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Abstract. Automatically extracted data is rarely “clean” with respect
to pragmatic (real-world) constraints—which thus hinders applications
that depend on quality data. We proffer a solution to detecting pragmatic
constraint violations that works via a declarative and semantically en-
abled constraint-violation checker. In conjunction with an ensemble of
automated information extractors, the implemented prototype checks
both hard and soft constraints—respectively those that are satisfied or
not and those that are satisfied probabilistically with respect to a thresh-
old. An experimental evaluation shows that the constraint checker iden-
tifies semantic errors with high precision and recall and that pragmatic
error identification can improve results.
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1 Introduction

Automated information-extraction systems (and sometimes even humans) can
extract erroneous (even ridiculous) information. Unless extracted information
about entities, values, and relationship assertions among entities and values
is correct, applications that depend on the information being correct—such as
search, marketing, advertising, and hinting applications—quickly degrade.

Perhaps the most important aspect of data quality is whether the data satis-
fies real-world constraints—formally, pragmatic constraints. In our proposed so-
lution to assessing the quality of automatically extracted data, we begin by align-
ing internal conceptual-model constraints—formally, semantic constraints—with
pragmatic constraints. Realizing that pragmatic constraints may be probabilistic
and both hard and soft and that verification of accuracy may require support-
ing documentation, we semantically enrich conceptual models with constraint
specification based on probability distributions, and we add the possibility of
attaching supporting documentation to every object and relationship assertion
[1]. Then, contrary to standard practice in business database systems, we allow
an ensemble of automated extractors to populate the conceptual schema with
data that may violate declared integrity constraints. Checking incoming data
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against declared constraints is straightforward—indeed, is fully automatic based
on the declarations alone. Deciding how to handle constraint violations, however,
is application-dependent.

Although these augmented conceptual models are generally applicable for
use with machine-learned or rule-encoded expert information-extraction systems,
our implemented prototype, Fe6,3 focuses on family-history applications. In Fe6
we handle constraint violations by flagging them red, yellow, or green depending
on the severity of the violation and allow adjudication users to correct errors.
Interestingly, because constraint specification is declarative in Fe6 conceptual
models, handlers that send warning messages to adjudication users for constraint
violations can all be generated automatically.

Figures 1 and 2 show an example. In the text snippet in Figure 1, observe
that Reverend Ely’s children belong to two different mothers: Elizabeth who
died in 1871 and Abbie, whom Reverend Ely married subsequently. The auto-
mated extraction in Figure 2 has the children all belonging to Elizabeth, but
Francis, the last child in the list, was born after Elizabeth died. The automatic
extraction engines, which are blind to pragmatics, regularly make these kinds
of mistakes. Semantic constraint checkers, however, can assess the extracted in-
formation and catch constraint violations. Handlers generate messages and flag
potentially erroneous filled-in form-fields with a “circle-?” warning icon. When
an adjudication user clicks on the icon, a message like the one in Figure 2 pops
up to warn the user of potential constraint violation(s). (Note that the message
refers to birth dates, which are not present in the family-composition form in
Figure 2. They are, however, extracted onto another form.)

The Fe6 constraint checker primarily contributes to increasing data qual-
ity, a major concern in information systems and conceptual modeling. Concep-
tual modeling researchers have proposed various frameworks for assessing model
quality (e.g. [2]) from which some level of data quality will presumably follow.
Fe6 constraint checkers directly address data quality in ontological conceptual-
izations by aligning conceptually declared semantic constraints with pragmatic
real-world constraints and then checking asserted fact-instances proposed for in-
clusion in a populated model instance. Moreover, the Fe6 approach to constraint
checking harmonizes well with work on information-extraction systems in which
inconsistencies and errors are detected and repaired (e.g. [3]). It also harmonizes
well with work on data cleaning for database systems [4], but extends this work
by allowing contradictory facts to be captured and then reasoning probabilisti-
cally over facts to increase data quality.

