search and retrieve only the subset of
the Web that pertains to a pre-defined set of topics.
Like most text-categorisation systems, the topics are
specified using exemplary documents. The essential idea in
focused crawling is thehypothesis that there is a short range
of topical locality on the Web. Focused crawlers exploit
topic locality based on the linkage structure of the Web.
To effectively discover resources, focused crawlers start at
a fewwell chosen points and only crawl within the range of
documents satisfying a pre-defined set of topics. The topic
of a crawled page is determined by both its content and
its linked neighbours on the Web. Our system does not

Figure 2 HTML page with table from www.bobhowardhonda.com (see online version for colours)

Figure 3 HTML form and submission results from wwwheels.com: (a) filled in HTML form and (b) retrieved car ads after submitting
the form in Figure 3(a) (see online version for colours)

crawl, per se; instead it evaluates any page given to it
with respect to specified items of user interest. Similar to
focused crawling,we do look at linkeddocuments, but only
in specialised cases where we seek additional information
about the initial page from which we came.

Extraction ontologies

Within our lab, we and other colleagues have tried
alternative ways to make use of results obtained by
applying extraction ontologies to do text categorisations
(Euzenat and Shvaiko, 2007; Xu and Embley, 2006).2

We have tried Vector Space Model (VSM) and Clustering
Models (Kwong and Ng, 2003), logistic regression
(Wang and Ng, 2003), statistical multivariate analysis
(Ng et al., 2001), and machine learning (Embley et al.,
2001). In all this work, we only considered multiple-record
Web documents – documents such as classified ads with
one entry after another all from the same domain.

3 HTML documents

The HTML documents we consider in our work include
semistructured HTML documents such as the lists of ads
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in Figure 1, HTML tables such as the one in Figure 2, and
HTML forms such as the one in Figure 3(a), which when
filled-in and processed, yields a table or a semistructured
list such as the one in Figure 3(b).

We assume that the HTML documents are data-rich
and narrow in ontological breadth Embley et al. (1999a).
A document is data rich if it has a number of
identifiable constants such as dates, names, account
numbers, ID numbers, part numbers, times, currency
values, and so forth. A document is narrow in ontological
breath if we can describe its application domain with
a relatively small ontological model. The documents in
Figures 1–3 are all data rich and narrow in ontological
breadth.

When evaluating relevancy, we recognise and consider
three kinds of HTML documents: multiple-record
documents, single-record documents, and application
forms. The documents in Figures 1, 2, and 3(b) are all
multiple-record documents because they contain similar
descriptions of several different items. Figure 4 shows a car
ad linked fromHondaAccordEX inFigure 2,whichwe call
a single-record document because it declares the various
features of only one item – the Honda Accord EX for
sale. Figure 3(a) is an application form. When considering
a form, we may have, in addition to the labelled form
fields,

• selection lists with possible values of interests

• the results returned, if we can automatically fill in
and submit the form using default values as
discussed in Liddle et al. (2001, 2002).

Given an HTML document in our approach, we collect
two kinds of text components:

Figure 4 Linked page with additional information from www.bobhowardhonda.com (see online version for colours)

• text that appears in the whole document, which we
call the document text component

• text fragments that appear within individual forms
in the document, each of which we call a form text
component.

A form text component includes the text that labels
form fields and values in selection lists. If the document
contains no form, the set of form text components
is empty. Note that the document text component
of an HTML document subsumes all the form text
components that appear within the forms as well as
the text that is outside the forms in the document.
We therefore formalise a document d as a sequence of
text components, written d = [td, tf1 , . . . , tfn ], where td is
the document text component, tfi (1 ≤ i ≤ n) is a form
text component, and n is the number of forms in the
document d. (Note that d = [td] if the document d contains
no form.)

4 Extraction ontologies

Wedefine an extraction ontology to be a conceptual-model
instance that describes a real-world application in a
narrow, data-rich domain of interest. Each of our
extraction ontologies consists of two components:

• an object/relationship-model instance, which
describes sets of objects, sets of relationships among
objects, and constraints over object and relationship
sets3

• for each object set, a data frame, which defines the
potential contents of the object set (Embley et al.,
1992).
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Figure 5 Car-ads extraction ontology (partial)

A data frame for an object set defines the textual
appearance of constant objects for the object set
(instance values for ontological concepts) and establishes
appropriate keywords and keyword phrases (ontological
vocabulary words and phrases) that are likely to appear in
a document when objects in the object set are mentioned.
Figure 5 shows part of our car-ads extraction ontology,
including object and relationship sets and cardinality
constraints (Lines 1–8) and a few lines of the data frames
(Lines 9–16). The full ontology for car ads is about 600
lines long.

An object set in an extraction ontology represents
a set of objects which may either be lexical or
nonlexical. Data frames with declarations for constants
that can potentially populate the object set represent
lexical object sets, and data frames without constant
declarations represent nonlexical object sets. Year (Line 9)
and Mileage (Line 13) are lexical object sets whose
character representations have a maximum length of
4 and 8 characters respectively. Make, Model, Price,
Feature, and PhoneNr are the remaining lexical object
sets in our car-ads application; Car is the only nonlexical
object set. The notation ‘[-> object]’ in Line 1 designates
Car as the main object set of interest for the extraction
ontology.

We describe the constant lexical objects and the
keywords for an object set by regular expressions using
Perl syntax. When applied to a textual document, the
extract clause in a data frame causes a string that matches
a regular expression to be extracted, but only if the
context clause also matches the string and its surrounding
characters. Thus, in Figure 5 one of the several patterns
for Year looks for and extracts two digits (the extract
clause in Line 10), but only in the context of a leading
apostrophe preceded by a word boundary and only if
the first of the two digits is 7–9 (the context clause in
Line 11). The keyword clause specifies potential words,
abbreviations, or phrases likely to occur close to a value
and likely to disambiguate the value from other similar
values that actually belong to other ontological concepts.
Thus, for a car mileage value, we might find words such

as ‘miles’ or ‘mileage’, the spelling variant ‘mileage’,
and the abbreviation ‘mi’ with or without a terminating
period (Line 15).

We denote a relationship set by a name that includes
its participant object set names (e.g., Car has Year and
PhoneNr is for Car). Themin:max pairs andmin:ave:max
triples in the relationship-set name are participation
constraints: min designates the minimum number of
times an object in the object set can participate in the
relationship set; ave designates the average number of
times an object is expected to participate in the relationship
set; and max designates the maximum number of times
an object can participate, with ∗ designating an unknown
maximum number of times. The participation constraint
on Car for Car has Feature, for example, specifies that
a car need not have any listed features, that a car
has 2.1 features on the average, and that there is no
specified maximum for the number of features listed
for a car.

For our car-ads extraction ontology, we obtained
participation constraints as follows. We selected several
car-ads pages, chosen to be representative of typical
car-ads pages. From each of these pages we selected several
individual car-ads, each chosen to be representative of
a typical car-ad. We then simply obtained minimum,
average, and maximum values for each object set in
each relationship set and normalised the values for
a single car ad. For other applications, we similarly obtain
participation constraints. In general, with some expertise
in the application and a sampling of Web documents,
extraction ontology developers can establish reasonable
participation constraints. These cardinalities need not be
exact and should be treated as expected rather than exact
values.

Extraction ontologies are the key ingredient in our
categorisation methodology. Extraction ontologies allow
us to move beyond keyword approaches by allowing
the methodology to also use recognised instances and
measures of appropriate organisation over collections of
keyword and instance values. Together these techniques
support higher precision classification.
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5 Heuristics

Given the information we are able to obtain from
extractionontologies,we consider three kinds of heuristics:
density heuristics, an expected values heuristic, and
a grouping heuristic. For a document d, we consider
an extraction ontology O and a text component t,
which is either a document text component or a form
text component. The set of density heuristics measure
the densities of constants and keywords defined in O
that appear in t. The expected-values heuristic uses the
VSM (Baeza-Yates and Ribeiro-Neto, 1999), a common
information-retrieval document representation model, to
compare the number of constants expected for each
object set, as declared in O, to the number of constants
found in t for each object set. The grouping heuristic
measures the occurrence of groups of textual values
found in t with respect to expected groupings of textual
values implicitly specified in O. The heuristics are not
at odds. And we design them to supplement each
other.

The next three subsections define these heuristics,
explain the details about how we provide a measure
for each heuristic, and give examples to show how
they work. When reading these subsections, bear in
mind that in creating these heuristics, we favoured
simplicity. More sophisticated measures can be obtained.
For example, for density measures we could account for
uncertainty in constant and keyword matches (Embley
et al., 1999b). For expected values, we could more
accurately match object sets with recognised values by
using additional heuristic rules (Embley et al., 1999a;
Embley and Xu, 2000). For grouping, we could first
compute record boundaries (Embley et al., 1999c) and
rearrange record values (Embley and Xu, 2000). However,
more sophisticated measures are more costly. We have
chosen to experimentwith less costly heuristics, and, aswill
be shown, our results bear out the seeming correctness of
this choice.

5.1 Density heuristics

A text component t parsed from an HTML document
d that is relevant to a particular extraction ontology O
should include many constants and keywords for object
sets defined in the ontology. Based on this observation,
we define a set of density heuristics. We compute the
density heuristics with respect to the strings recognised
by the data-frame recognisers of an extraction ontology
as a whole and also of each object set individually.
We compute the density of t with respect to the ontology
O as a whole as follows:

Density(t, O) = number of matched characters in t

for O/number of characters in t.

When counting characters in documents and in recognised
strings for density measures, we exclude characters in
HTML tags. We compute the density of t with respect to

an individual object set o in O as follows:

Density(t, o) = number of matched characters in t

for o/number of characters in t.

We must be careful, of course, not to count characters
more than once. For example, in the phrase ‘asking only
18K’, a car-ads extraction ontology might recognise ‘18K’
as potentially both a price and a mileage. Nevertheless, we
should only count the number of characters as three, not
six. Further, we need determinewhetherwe count the value
‘18K’ for a price or for a mileage.

Consider the document text component tda in the
multiple-record document da inFigure 1(a).Recall that the
nonlexical object set of the car-ads extraction ontology is
Car and that the lexical object sets are Year,Make,Model,
Mileage, Price, Feature, and PhoneNr. Some of the lexical
values found in tda

include ‘1989’ (Year), ‘$1900’ (Price),
‘100K’ (Mileage), ‘Auto’ (Feature), ‘Cruise’ (Feature),
‘(336)835-8579’ (PhoneNr), ‘Subaru’ (Make), and ‘SW’
(Model). The keywords ‘Cars for Sale’ for the object
set of interest Car, ‘miles’ and ‘mileage’ for Mileage,
and ‘Call’ for PhoneNr appear in da. The total Number
of characters in tda is 1992, whereas the number of
matched characters is 696. Hence, the Density(tda , O) is
0.3493 (=696/1992). For each object set in the car-ads
extraction ontology O, there is also a density measure.
For example, the number of matched characters forMake
is 47. Therefore, Density(tda , Make) is 0.0236.

When we apply the density heuristics for the car-ads
extraction ontology to the document text component tdb

of the document db in Figure 1(b), the densities are
much lower. Although no makes, models, or car features
appear, there are years, prices, and phone numbers and
the ontology (mistakenly) recognises ‘10,000’ (in ‘10,000
SQ. FT.’) and ‘401K’ (the retirement plan) as potential
mileages.Altogether, 229 characters of 2627 are recognised
by the car-ads ontology. Thus, the density with respect to
the car-ads extraction ontology Density(tdb

, O) is 0.0871.
There are also eight other density measures, one for each
object set. For example, the document text component of
db contains keywords and values for PhoneNr, and the
density for PhoneNr is 0.0533. The density for Car is 0.0
since the document text component does not contain any
keywords for the object set of interest, Car, in the car-ads
extraction ontology.