2 Application System

To serve their customers, family-history web sites such as FamilySearch.org and
Ancestry.com provide search and hinting facilities over a large collection of data
about individuals and families. They populate their searchable data stores mostly

3 Fe6: Form-based ensemble with 6 pipeline phases that accepts an OCRed document
as input and generates a conceptualization of document-asserted facts as output.
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Fig. 1. Text Snippet from The Ely Ancestry [5], Page 421.

Fig. 2. Screenshot of Constraint Violation: Child Born After Mother’s Death.

by crowd-sourcing. Hundreds of thousands of volunteers painstakingly fill in
forms with data copied from images displayed on a computer screen. Most of the
images are of handwritten data, often in pre-created forms (e.g. census records,
birth certificates, death certificates, and military records). Some of the images,
however, are typeset or typewritten such as are newspaper obituaries and family-
history books. To extract genealogical data from these printed sources, providers
are turning to OCR and automated information-extraction techniques to make
this data available for search and hinting.

Fe6 consists of an ensemble of extractors designed to span the space from fully
unstructured text to highly semi-structured text. Extracted data from a page of
a document (e.g. Page 421 of The Ely Ancestry in Figure 2) is distributed to a
form (e.g. the “Family” form in Figure 2). An adjudicator checks the filled-in
form for correctness and makes corrections as necessary. As an aid to checking,
hovering over a record in the form highlights fields as Figure 2 shows and also
displays warning icons on fields for which the system has detected a semantic
constraint violation. Clicking on an icon pops open a display window explaining
the violation.
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2.1 Conceptualization

An evidence-based conceptual model [1] serves as the formal foundation for Fe6
applications. Figure 3 shows an example—a conceptualization with its predi-
cates, constraints, and documenting evidence.

Fig. 3. Depiction of Conceptual Model Features

The diagram in Figure 3 graphically represents a logic database schema.
Object sets, depicted as named rectangular boxes, are one-place predicates (e.g.
Person(x)). Relationship sets, depicted by lines connecting object sets, are n-
place predicates (e.g. Person(x) has BirthDate(y)). Observe that predicates are
in infix form and that predicate names come directly from the text and reading
direction arrows in the diagram.

Constraints can be hard (returning only either satisfied or not satisfied when
checked) or soft (returning a probability of being satisfied when checked). The
conceptual-model diagram in Figure 3 has 28 hard participation constraints spec-
ifying a minimum and maximum number of times an object may participate in
a relationship set. Each object-set/relationship-set connection has one partici-
pation constraint as denoted by the decorations on the ends of the connecting
lines. The 2’s in Figure 3 explicitly specify participation constraints that over-
ride decoration-specified participation constraints—each specifies that children
have two parents. The diagram also shows 4 hard subset constraints (denoted by
triangles on connecting lines) specifying that the objects in an object set must
be a subset of the objects in another object set—children and spouses are also
persons. In addition, Figure 3 shows one of many possible soft constraints as a
probability distribution (Child being born Years after marriage date of parent
Person has Probability). Figure 3 indicates, as well, that evidence can be associ-
ated with (and in Fe6 is associated with) every predicate assertion instance (e.g.
Child is child of Person statements found in a document).
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2.2 Hard Constraints

The conceptual-model diagram itself declaratively specifies hard cardinality con-
straints [6]. For example, it specifies that a person has at most one death date.
The Person side of the Person has DeathDate relationship set has an “o” (“o”
for “optional”) on its connection and thus allows for no death date. The Death-
Date side of the relationship set has an arrowhead, which specifies that the
relationship from Person to DeathDate is functional (at most one death date).

The declaration of a participation constraint is sufficient to generate code
that both checks for participation constraint violations and handles them. In
a populated model instance, counting the number of times an object partici-
pates in a relationship set is straightforward, as is checking whether the count
is within a min–max range. Similarly, generating a handler that names the ob-
ject sets involved and lists the violating objects in a statement template is also
straightforward.