5.2 Expected-values heuristic

Density alone is likely to be a good determiner of relevancy
in many cases, but it is not hard to imagine a page in which
a large fraction of values would be recognised and yet the
page is not relevant.Consider, for example, a list of hot tubs
and prices. Price recognisers in our car-ads ontologywould
recognise the prices, and since nearly half the list consists
of prices, the density would be high. The expectations
about what values should appear, however, are nowhere
close to being in line with the expectations for car
ads – except for an unexpected occasional appearance,
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there would be no years, no makes or models, no
car features, no mileage numbers, and no contact
information.

We apply the VSM model to measure whether a text
component t parsed from an HTML document d has the
number of values expected for each lexical object set of
an extraction ontology O. Based on the lexical object sets
and the participation constraints in O, we construct an
ontology vector VO. Based on the same lexical object sets
and the number of constants recognised for these object
sets in t, we construct a document vector Vt. We measure
the relevance of t to O with respect to our expected-values
heuristic by observing the cosine of the angle between Vt

and VO.
To construct the ontology vector VO, we

• identify the lexical object-set names (these become
the names of the coefficients of VO)

• determine the average participation (i.e., the expected
frequency of occurrence) for each lexical object set
with respect to the object set of interest specified in O
(these become the values of the coefficients of VO).

For example, the ontology vector for the car-ads extraction
ontology is 〈Year:0.975, Make:0.925, Model:0.908,
Mileage:0.45,Price:0.8,Feature:2.1,PhoneNr:1.15〉, where
these values are the average participation-constraint values
obtained as explained in Section 4. Thus, for a typical
single car ad we would expect almost always to find a year,
make, and model, but we only expect to find the mileage
about 45% of the time and the price about 80% of the
time. Further, we expect to see a list of features that on
the average has a couple of items in it, and we expect to
see a phone number and sometimes more than one phone
number.4

To construct the document vector Vt, we use the names
of the coefficients of VO, and obtain the value of each
coefficient of Vt by automatically counting the number
of appearances of constant values in t that belong to
each lexical object set. Table 1 shows the values of the
coefficients of the document vector for the document text
component of the car-ads document in Figure 1(a), and
Table 2 shows the values of the coefficients of the document
vector for the document text component of the non-car-ads
document in Figure 1(b).

We have discussed the creation of a document vector
as though correctly detecting and classifying the lexical
values in a text in a document were easy – but sometimes
it is not easy. We identify potential lexical values for an
object set as explained in Section 4, but identification can
be erroneous. After initial identification, we must decide
which of the potential object-set/constant pairs to accept.
We could use sophisticated heuristics based on keyword
proximity, application-ontology cardinalities, record
boundaries, and missing-value defaults to best match
object setswith potential constants, as explained inEmbley
et al. (1999a, 1999c), Embley and Xu (2000). Instead,
however, we use techniques that are far less sophisticated
and thus also far less costly. In our less costly procedures

we consider three cases: a string of characters within a
document is recognised as

• belonging to only one object set

• belonging to two or more object sets all of which are
specialisations of the same object set

• belonging to two or more object sets all of which are
not specialisations of the same object set.

Table 1 Lexical values found in the multiple-record car
advertisements in Figure 1(a)

Name of Corresponding Number
lexical lexical values of lexical
object set found in the document values

Year 1989, 1998, 1994, 1999, ’53, 16
1973, 1977, 95, 1996, . . .

Make Subaru, HONDA, Chevy, Olds, 10
FORD, VW, Buick, Mercury, . . .

Model SW, Elantra, ACCORD, GRAND AM, 12
Cutlass, CONTOUR, JETTA, . . .

Mileage 100K, 27000, 26000, 45K, 34K, 109000 6

Price $1900, $14,000, $8500, $4500, $5300, 11
$11,000, $6995, $4995, $1880, . . .

Feature Auto, Black, 4 door, pb, ps, cruise, 29
am/fm, cassette, stereo, green, . . .

PhoneNr (336)835-8579, (336)526-5444, 15
(336)526-1081, (336)366-4996, . . .

Table 2 Lexical values found in the multiple-record Items for
Sale document in Figure 1(b)

Name of Corresponding Number of
lexical lexical values lexical
object set found in the document values

Year 1999, 1998, 60, 40, 50, 80 6
Make 0
Model 0
Mileage 10,000, 401K 2
Price $17,500, $10,971, $27,850, $19,990, 8

$79,850, $42,990, $129,650, $78,850
Feature 0
PhoneNr 281-2051, 281-4060, 218-281-1128, 11

281-3631, 281-3872, 218-281-5113,
218-281-5113, 800-532-7655, 281-1970,
800-406-5126, 281-1128

For Case 1, we simply accept the string as belonging to
the object set. As an example of Case 2, there are several
dates in obituaries: Death Date, Birth Date, Funeral
Date, Viewing Date, and Burial Date. All dates are
specialisations ofDate in the obituary extraction ontology.
The appearance of keywords (e.g., ‘born on’ and ‘died on’)
makes it possible to distinguish themultiple kinds of dates.
Thus, for Case 2, we reject a recognised string if keywords
are not present. For Case 3, recognisers for different object
sets include a common string of characters as part of
a value belonging to their object set. For example, the
string ‘23,000’ may be recognised as being either a price or
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a mileage. To resolve these ambiguities, we consider three
subcases:

• exact match

• subsumption

• partial overlap.

1 If a value v is recognised as potentially belonging to
more than one object set, we use the closest keyword
that appears before or after v to determine which
object set to choose. For example, “. . . asking only
23,000 . . . ” would be a price whereas “. . . 23,000
miles on it . . . ” would be a mileage. If no applicable
keyword is found, we choose one of the object sets
arbitrarily.

2 If a value v is a proper substring of lexical value w,
we retain w and discard v.

3 If lexical value v and lexical value w appear in a Web
document, such that a suffix of v is a prefix of w, we
retain v and discard w.

As mentioned, we measure the similarity between an
ontologyvectorVO andadocument vectorVt bymeasuring
the cosine of the angle between them. In particular, we
calculate

Similarity(t, O) = cos θ = P/N,

where P is the inner product of the two vectors, and N is
the product of the lengths of the two vectors. When the
distribution of values among the object sets in Vt closely
matches the expected distribution specified inVO, the angle
θ will be close to zero, and cos θ will be close to one.

Consider the car-ads extraction ontology O in Figure 5
and the Web document da in Figure 1(a). The coefficients

Figure 6 Groups of 1-max values extracted from HTML documents: (a) first four groups of 1-max values extracted from Figure 1(a)
and (b) first four groups of 1-max values extracted from Figure 1(b)

of VO for O are 0.975, 0.925, 0.908, 0.45, 0.8, 2.1, and
1.15, which are the expected frequency values of lexical
object sets Year, Make, Model, Mileage, Price, Feature,
and PhoneNr, respectively for a single ad in the car-ads
extraction ontology. The coefficients of Vtda

for da are 16,
10, 12, 6, 11, 29, and 15 (see the last column of Table 1),
which are the actual number of appearances of the lexical
values in da. We thus compute Similarity(tda , O) to be
0.996.5 Now consider the car-ads extraction ontology O
again and the Web document db in Figure 1(b). The
coefficients of VO are the same, but the coefficients of Vtdb

for db are 6, 0, 0, 2, 8, 0, and 11 (see the last column of
Table 2).We thus compute Similarity(tdb

, O) to be 0.567.

5.3 Grouping heuristic

An HTML document may have a high density measure
for an extraction ontology O and may also have a high
expected-values measure for O but may still not be
considered relevant toO. Consider, for example, consumer
report pages for cars. The proportion of recognised values
may be large, and it is likely that the proportions of
recognised values would correspond reasonably well with
the expected-value proportions for car ads. Individual
car descriptions and buying potential, however, would be
missing, and a person wanting to purchase a car would
be disappointed.

In the common case when documents have multiple
records, each ofwhich is relevant to an extraction ontology
O, we would like to know that the text is organised into
groups that can be recognised as records. Each record
should, by itself, be relevant for O. As a simple heuristic to
determine whether the recognised values are interleaved in
a way that could be considered consistent with potential
records ofO, we consider the groupof values in adocument



12 L. Xu and D.W. Embley

that should appear at most once in each record and
measure how well they are grouped.

We refer to an object set whose values should appear
at most once in a record as a 1-max object set. Maximum
participation constraints in an ontology constrain the
values of the 1-max object sets to appear at most once
in a record. For example, in the car-ads extraction
ontology, the 1-maximum on Car in the relationship
set Car [0:0.975:1] has Year [1:∗] specifies that Year
is a 1-max object set. Other 1-max lexical objects
in the car-ads ontology are Make, Model, Mileage,
and Price.

Instead of counting the number of 1-max object
sets in an extraction ontology O, a more accurate
way to obtain the number of 1-max object-set values
expected to appear in each record is to sum the
average expectation numbers for the 1-max object
sets in O. Since the average expectation numbers
for Y ear, Make, Model, Mileage, and Price in the
car-ads ontology are 0.975, 0.925, 0.908, 0.45, and 0.8,
respectively, the anticipated number of lexical values
from these object sets in a car advertisement is 4.058.
To obtain an expected group size, we truncate the
decimal value of the sum.

The expected group size n is an estimate of the
number of 1-max object-set values that should be in each
single record in a multi-record document. Thus, if we
list all recognised 1-max object-set values in the order
they occur in a document and divide this sequence into
groups of n, each group should have n values from
n different object sets. The closer a document comes
to this expectation, the better the grouping measure
should be. For the multiple-record car-adsWeb document
in Figure 1(a), Figure 6(a) shows the first four groups
of 1-max object-set values extracted from the document.
Similarly, Figure 6(b) shows the first four groups of
1-max object-set values extracted from the document
in Figure 1(b).

We measure how well the groups match the
expectations with a grouping factor (denoted Grouping),
which is calculated as follows:

Grouping(t, O) =

Sum of Distinct Lexical Values
in Each Group

Number of Groups × Expected
Number of Values in a Group

Considering just the part of the document tupTo53 in
Figure 1(a) that corresponds to the groups in Figure 6(a),
we obtain the following grouping factor:

Grouping(tupTo53, O) =
3 + 3 + 4 + 4

4 × 4
= 0.875.

For the entire document text component tda
of HTML

document da in Figure 1(a), the grouping factor is 0.865;
whereas for the entire document text component tdb

of
HTML document db in Figure 1(b), the grouping factor is
0.500.

6 Web document categorisation

For a particular categorisation application, we provide
an extraction ontology. We formalise the evaluation of
HTML-document relevancy to a category c as follows.
An extraction ontology O specifies the application
representing c. We represent an HTML document d as a
sequence of text components, written d = [td, tf1 , . . . , tfn

],
where td is the document text component, tfi

(1 ≤ i≤ n)
is a form text component, and n is the number of
forms in the document d. If the document d contains no
form, d = [td]. Given the extraction ontology O and an
HTML document d = [td, tf1 , . . . , tfn ], we usem heuristic
rules (see Section 5) to compute m confidence measures
Htd

= (h1, h2, . . . , hm) for the document text component
td and use the same m heuristic rules to compute
Htfi

= (hi1, hi2, . . . , him) for each form text component
tfi (1 ≤ i ≤ n). Thus we describe the similarity between
the HTML document d and the extraction ontology
O as a heuristic vector dH = 〈Htd

, Htf1
, . . . , Htfn

〉 over
n + 1 m-tuples of confidence measures. To categorise the
document, we attempt to assign dH to the category c
obtaining either cP , which represents a positive example
(one relevant to the application), or cN , which represents
a negative example (one irrelevant to the application).

6.1 Training phase

For our work we use the popular machine learning
algorithmC4.5 Quinlan (1993). C4.5 is a rule post-pruning
decision-tree algorithm. The learning task is to check the
suitability of documents for a given extraction ontology
(i.e., to do categorisation by returning ‘Y’ (yes) when
a document is suitable and returning ‘N’ (no) otherwise).
The bias of C4.5 favours the shortest rule, so that if
several rules are equally accurate, a decision tree with
the fewest branches is chosen. We chose C4.5 because
C4.5 learns decision trees that are human readable and
meaningful in terms of the features of the classification
model. Every decision tree is structured as a nested
hierarchical sequence of simple and easy to understand
classification rules. The accuracy of the learning algorithm
is generally comparable to the accuracy of other methods.
Other learning algorithms are, of course, possible. Indeed,
as mentioned earlier, our research group has tried
multivariate statistical analysis Ng et al. (2001), logistic
regression Wang and Ng (2003), and VSM and Clustering
Models Kwong and Ng (2003) as alternative learning
algorithms.