2.3 Soft Constraints

Soft constraints are based on probability distributions. Since the conceptual
model is foundationally predicate calculus, constraint rules can all be Datalog-
like implications. The antecedents of an implication are predicates in the model
or derived from these predicates or from given probability distributions, and
the single consequent gives the probability of a condition being satisfied. For
example, we can write a rule about the length of time after a parent’s marriage
date a child is born:

Child(x1) is child of Person(x2),
Person(x1) has BirthDate(x3),
Person(x2) and Spouse(x4) married on MarriageDate(x5) in MarriagePlace(x6),
Years(x7) = Years(YearOf (x3) − YearOf (x5)),
child being born Years(x7) after marriage date of parent has Probability(x8)
⇒
Child(x1) being born Years(x7) after marriage date of parent Person(x2) has Prob-
ability(x8).

Any probability that fails to meet a user-specified threshold is a constraint
violation. Violations tell us that one or more of the antecedents must be incorrect.

Each possible constraint violation has an application-dependent handler. In-
terestingly, given only the Datalog rule, both the code to check for a violation
and the code to handle a violation can be generated automatically. The checker
code need only run its usual interpreter on the given Datalog statement, which
in essence creates a relational table in which each tuple is the join of all predicate
instances that satisfy the Datalog statement. These tuples are then fed one at a
time to the handler. Given a user-chosen threshold for constraint violation, the
handler fills in a message template with extracted instance data found to be in
violation. The handler generator substitutes textual instance values for variables
in unary predicate-statement phrases (such as BirthDate(x)) and formats them
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for ease of reading. Since non-textual objects (such as Person instances and Child
instances) come into existence by the principle of ontological commitment, the
handler generator replaces unary person predicates with the person’s name—the
trigger for committing the extraction ontology to recognize the existence of a
person.

3 Experimental Evaluation

We designed an experiment to test the constraint checker: (1) How well does
it identify errors with semantic inconsistencies? (2) Can extraction accuracy be
improved by intelligently removing assertions flagged by the constraint checker
as possible extraction errors?

For the experiment we selected three books: The Ely Ancestry [5] (sample
page snippet in Figure 2), The Register of Marriages and Baptisms in the Parish
of Kilbarchan [7], and A Genealogical History of the Harwood Families [8]. As
a development test set, we chose three pages from each book. On these nine
pages, we identified extraction errors with semantic inconsistencies made by the
ensemble of extractors. For soft errors, we wrote Datalog rules over probability
distributions, that would find each of these errors. These soft constraints plus the
hard max-participation constraints in the conceptual model in Figure 3 became
the fixed set of constraints for the blind test set. The blind test set consisted of
the four pages in each book located 1/5, 2/5, 3/5, and 4/5 of the way through
the book (although we took a subsequent page if the page turned out to be a
picture page as happened in three cases and also if the page contained essentially
no genealogical information as happened in one case).

To determine how well the constraint checker identifies errors, we ran the
extraction ensemble on the development test pages, identified the semantic er-
rors encountered, and wrote rules to catch these errors—14 rules in addition to
the model-specified participation-constraint rules in Figure 3. Table 1 shows the
results of applying the constraint checker to the twelve blind test pages. Overall,
the ensemble extracted 479 records consisting of 1201 filled-in fields. The con-
straint checker marked 239 of these fields as possibly being in error as a result of
finding violations of the 14 probabilistic semantic inference rules and the max-
participation-constraint rules in the conceptual model. Looking for additional
rules that would have caught errors in the blind test set that did not occur in
the development test set, we found three—person names consisting of all digits
and two kinds of improbable in-law relationships.

After ground-truthing the extraction for the blind test pages, we again ap-
plied the constraint checker to determine whether it would incorrectly identify
and erroneously mark fields as possible semantic errors. Table 1 shows the pre-
cision, recall, and F-score. True positives are fields marked as possible errors
in pre-ground-truthing forms that were not marked in the post-ground-truthing
forms. False positives are those marked fields that appeared in both pre- and
post-ground-truthing forms. The total number of positives is the number of true-
positive marked fields plus the number of unmarked fields that would have been
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Table 1. Fields Marked as Potential Errors by the Constraint Checker.