Considering all three patterns (multiple-record
documents, single-record documents, and application
forms), we divide the learning task into three subtasks:

• suitability of a document text component that
describes multiple records for one extraction
ontology

• suitability of a document text component that
represents an individual singleton record for one
extraction ontology
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• suitability of a form that yields information for one
extraction ontology.

C4.5 learns a decision tree for each of the three subtasks.
We use supervised learning to train the classifier.

For each application, a human expert selects a set of
training documents for the application. To cover the three
subtasks (assuming they all exist for the application),
the expert should select training documents of each type.
For the car-ads application, for example, we selected
semistructured HTML documents (e.g., Figure 1(a))
as well as HTML tables containing multiple car ads
(e.g., Figure 2) so that the classifier can obtain the
knowledge it needs to classify a multiple-record car-ads
document. We also selected single car-ad documents
(e.g., Figure 4) and documents with HTML forms
(e.g., Figure 3(a)). Further, the expert should also select
negative training examples. In choosing those that do
not belong to the application domain, expert should
find documents that include some of the concepts in the
ontology (e.g., Figure 1(b) for our car-ads application), so
that classifiers can learn the difference between documents
that are inside thedomainanddocumentswithoverlapping
concepts that are outside the domain.

For each trainingdocumentd, the human expert creates
a training example either for the document text component
in d or for one of the form text components in d, if any.6

A training example, e = (H, c), is a list of valuesH , one for
each heuristic rule, plus a concept class c, which is either cP

for a positive training example or cN for a negative training
example. Given an extraction ontology O specifying an
application, the values H include ‘density’, ‘vsm’ and
‘grouping’ measures computed based on the heuristic
formulas for density, Density(t, O), expected-values,
Similarity(t, O), and grouping,Grouping(t, O) of the text
component t. For each individual object set o (e.g., ‘Make’,
‘Model’ and ‘Price’ in car ads), the values H also include
a density measure computed based on Density(t, o).
The training data contains three groups of training
examples, each of which is for one of the three subtasks.
If a training document d contains a form fi relevant to O,
the expert uses the list of heuristic values Htfi

obtained
from the form text component tfi to construct a positive
training example (Htfi

, cP ). Otherwise, if the form fi is
not relevant to O, the expert builds a negative training
example (Htfi

, cN ). If the document is a single-record
document relevant toO, the expert uses the list of heuristic
values Htd

obtained from the document text component
td to build a positive training example (Htd

, cP ), or vice
versa a negative training example. Similarly, the expert
uses Htd

to build a training example for the relevancy of
a multiple-record document with respect to O.

The C4.5 classifier builds a classification model as
the output of the training phase. The classification
model contains three decision trees: one for single-record
document relevancy, one for multiple-record document
relevancy, and one for HTML-form relevancy. Figure 7
shows a classification model the classifier built for car ads.
Within one tree in the classification model, a node denotes

a predicate using heuristics measures. For example,
‘density’, ‘vsm’ and ‘grouping’ are measures for a text
component t computed based on the heuristic formulas
for density, expected-values, and grouping over the car
ad extraction ontology. An object-set name (e.g., ‘Model’,
‘Make’, and ‘Price’ in Figure 7) denotes the density
measure for an individual object set within the ontology.
Each leaf node has a ‘Y’ to designate that a document is
relevant to the ontology or an ‘N’ to designate that it is
not relevant. The parenthetical numbers (x/y) following
‘Y’ and ‘N’ for a decision-tree leaf L give the total number
of training examples x classified for L and the number of
incorrect training examples y classified for L.

Figure 7 Classification model for car ads: (a) form decision
tree; (b) multiple-record tree and (c) single-record tree

6.2 Test phase

Given the classification model built in the training phase,
we test the relevancy of HTML documents. The test
data consists of heuristic vectors computed according to
the heuristic rules in Section 5 for the test documents.
The classification model has three decision trees at
its disposal and classifies a document with a positive
prediction if the classifier classifies thedocumentaspositive
based on any one of the three decision trees. It is possible
that the classifier classifies a test document as both a
single-record document and a multiple-record document
relevant to the extraction ontology based on the document
text component in the document. Moreover, it also could
predict that one relevant document contains both relevant
forms as well as a singleton record or multiple records
for the application. We are, however, only interested in
a prediction, and thuswe declare a document to be relevant
if any one of the three trees in the classification model
returns cP , a positive result.

In addition to the text components within the
document, the classifier can check available linked pages
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andpages returned from formfilling to further evaluate the
document. The HTML table in Figure 2 contains several
links, some of which lead to more detailed descriptions of
the car ads in the document. Figure 4 is one of the linked
pages from the top page in Figure 2. If we can determine
that a linked page (e.g., the document in Figure 4) is
relevant to the application, we can use this information to
help classify the top page (e.g., the document in Figure 2).
Intuitively, if a top page leads to multiple relevant linked
pages, we have more confidence that the top page contains
multiple records that are of interest. Because of the expense
of retrieving potentially many dozens of linked pages,
however, the algorithm does not explore all linked pages
from the top-page HTML document d. Instead, we first
locate a group of potentially useful links from d. Since we
believe that the useful links in a multiple-record document
are likely to all be together in a common repository,
the procedure to locate useful links first groups links in
d by (longest) common URL prefix and then sorts the
groups of links in descending order based on the number
of links in each group. The number of the links that are
likely of interest is the largest in a relevant multiple-record
document. To both discard spurious groups of links with
only one or two members and to avoid processing all
the links in a group, we choose a small threshold N
experimentally (we chose N = 5). Then, if the number of
the links in a group is less thanN , we ignore the evaluation
of the group, and if the number of links is greater than
N , we only evaluate N of them. We evaluate the links
in a group by checking the relevancy of the top-level
document dwith the text of the linked pages inserted into d.

Besides linked pages, we also use information on pages
returned by automatic form filling (Liddle et al., 2001;
Yau, 2001).7 For a document d containing a form f and
having associated documents s retrieved by automatic
formfilling, we use one of two strategies, choosing between
them based on user preference. If a user favours recall,
we evaluate s when the classifier classifies d as irrelevant
based on f alone; otherwise, if a user favours precision, we
evaluate s when the classifier classifies d as relevant based
on f alone.

7 Empirical evaluation

We experimented with four applications: car ads
(our running example in this paper), obituaries, real-estate
house properties, and university faculty pages. Our goals
were to evaluate categorisation performance over multiple
kinds of HTML documents for real-world applications.

7.1 Applications and HTML documents

The car-ad and faculty applications are representative
of many simple applications, whereas the real-estate and
obituary applications are representative of more complex
applications. These two more complex applications have
more object sets and relationship sets than the simple
applications, and the object and relationship sets are

configured in more complex ways. In the obituary
application, for example, one relationship set is ternary,
more than one object set is nonlexical, and several
relationship sets are specialisations—for example, both
Birth Date and Death Date are specialisations of Date.

For the car-ad and real-estate applications,we collected
four sets of HTML documents: semi-structured HTML
documents, HTML tables, HTML forms, and negative
documents. For the obituary application, we collected only
semistructured documents, HTML form documents, and
negative documents. (Obituaries rarely, if ever, appear
as tables having attributes such as Deceased Name,
Age, Death Date, etc.) For the faculty application, we
took a sampling of documents covering items such
as faculty, staff, project, course, and department from
the University WebKB data set Craven et al. (1998).
We divided the documents for each application into two
sets: training documents and test documents. For each
of the car-ad, obituary, and real-estate applications,
there were three sets of training examples, one each for
single-record documents, multiple-record documents, and
application-forms. For the faculty application, there was
one set of training examples for single-record documents.
Each training set consisted of 50 examples, half of which
were positive, and half of which were negative.

Table 3 shows the distributions of semistructured
HTMLdocuments,HTMLtables, andHTMLforms in the
test documents. Each test set consisted of 100 documents,
half of which were negative. For the car-ads application,
10 of the semistructured HTML documents contained
multiple-record car ads, and 10 contained single-record
car ads. All the HTML tables contained multiple-record
car ads. For the obituary application, the semistructured
HTML documents contained 25 multiple-record
documents and 15 single-record documents. Among the
25 multiple-record obituary documents, 15 contained
only partial obituaries. These 15 documents led to linked
pages, some of which contained complete obituary
records. For the real-estate application, the semistructured
HTML documents contained 13 multiple-record
documents and 13 single-record documents. Among the
13 multiple-record real-estate documents, 6 contained
only partial house-property records. These six documents
led to linked pages where detailed house-property
informationwasprovided.TheoneHTMLtable contained
multiple-record house properties. The HTML form
documents for each application contained application
forms but no single- or multiple-records of interest.
For the faculty application, all the semistructured HTML
documents contained single-record faculty home pages.

The negative documents collected for each application
contained documents with applications similar to those
of the extraction ontologies. For example, we included
forms to retrieve used auto parts, car reviews, and
motorcycle sales to test the classifier trained for car-ads;
we includedbirth andmarriage announcements, genealogy
records and forms, and bibliographies to test the classifier
trained for obituaries; we included house inspection, house
mortgage quotes, and real-estate buying guides to test the
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classifier trained for house properties; and we included
research projects, university staff, courses, and department
pages to test the classifier trained for faculty pages.
We assumed that if our categorisation methodology could
sort out differences among closely related applications, it
could easily reject vastly different application documents
(e.g., country descriptions, rail and flight schedules, and
molecular biology data). To verify this assumption, we
used some of the pages collected for one application as
negative examples for the other three applications.

Even though some of the semistructured HTML
documents and HTML table documents in Table 3
contained additional irrelevant application forms
(e.g., user registration forms), we expected that the
classifiers would produce appropriate predictions based
on the document text components that appear in
the documents rather than the irrelevant form text
components. For the HTML form documents, since they
did not contain application records, we expected that the
classifiers would produce the positive predictions using
the application-form decision trees based on form text
components that appear within forms.

Table 3 Test documents for car ads and obituaries

Application Semistructured HTML table HTML form Negative

Car 20 20 10 50
Obituary 40 0 10 50
Real Estate 26 1 23 50
Faculty 50 0 0 50

Figure 8 Classification model for obituaries: (a) form decision
tree; (b) multiple-record tree and (c) single-record tree

7.2 Classification models

Figures 7–10 respectively show the classification
models the classifiers built for car ads, obituaries,
house properties, and faculty pages. For an extraction
ontology O, each classification model except for

the faculty application contains three decision
trees: one for multiple-record documents, one for
single-record documents, and one for application forms.
The classification model for the faculty application
contains one decision tree for single-record documents.

Given the decision trees for the four applications in
Figures 7–10, we can see that the classifiers use different
combinations of heuristics to check the relevancy, and
that all are useful. Over all four applications the classifiers
largely exploit density heuristics. Figure 8 shows that
‘vsm’, the expected-values heuristic, was not useful for the
classifier of the obituary application.Figures 9 and10 show
that ‘grouping’, the grouping heuristic, was not useful for
the classifiers of the real-estate and faculty applications.

Figure 9 Classification model for house properties: (a) form
decision tree; (b) multiple-record tree and (c)
single-record tree

Figure 10 Classification model for faculty pages

7.3 Experiments

For each application, we performed four sets of
experiments.

• We measured the basic precision, recall, and the
F -measure for each application by simply taking
a page, analysing it, and categorising it as relevant or
irrelevant to the application
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• As a baseline for comparison against this simple
categorisation, we applied the Naive Bayes classifier
(Baker and McCallum, 1998) implemented in
Rainbow (McCallum, 1996)

• We then added to our basic experimentation the
potential to consider linked pages and pages
returned from filled-in forms. For this part of the
experiment, we considered both precision-biased and
the recall-biased methods.