Erroneously
Filled Marked Marked unMarked %

Book Records Fields Fields Fields Fields Prec. Rec. F-Score
Ely 159 410 127 3 25 97.7 83.6 90.1
Kilbarchan 276 694 108 12 0 90.0 100 94.7
Harwood 44 97 4 0 0 100 100 100
Overall 479 1201 239 12 25 94.1 90.5 92.3
Total number of development test-set rules: 14
Total number of new rules needed for blind test set: 3

marked had the constraint checker encoded the additional three rules for se-
mantic errors in the blind test set that did not apply to the development test
set. In our experiment the constraint checker was 100% accurate except in a
few instances in the Kilbarchan and Ely books where it encountered parents
of the same child supposedly having the same gender. Gender is inferred from
gender designators such as “son of”, “Mrs.”, etc. or in the absence of a gender
designator by a large list of name/gender-frequency pairs.

Table 2 shows the results of our efforts to determine how well the constraint
checker could repair erroneously extracted data. Overall, the ensemble extracted
information with an F-score of 83.5%. Retracting all suspect assertions improved
precision by 4.8 percentage points at the expense of a large drop in recall (11.1
percentage points) and a drop in F-score of 4.6 percentage points. Intelligently
retracting just those assertions that are certainly or heuristically identifiable as
being erroneous, improved precision slightly to 88.2% without dropping recall by
much, but enough to cause a slight drop in the F-score of 0.7 percentage points.

Assertions identifiable as certainly erroneous are those from rules with ex-
actly one antecedent assertion such as “parent of self” and “spouse of self”.
Based on text layout, we heuristically chose to reject assertions violating par-
ticipation constraints in which the lexical reading distance between the objects
being related is more distant than the closest. Thus, for example, when the ex-
tractors declared two death dates for an individual, we kept only the date closest
to the person’s name.

4 Concluding Remarks

Being based on a formal conceptual model whose underlying semantics is pred-
icate calculus makes the specification of constraints and constraint processing
declarative. To the extent user-specified inference rules reflect real-world prag-
matics, constraint checkers can identify semantically inconsistent extraction er-
rors. Except in a few cases, however, the checker does not know which of the
extracted assertions in antecedent predicates is in error. In general, determining
which one(s) of several possible antecedent assertions is in error is non-trivial.
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Table 2. Accuracy (%): Precision, Recall, and F-score.

Ensemble All Suspect Identifiable Erroneous
Extraction Results Assertions Retracted Assertions Retracted

Book Prec. Rec. F-s. Prec. Rec. F-s. Prec. Rec. F-s.
Ely 81.2 65.1 72.2 83.6 44.0 57.6 77.0 59.1 66.8

Person 83.8 93.3 88.3 82.7 75.3 78.8 83.8 93.3 88.3
Couple 78.6 35.5 48.9 84.6 35.5 50.0 84.0 33.9 48.3
Family 78.0 56.8 65.7 86.7 16.0 27.1 61.1 40.7 48.9

Kilbarchan 91.9 90.5 91.2 97.3 85.2 90.8 95.3 91.1 93.2
Person 100 96.4 98.2 100 89.2 94.3 100 94.2 97.0
Couple 87.7 87.7 87.7 94.4 93.2 93.8 88.7 86.3 87.5
Family 85.6 85.6 85.6 96.0 76.0 84.8 94.2 90.4 92.2

Harwood 79.1 79.1 79.1 80.5 76.7 78.6 81.0 79.1 80.0
Person 96.3 86.7 91.2 96.2 83.3 89.3 96.3 86.7 91.2
Couple 75.0 60.0 66.7 85.7 60.0 70.6 85.7 60.0 70.6
Family 25.0 66.7 36.4 25.0 66.7 36.4 25.0 66.7 36.4

Overall 87.3 80.1 83.5 92.1 69.0 78.9 88.2 78.1 82.8
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