• We conducted studies to evaluate the contributions
of individual heuristics and pairs of heuristics over
our three basic heuristics: Densities, Expected
Values, and Grouping.

For all experiments, we evaluated the performance of the
classifiers on the test documents described in Table 3.

7.3.1 Basic results

Given

• the number of relevant documents N determined by
a human expert, which is listed in Column 2 in
Table 4

• the number of correct relevant documents C selected
by our approach, which is listed in Column 3

• the number of incorrect relevant documents I
selected by our approach, which is listed in
Column 4, we computed the recall ratio as
R = C/N , the precision ratio as P = C/(C + I),
and the F -measure as F = 2/(1/R + 1/P ).

We report all these values as percentages in Table 4.

Table 4 Basic results

Number Number Number Recall Precision F -measure
Application relevant correct incorrect (%) (%) (%)

Car Ad 50 48 4 96 92 94
Obituary 50 49 3 98 94 96
Real Estate 50 49 2 98 96 97
Faculty 50 45 4 90 92 91

As a basic result, observe that theF -measures ranged from
a low of 91% to a high of 97%. By far, the system correctly
categorised the vast majority of the 400 documents. It did,
however, categorise some relevantdocuments as irrelevant:
2 for Car Ad, 1 for Obituary, 1 for Real Estate, and 5 for
Faculty, and some irrelevant documents as relevant: 4 for
CarAd, 3 forObituary, 2 forRealEstate, and 4 forFaculty.

7.3.2 Basic baseline comparison

Rainbow is an executable program that does document
classification. We used its Naive Bayes classifier to classify
all test documents for the four applications. For the Naive
Bayes classifier, we trained a categorisation system for each
applicationwith the same collection of training documents

as for our approach. We reported the evaluation measures
as percentages in Table 5.

Observe that the F -measure values for our
categorisation method are uniformly better than for the
NaiveBayes classifier. TheNaiveBayes classifier, however,
achieved 100% precision for the car-ad application,
correctly classifying every single negative example.
It, however, only classified 72% of the positive examples
as relevant, resulting in an F -measure of 84% compared
to 94% for our method.

Table 5 Experimental results of Rainbow

Number Number Number Recall Precision F-measure
Application relevant correct incorrect (%) (%) (%)

Car Ad 50 36 0 72 100 84
Obituary 50 46 7 92 87 89
Real Estate 50 49 23 98 68 80
Faculty 50 35 8 70 81 75

7.3.3 Form filling and linked pages

As explained earlier, in addition to the text components
that appear in a document, we can also exploit auxiliary
information such as linked pages or retrieved documents
obtained by form filling. First, we applied the strategy
that favours recall.Our classifiers re-evaluated the negative
responses using retrieved documents obtained by applying
form filling. By this strategy, our classifier was able to
improve its recall results from 96% to 98% for the car-ad
application and from 98% to 100% for the real-estate
application. Second, we applied a strategy that favours
precision. After filling in forms and obtaining results, the
classifiers re-evaluated the application forms that they had
incorrectly classified as positive responses. By this strategy,
our classifier was able to improve its precision results from
96% to 98% for the real-estate application.

The other auxiliary information we use in our system is
information on linked pages. By this strategy, our classifier
for the obituary application was able to improve its recall
from 98% to 100%. Note that we included 15 HTML
documents containingonly partial obituaries and 6HTML
documents containing only partial house properties.
The test results showthat the classifier forobituariesmissed
only one of these pages without analysing linked pages
and that the classifier for house properties classified all
partial house property pages correctly. This means that
the partial obituaries and house properties pages usually
provided enough informative information for the classifier
to correctly classify them as relevant documents.

Table 6 Combination of three kinds of heuristics

Combination Densities Expected-values Grouping

1 +
2 +
3 +
4 + +
5 + +
6 + +
7 + + +
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Figure 11 Performance comparison of heuristics combinations: (a) car ad application; (b) obituary application; (c) real estate
application and (d) faculty application (see online version for colours)

7.3.4 Contribution of heuristics

To determine the individual and pair-wise contribution
of the various heuristics, we evaluated performance by
applying different combinations of heuristics. Table 6
shows the seven combinations, where ‘+’ denotes the
heuristic or heuristics in the corresponding column that are
in use. Figure 11 shows the contribution of the three kinds
of heuristics (densities, expected-values, and grouping)
to the overall performance in the four applications.
The x-axis lists the seven combinations of the three kinds
of heuristics. The y-axis shows the performance as a
percentage.

For all four applications, Figure 11 shows that the
density measures are important (Columns 1, 4, 5, and 7
are generally the best). When the classifiers exploited only
the density heuristic, to evaluate the test documents for the
applications (Column 1), the classifiers for the obituary,
real-estate, and faculty applications achieved about 90%
for all measures (precision, recall, andF -measure). For the
car-ad application, however, the classifier applying only
densities achieved a precision 84% and a recall 94%.
Using the expected-values heuristic alone (Column 2), the
classifiers achieved an F -measure of less than 70% for the
car-ad and obituary applications, achieved an F -measure
of 76% for the faculty application, and achieved an
F -measure of 83% for the real-estate application.Using the
grouping heuristic alone (Column 3), the classifiers
achievedF -measures less than 50% for both the real-estate
and faculty applications. The classifiers achieved an
F -measure of 74% for the obituary application and
achieved an F -measure of 85% for the car-ad application.
Even when the classifiers used both the expected-values
heuristic and the grouping heuristic together (Column 6),
performance for none of the four applications improved

significantly. Table 6 shows that the classifiers for all four
applications achieved the highest F -measures by applying
all heuristics together.

Even though the classifiers performed well by
exclusively applying density heuristics, we observed that
the grouping and expected-values heuristics were helpful
in classifying two kinds of documents:

• negative documents that contain abundant values
and keywords specified for ontology object sets

• positive documents that contained a large amount of
irrelevant data.

By applying only density heuristics, classifiers can
incorrectly classify the first kind of negative documents
as relevant because of their high density measures
and incorrectly rejected the second kind of documents
because of their low density measures. For example, the
classifier applying only densities for the car-ad application
incorrectly classified a car-news page as relevant since
it contained many car-make and car-model values.
Compared with the performance achieved by applying all
heuristics, the classifiers applying only density heuristics
incorrectly classified five more irrelevant documents as
car-ads, incorrectly rejected one more car-ad document,
incorrectly classified two more irrelevant documents as
obituaries, and incorrectly classified one more irrelevant
document as a faculty page.

It is clear that the density heuristics are dependent on
and sensitive to the specification of extraction ontologies.
The other twoheuristics, expected values and grouping, are
also mainly determined by the specification of extraction
ontologies. Thus, when porting to a new application
domain, as long as the extraction ontologies are well
defined, our empirical evaluation shows that our approach
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should be able to recognise relevant HTML documents
with both high precision and high recall.

8 Conclusions and future work

We presented an approach to categorise HTML
documents with respect to extraction ontologies.
The approach applies to applications in which users
have long-term needs for specific information from
HTML documents in a particular domain of interest.
The methodology proceeds in several steps:

1 Users describe information of interest by giving an
extraction ontology.

2 Given an HTML document d to categorise as
relevant or not relevant to an extraction ontology O,
the system extracts the data it recognises in d with
respect to O.

3 Given the extracted data, the system calculates
several heuristic measures to characterise the HTML
document.

4 Based on these heuristic measures, the system uses
machined-learned rules to categorise the document
as relevant or not relevant.

Results for the tests we conducted showed that the
recognition F -measures were above 90% for all four of
our applications. Recall ranged from 90% (faculty) on
the low end to 96% (car ads) and 98% (obituaries and
real estate) on the high end. Precision ranged from 92%
(car ads and faculty) on the low end to 94% (obituaries)
and 96% (real estate) on the high end. Our experiments
also showed that we can further improve performance
by considering linked pages and documents retrieved by
submitting default forms.

Our approach is reliable. It classifies documents with
high precision and recall. It is also flexible. The heuristics,
learning algorithms, and training documents used in
the approach are extensible. If new heuristics appear
useful, we can immediately use them without having to
change our fundamental approach. Our approach has
good performance characteristics. Execution only requires
a single linear-time pass over a document. Porting the
system to a new domain requires a one-time cost to build
an extraction ontology and train the classifiers. The effort
involved is relatively expensive, and thus we suggest our
methodology only for cases inwhich a user has a long-term
interest in a particular application.

Our future work can expand in several different
directions.

• We can test our approach on more applications.
After fixing our methodology using the car-ads and
obituaries application domains, we ported our
methodology to two additional application domains
(the real-estate and faculty application domains).
The methodology ported as expected. To find the

limits of our methodology and characterise more
precisely the kinds of domains to which it applies,
we can explore applications on the fringes of our
expectations – applications whose domains are not
so narrow and not so data rich.

• We can investigate ways to enhance the
methodology. Can additional or replacement
heuristics improve our methodology? We can, for
example, experiment with sophisticated
record-separation heuristics (Embley et al., 1999c),
sophisticated record-reconfiguration heuristics
(Embley and Xu, 2000), and sophisticated
value/object-set disambiguation heuristics (Embley
et al., 1999a). We can also experiment with a
meta-learning strategy to train a high-level classifier
over several different low-level classifiers including
C4.5 as described in this paper, multivariate analysis
(Ng et al., 2001), logistic regression (Wang and Ng,
2003), and VSM and Clustering Models (Kwong and
Ng, 2003).

• We can do a deeper level analysis of an HTML
document and check relevancy based on appropriate
subparts of the document rather than the entire
document. Many Web pages include material, such
as advertisements, that have little, if anything, to do
with their main content. Our heuristics may be
overwhelmed by the volume of irrelevant material on
a page. If we can subdivide these types of pages and
test component parts of pages individually, our
generated decision-tree classifiers should be able to
identify relevant component parts and thus not be
overwhelmed by irrelevant material.

Although we have offered an interesting approach to
categorisation based on extraction ontologies and have
shown that it has good performance results in an
experimental setting, much can still be done to refine our
methodology and much is still required to take it beyond
its experimental setting.
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Websites

Websites Demos page for BYU data extraction group,
http://www.deg.byu.edu/multidemos.html

Google, www.google.com
OWL Web Ontology Language Reference Manual,

http://www.w3.org/TR/owl-ref/, W3C (World Wide
Web Consortium).

Notes

1Experience has shown that computer science students can
build an extraction ontology for a data-rich, narrow
domain of interest in a few dozen person hours. Students
have built extraction ontologies for a wide variety of
applications including such diverse areas such as digital
cameras, prescription drugs, campgrounds, and computer jobs
(http://www.deg.byu.edu/multidemos.html).

2Extraction ontologies are akin to techniques in wrapper
technology (Laender et al., 2002), automated semantic
annotation (Dill et al., 2003; Kiryakov et al., 2004), and
ontology matching (Euzenat and Shvaiko, 2007; Xu and
Embley, 2006). We thus point out the possibility that these
technologies may also be useful for text categorisation. To the
best of our knowledge, no other efforts outside of colleagues
within our research groupmake direct use of these technologies
to do text categorisation.

3We mention in passing that the ontology language on which
extraction ontologies are based has been fully formalised and
is equivalent to predicate calculus (see Appendix A of Embley
et al. (1992)). Further, the subset of the ontology language we
typically use is equivalent in power and complexity toOWL-DL
(http://www.w3.org/TR/owl-ref/).

4It is easy to see that the variance might be useful, as well, but
we found that the expected numbers were sufficient to get good
results for the examples we tried.

50.996 =
(0.975×16+0.925×10+0.908×12+0.45×6+0.8×11+2.1

×29+1.15×15)(√
0.9752+0.9252+0.9082+0.452+0.82+2.12+1.152

)

×
(√

162+102+122+62+112+292+152
)

.

6Typically, an informational HTML document contains its
primary information either directly on the page or behind one
of its forms. The human expert should train the classifier by
selecting the component that contains the primary information
for the document.

7We point out that automatic form filling does not always yield
results as explained inLiddle et al. (2001) andYau (2001). Thus,
we can only apply this technique when automatic form filling
does yield results.


